A survey on intelligent routing protocols in wireless sensor networks

This paper surveys intelligent routing protocols which contribute to the optimization of network lifetime in wireless sensor networks (WSNs). Different from other surveys on routing protocols for WSNs, this paper first puts forward new ideas on the definition of network lifetime. Then, with a view t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of network and computer applications Jg. 38; S. 185 - 201
Hauptverfasser: Guo, Wenjing, Zhang, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.02.2014
Elsevier
Schlagworte:
ISSN:1084-8045, 1095-8592
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper surveys intelligent routing protocols which contribute to the optimization of network lifetime in wireless sensor networks (WSNs). Different from other surveys on routing protocols for WSNs, this paper first puts forward new ideas on the definition of network lifetime. Then, with a view to prolonging network lifetime, it discusses the routing protocols based on such intelligent algorithms as reinforcement learning (RL), ant colony optimization (ACO), fuzzy logic (FL), genetic algorithm (GA), and neural networks (NNs). Intelligent algorithms provide adaptive mechanisms that exhibit intelligent behavior in complex and dynamic environments like WSNs. Inspired by such an idea, some intelligent routing protocols have recently been designed for WSNs. Under each category, it discusses the representative routing algorithms and further analyzes the performance of network lifetime defined in three aspects. This paper intends to give assistance in the optimization of network lifetime in WSNs, together with offering a guide for the collaboration between WSNs and computational intelligence (CI).
AbstractList This paper surveys intelligent routing protocols which contribute to the optimization of network lifetime in wireless sensor networks (WSNs). Different from other surveys on routing protocols for WSNs, this paper first puts forward new ideas on the definition of network lifetime. Then, with a view to prolonging network lifetime, it discusses the routing protocols based on such intelligent algorithms as reinforcement learning (RL), ant colony optimization (ACO), fuzzy logic (FL), genetic algorithm (GA), and neural networks (NNs). Intelligent algorithms provide adaptive mechanisms that exhibit intelligent behavior in complex and dynamic environments like WSNs. Inspired by such an idea, some intelligent routing protocols have recently been designed for WSNs. Under each category, it discusses the representative routing algorithms and further analyzes the performance of network lifetime defined in three aspects. This paper intends to give assistance in the optimization of network lifetime in WSNs, together with offering a guide for the collaboration between WSNs and computational intelligence (CI).
Author Guo, Wenjing
Zhang, Wei
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Guo
  fullname: Guo, Wenjing
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhang@cs.ecnu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28275659$$DView record in Pascal Francis
BookMark eNp9kE1rAjEQhkOxULX9Az3tpcfdTpL9hF5E7AcIvbTnkB1Hid0mkkTFf99dbC89eJqBeZ8Z5pmwkXWWGLvnkHHg5eM221rUmQAuM8gzAH7FxhyaIq2LRoyGvs7TGvLihk1C2AJAmTdyzBazJOz9gU6Js4mxkbrObMjGxLt9NHaT7LyLDl0X-mlyNJ46CiEJZIPziaV4dP4r3LLrte4C3f3WKft8XnzMX9Pl-8vbfLZMUUqIKbZtWTTtqhWtqDiCrJq1LISsctAVCSxXUGGOnAqsyrIQmMtWEsqy0boSJcgpezjv3emAult7bdEEtfPmW_uTErWoiv5Cn6vPOfQuBE9rhSbqaJyNXptOcVCDNrVVgzY1aFOQq15bj4p_6N_2i9DTGaL--YMhrwIaskirXhhGtXLmEv4DC_mJBw
CitedBy_id crossref_primary_10_1016_j_jnca_2019_04_021
crossref_primary_10_1177_1550147719832487
crossref_primary_10_1007_s11276_018_1808_y
crossref_primary_10_1016_j_cosrev_2024_100684
crossref_primary_10_1016_j_measurement_2025_117977
crossref_primary_10_3390_s17081713
crossref_primary_10_1016_j_asoc_2017_01_029
crossref_primary_10_1007_s12083_020_01004_2
crossref_primary_10_1109_JSYST_2019_2920681
crossref_primary_10_1016_j_adhoc_2025_103893
crossref_primary_10_1109_JSEN_2015_2487140
crossref_primary_10_1051_itmconf_20224301010
crossref_primary_10_1007_s11277_017_4023_8
crossref_primary_10_1007_s11277_017_4937_1
crossref_primary_10_1007_s11063_022_10903_9
crossref_primary_10_1007_s11277_018_5780_8
crossref_primary_10_1109_ACCESS_2024_3443990
crossref_primary_10_1002_dac_3280
crossref_primary_10_1016_j_comnet_2023_109562
crossref_primary_10_1109_JIOT_2018_2811741
crossref_primary_10_1016_j_imu_2021_100731
crossref_primary_10_1016_j_adhoc_2024_103687
crossref_primary_10_1109_ACCESS_2020_2984329
crossref_primary_10_21307_ijssis_2017_916
crossref_primary_10_1007_s40010_017_0353_x
crossref_primary_10_1007_s41870_020_00557_y
crossref_primary_10_1155_2022_1976694
crossref_primary_10_1016_j_jnca_2015_03_011
crossref_primary_10_1007_s11277_022_10165_7
crossref_primary_10_1016_j_comcom_2023_08_015
crossref_primary_10_1007_s11235_020_00679_5
crossref_primary_10_1371_journal_pone_0222009
crossref_primary_10_1016_j_asoc_2015_12_028
crossref_primary_10_1007_s11227_021_04128_1
crossref_primary_10_1109_ACCESS_2021_3126107
crossref_primary_10_1016_j_cosrev_2021_100376
crossref_primary_10_1007_s12652_017_0515_3
crossref_primary_10_1016_j_comcom_2018_07_008
crossref_primary_10_1016_j_procs_2014_07_052
crossref_primary_10_1080_09720529_2019_1695901
crossref_primary_10_1016_j_comcom_2023_05_018
crossref_primary_10_4028_www_scientific_net_AMM_681_253
crossref_primary_10_1155_2016_7350427
crossref_primary_10_1016_j_jnca_2015_02_004
crossref_primary_10_1109_ACCESS_2024_3391386
crossref_primary_10_1016_j_pmcj_2015_06_010
crossref_primary_10_1016_j_asoc_2018_01_004
crossref_primary_10_1007_s11277_019_06993_9
crossref_primary_10_1007_s00500_016_2220_0
crossref_primary_10_1109_ACCESS_2016_2598719
crossref_primary_10_1016_j_compeleceng_2016_03_009
crossref_primary_10_3390_app121910073
crossref_primary_10_1007_s11277_023_10601_2
crossref_primary_10_1016_j_future_2021_06_049
crossref_primary_10_1109_ACCESS_2017_2769663
crossref_primary_10_1007_s11276_019_01978_9
crossref_primary_10_1080_17517575_2019_1633691
crossref_primary_10_1007_s11831_023_10039_6
crossref_primary_10_1016_j_jnca_2018_07_010
crossref_primary_10_1016_j_comcom_2015_09_007
crossref_primary_10_1155_2016_9608757
crossref_primary_10_3233_JIFS_223536
crossref_primary_10_1002_dac_4978
crossref_primary_10_1177_1550147719833541
crossref_primary_10_1016_j_jnca_2017_07_006
crossref_primary_10_1016_j_ejor_2017_08_045
crossref_primary_10_1109_ACCESS_2017_2759093
crossref_primary_10_1016_j_asoc_2016_02_019
crossref_primary_10_3390_s18082491
crossref_primary_10_1007_s00500_023_08734_4
crossref_primary_10_1109_ACCESS_2020_3041118
crossref_primary_10_3390_en12122336
crossref_primary_10_1016_j_jnca_2018_01_015
crossref_primary_10_1007_s11277_016_3577_1
Cites_doi 10.1109/CIT.2006.34
10.1016/j.ins.2006.09.016
10.1016/j.ins.2010.07.005
10.1007/978-3-540-28646-2_14
10.1109/TMC.2010.28
10.5120/1616-2173
10.1109/WI-IATW.2006.42
10.1007/BF01386390
10.1109/ISSNIP.2007.4496872
10.1016/j.jnca.2012.03.004
10.3390/s91108399
10.4304/jcm.1.2.12-21
10.3390/s90200909
10.1109/MWC.2004.1368893
10.1109/ETFA.2006.355389
10.1109/WCNC.2003.1200685
10.5121/ijcses.2010.1206
10.1007/11839088_5
10.1613/jair.301
10.4304/jnw.2.5.87-97
10.1109/GLOCOM.2008.ECP.26
10.1613/jair.530
10.1109/SURV.2011.040310.00002
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.jnca.2013.04.001
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1095-8592
EndPage 201
ExternalDocumentID 28275659
10_1016_j_jnca_2013_04_001
S1084804513001045
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WH7
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-cbb659bdb2b271c0379f3523740a7e2c6d07c4c1e5c76652c43b3ec369aa72603
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330908700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1084-8045
IngestDate Wed Apr 02 07:26:07 EDT 2025
Tue Nov 18 22:30:07 EST 2025
Sat Nov 29 07:08:35 EST 2025
Fri Feb 23 02:12:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy logic
Ant colony optimization
Intelligent routing protocols
Genetic algorithm
Neural networks
Reinforcement learning
Liveness
Durability
Routing
Neural network
Adaptive method
Fuzzy algorithm
Wireless network
Swarm intelligence
Routing protocols
Sensor array
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-cbb659bdb2b271c0379f3523740a7e2c6d07c4c1e5c76652c43b3ec369aa72603
PageCount 17
ParticipantIDs pascalfrancis_primary_28275659
crossref_citationtrail_10_1016_j_jnca_2013_04_001
crossref_primary_10_1016_j_jnca_2013_04_001
elsevier_sciencedirect_doi_10_1016_j_jnca_2013_04_001
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of network and computer applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wei G. Study on immunized ant colony optimization. In: Proceedings of the third international conference on natural computation (ICNC 2007); 2007.
Kulkarni Raghavendra V, Forster Anna, Kumar Venayagamoorthy Ganesh. Computational intelligence in wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials 2011;13(1):68–96.
Zungeru, Ang, Seng (bib8) 2012; 35
Boyan JA, Littman ML. Packet routing in dynamically changing networks: a reinforcement learning approach. Advances Neural Information Processing Systems, vol. 6; 1994.
Gupta I, Riordan D, Sampalli S. Cluster-head election using fuzzy logic for wireless sensor networks. In: Riordan, D, editor. Proceedings of the 3rd Annual Communications Networks and Services Research Conference; 2005. p. 255–260.
Dasgupta K, Kalpakis K, Namjoshi P. An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In: Proceedings of IEEE wireless communication and networking WCNC, 3; 2003. p. 1948–1953.
Kaelbling, Littman, Moore (bib10) 1996; 4
Halawani Sami, Khan Abdul Waheed. Sensors lifetime enhancement techniques in wireless sensor networks—a survey. Journal of Computing, 2010;2(5):34–47.
Saleem, Di Caro, Farooq (bib7) 2011; 181
Forster A, Murphy AL. FROMS: Feedback routing for optimizing multiple sinks in WSN with reinforcement learning. In: Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing. (ISSNIP); 2007.
Zhang Y, Kuhn L, Fromherz M. Improvements on ant routing for sensor networks. In: Ants 2004, Workshop on Ant Colony Optimization and Swarm Intelligence; 2004. p. 154–165.
Villalba, Orozco, Cabrera, Abbas (bib2) 2009; 9
Karaki, Kamal (bib1) 2004; 11
Haykin (bib31) 1994
Hu Tiansi, et al. QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing 2010;9(6):796–809.
Ye F, et al. A scalable solution to minimum cost forwarding in large scale sensor networks. In: Proceedings of international conference on computer communications and networks (ICCCN), Dallas, TX; October 2001.
Zhang, Huang (bib13) 2006; 1
Hussain Sajid, Matin Abdul Wasey, Islam Obidul. Genetic algorithm for hierarchical wireless sensor networks. Journal of Networks 2007;2(5):87–97.
Islam O, Hussain S. An intelligent multi-hop routing for wireless sensor networks. In: Proceedings of WI-IAT Workshops Web Intelligence and Intelligent Agent Technology Workshops; 2006. p. 239–242.
Di Caro, Dorigo (bib21) 1998; 9
Camilo Tiago, Carreto Carlos, Sá Silva Jorge, Boavida Fernando. An energy-efficient ant-based routing algorithm for wireless sensor networks. Ant Colony Optimization and Swarm Intelligence; 2006. p. 49–59.
Singh, Singh, Singh (bib3) 2010; 1
Subramanian L, Katz RH. An architecture for building self configurable systems. In: Proceedings of IEEE/ACM workshop on mobile ad hoc networking and computing, Boston, MA; August 2000.
Sutton, Barto (bib9) 1998
Minhas Mahmood R, Gopalakrishnan Sathish, Leung Victor CM. Fuzzy algorithms for maximum lifetime routing in wireless sensor networks. Global telecommunications conference; 2008. p. 1–6.
Barbancho J, León C, Molina J, Barbancho A..Giving neurons to sensors: QoS management in wireless sensors networks. In: Leon C, editor. Proceedings of the IEEE conference on emerging technologies and factory automation ETFA; 2006. p. 594–597.
Ellabib, Calamai, Basir (bib17) 2007; 177
Dijkstra (bib26) 1959; 1
Okdem, Karaboga (bib23) 2009; 9
Baranidharan, Shanti (bib4) 2010; 11
Wang P, Wang T. Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the 6th IEEE international conference on computer and information technology (CIT). Washington, DC, USA. IEEE Computer Society; 2006.
Hsu William H. Genetic algorithms. Department of Computing and Information Sciences, Kansas State University; 2008.
Celik, Zengin, Tuncel (bib6) 2010; 5
Karaki (10.1016/j.jnca.2013.04.001_bib1) 2004; 11
Saleem (10.1016/j.jnca.2013.04.001_bib7) 2011; 181
Zungeru (10.1016/j.jnca.2013.04.001_bib8) 2012; 35
10.1016/j.jnca.2013.04.001_bib25
10.1016/j.jnca.2013.04.001_bib28
10.1016/j.jnca.2013.04.001_bib27
10.1016/j.jnca.2013.04.001_bib29
Kaelbling (10.1016/j.jnca.2013.04.001_bib10) 1996; 4
10.1016/j.jnca.2013.04.001_bib20
10.1016/j.jnca.2013.04.001_bib22
10.1016/j.jnca.2013.04.001_bib24
Celik (10.1016/j.jnca.2013.04.001_bib6) 2010; 5
Sutton (10.1016/j.jnca.2013.04.001_bib9) 1998
Villalba (10.1016/j.jnca.2013.04.001_bib2) 2009; 9
Singh (10.1016/j.jnca.2013.04.001_bib3) 2010; 1
10.1016/j.jnca.2013.04.001_bib15
10.1016/j.jnca.2013.04.001_bib14
10.1016/j.jnca.2013.04.001_bib16
10.1016/j.jnca.2013.04.001_bib19
10.1016/j.jnca.2013.04.001_bib18
10.1016/j.jnca.2013.04.001_bib30
10.1016/j.jnca.2013.04.001_bib33
10.1016/j.jnca.2013.04.001_bib11
10.1016/j.jnca.2013.04.001_bib32
Okdem (10.1016/j.jnca.2013.04.001_bib23) 2009; 9
10.1016/j.jnca.2013.04.001_bib12
Dijkstra (10.1016/j.jnca.2013.04.001_bib26) 1959; 1
Zhang (10.1016/j.jnca.2013.04.001_bib13) 2006; 1
Haykin (10.1016/j.jnca.2013.04.001_bib31) 1994
Baranidharan (10.1016/j.jnca.2013.04.001_bib4) 2010; 11
Di Caro (10.1016/j.jnca.2013.04.001_bib21) 1998; 9
Ellabib (10.1016/j.jnca.2013.04.001_bib17) 2007; 177
10.1016/j.jnca.2013.04.001_bib5
References_xml – reference: Wang P, Wang T. Adaptive routing for sensor networks using reinforcement learning. In: Proceedings of the 6th IEEE international conference on computer and information technology (CIT). Washington, DC, USA. IEEE Computer Society; 2006.
– reference: Forster A, Murphy AL. FROMS: Feedback routing for optimizing multiple sinks in WSN with reinforcement learning. In: Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing. (ISSNIP); 2007.
– volume: 9
  start-page: 8399
  year: 2009
  end-page: 8421
  ident: bib2
  article-title: Routing protocols in wireless sensor networks
  publication-title: Sensors
– reference: Barbancho J, León C, Molina J, Barbancho A..Giving neurons to sensors: QoS management in wireless sensors networks. In: Leon C, editor. Proceedings of the IEEE conference on emerging technologies and factory automation ETFA; 2006. p. 594–597.
– reference: Hu Tiansi, et al. QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing 2010;9(6):796–809.
– reference: Subramanian L, Katz RH. An architecture for building self configurable systems. In: Proceedings of IEEE/ACM workshop on mobile ad hoc networking and computing, Boston, MA; August 2000.
– reference: Wei G. Study on immunized ant colony optimization. In: Proceedings of the third international conference on natural computation (ICNC 2007); 2007.
– reference: Ye F, et al. A scalable solution to minimum cost forwarding in large scale sensor networks. In: Proceedings of international conference on computer communications and networks (ICCCN), Dallas, TX; October 2001.
– reference: Minhas Mahmood R, Gopalakrishnan Sathish, Leung Victor CM. Fuzzy algorithms for maximum lifetime routing in wireless sensor networks. Global telecommunications conference; 2008. p. 1–6.
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: bib10
  article-title: Reinforcement learning: a survey
  publication-title: Journal of Artificial Intelligence Research
– reference: Islam O, Hussain S. An intelligent multi-hop routing for wireless sensor networks. In: Proceedings of WI-IAT Workshops Web Intelligence and Intelligent Agent Technology Workshops; 2006. p. 239–242.
– reference: Dasgupta K, Kalpakis K, Namjoshi P. An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In: Proceedings of IEEE wireless communication and networking WCNC, 3; 2003. p. 1948–1953.
– reference: Camilo Tiago, Carreto Carlos, Sá Silva Jorge, Boavida Fernando. An energy-efficient ant-based routing algorithm for wireless sensor networks. Ant Colony Optimization and Swarm Intelligence; 2006. p. 49–59.
– reference: Hsu William H. Genetic algorithms. Department of Computing and Information Sciences, Kansas State University; 2008.
– volume: 1
  start-page: 63
  year: 2010
  end-page: 83
  ident: bib3
  article-title: Routing protocols in wireless sensor networks—a survey
  publication-title: International Journal of Computer Science and Engineering Survey (IJCSES)
– volume: 177
  start-page: 1248
  year: 2007
  end-page: 1264
  ident: bib17
  article-title: Exchange strategies for multiple ant colony system
  publication-title: Information Science
– volume: 9
  start-page: 909
  year: 2009
  end-page: 921
  ident: bib23
  article-title: Routing in wireless sensor networks using an Ant Colony Optimization (ACO) router chip
  publication-title: Sensors
– volume: 11
  start-page: 35
  year: 2010
  end-page: 40
  ident: bib4
  article-title: Survey on energy efficient protocols for wireless sensor networks
  publication-title: International Journal of Computer Applications
– volume: 9
  start-page: 317
  year: 1998
  end-page: 365
  ident: bib21
  article-title: AntNet: distributed stigmergetic control for communications networks
  publication-title: Journal of Artificial Intelligence Research (JAIR)
– volume: 5
  start-page: 2118
  year: 2010
  end-page: 2126
  ident: bib6
  article-title: A survey on swarm intelligence based routing protocols in wireless sensor networks
  publication-title: International Journal of the Physical Sciences
– volume: 1
  year: 2006
  ident: bib13
  article-title: A learning-based adaptive routing tree for wireless sensor networks
  publication-title: Journal of Communications
– volume: 11
  start-page: 6
  year: 2004
  end-page: 28
  ident: bib1
  article-title: Routing techniques in wireless sensor networks: a survey
  publication-title: Wireless Communications
– year: 1998
  ident: bib9
  article-title: Reinforcement learning: an introduction
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bib26
  article-title: Note on two problems in connexion with graphs
  publication-title: Numerische Mathematik
– reference: Hussain Sajid, Matin Abdul Wasey, Islam Obidul. Genetic algorithm for hierarchical wireless sensor networks. Journal of Networks 2007;2(5):87–97.
– year: 1994
  ident: bib31
  article-title: Neural networks: a comprehensive foundation
– reference: Kulkarni Raghavendra V, Forster Anna, Kumar Venayagamoorthy Ganesh. Computational intelligence in wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials 2011;13(1):68–96.
– reference: Halawani Sami, Khan Abdul Waheed. Sensors lifetime enhancement techniques in wireless sensor networks—a survey. Journal of Computing, 2010;2(5):34–47.
– reference: Zhang Y, Kuhn L, Fromherz M. Improvements on ant routing for sensor networks. In: Ants 2004, Workshop on Ant Colony Optimization and Swarm Intelligence; 2004. p. 154–165.
– volume: 181
  start-page: 4597
  year: 2011
  end-page: 4624
  ident: bib7
  article-title: Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions
  publication-title: Information Sciences
– volume: 35
  start-page: 1508
  year: 2012
  end-page: 1536
  ident: bib8
  article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison
  publication-title: Journal of Network and Computer Applications
– reference: Gupta I, Riordan D, Sampalli S. Cluster-head election using fuzzy logic for wireless sensor networks. In: Riordan, D, editor. Proceedings of the 3rd Annual Communications Networks and Services Research Conference; 2005. p. 255–260.
– reference: Boyan JA, Littman ML. Packet routing in dynamically changing networks: a reinforcement learning approach. Advances Neural Information Processing Systems, vol. 6; 1994.
– ident: 10.1016/j.jnca.2013.04.001_bib12
  doi: 10.1109/CIT.2006.34
– volume: 177
  start-page: 1248
  issue: 5
  year: 2007
  ident: 10.1016/j.jnca.2013.04.001_bib17
  article-title: Exchange strategies for multiple ant colony system
  publication-title: Information Science
  doi: 10.1016/j.ins.2006.09.016
– ident: 10.1016/j.jnca.2013.04.001_bib5
– volume: 181
  start-page: 4597
  issue: 20
  year: 2011
  ident: 10.1016/j.jnca.2013.04.001_bib7
  article-title: Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.07.005
– ident: 10.1016/j.jnca.2013.04.001_bib22
  doi: 10.1007/978-3-540-28646-2_14
– ident: 10.1016/j.jnca.2013.04.001_bib15
  doi: 10.1109/TMC.2010.28
– volume: 11
  start-page: 35
  issue: 10
  year: 2010
  ident: 10.1016/j.jnca.2013.04.001_bib4
  article-title: Survey on energy efficient protocols for wireless sensor networks
  publication-title: International Journal of Computer Applications
  doi: 10.5120/1616-2173
– volume: 5
  start-page: 2118
  issue: 14
  year: 2010
  ident: 10.1016/j.jnca.2013.04.001_bib6
  article-title: A survey on swarm intelligence based routing protocols in wireless sensor networks
  publication-title: International Journal of the Physical Sciences
– ident: 10.1016/j.jnca.2013.04.001_bib28
  doi: 10.1109/WI-IATW.2006.42
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.jnca.2013.04.001_bib26
  article-title: Note on two problems in connexion with graphs
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
– ident: 10.1016/j.jnca.2013.04.001_bib19
– ident: 10.1016/j.jnca.2013.04.001_bib11
– ident: 10.1016/j.jnca.2013.04.001_bib14
  doi: 10.1109/ISSNIP.2007.4496872
– year: 1994
  ident: 10.1016/j.jnca.2013.04.001_bib31
– ident: 10.1016/j.jnca.2013.04.001_bib27
– volume: 35
  start-page: 1508
  issue: 5
  year: 2012
  ident: 10.1016/j.jnca.2013.04.001_bib8
  article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2012.03.004
– year: 1998
  ident: 10.1016/j.jnca.2013.04.001_bib9
– volume: 9
  start-page: 8399
  year: 2009
  ident: 10.1016/j.jnca.2013.04.001_bib2
  article-title: Routing protocols in wireless sensor networks
  publication-title: Sensors
  doi: 10.3390/s91108399
– volume: 1
  issue: 2
  year: 2006
  ident: 10.1016/j.jnca.2013.04.001_bib13
  article-title: A learning-based adaptive routing tree for wireless sensor networks
  publication-title: Journal of Communications
  doi: 10.4304/jcm.1.2.12-21
– ident: 10.1016/j.jnca.2013.04.001_bib25
– volume: 9
  start-page: 909
  issue: 2009
  year: 2009
  ident: 10.1016/j.jnca.2013.04.001_bib23
  article-title: Routing in wireless sensor networks using an Ant Colony Optimization (ACO) router chip
  publication-title: Sensors
  doi: 10.3390/s90200909
– volume: 11
  start-page: 6
  issue: 6
  year: 2004
  ident: 10.1016/j.jnca.2013.04.001_bib1
  article-title: Routing techniques in wireless sensor networks: a survey
  publication-title: Wireless Communications
  doi: 10.1109/MWC.2004.1368893
– ident: 10.1016/j.jnca.2013.04.001_bib16
– ident: 10.1016/j.jnca.2013.04.001_bib33
  doi: 10.1109/ETFA.2006.355389
– ident: 10.1016/j.jnca.2013.04.001_bib29
  doi: 10.1109/WCNC.2003.1200685
– ident: 10.1016/j.jnca.2013.04.001_bib18
– volume: 1
  start-page: 63
  issue: 2
  year: 2010
  ident: 10.1016/j.jnca.2013.04.001_bib3
  article-title: Routing protocols in wireless sensor networks—a survey
  publication-title: International Journal of Computer Science and Engineering Survey (IJCSES)
  doi: 10.5121/ijcses.2010.1206
– ident: 10.1016/j.jnca.2013.04.001_bib20
  doi: 10.1007/11839088_5
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.jnca.2013.04.001_bib10
  article-title: Reinforcement learning: a survey
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.301
– ident: 10.1016/j.jnca.2013.04.001_bib30
  doi: 10.4304/jnw.2.5.87-97
– ident: 10.1016/j.jnca.2013.04.001_bib24
  doi: 10.1109/GLOCOM.2008.ECP.26
– volume: 9
  start-page: 317
  year: 1998
  ident: 10.1016/j.jnca.2013.04.001_bib21
  article-title: AntNet: distributed stigmergetic control for communications networks
  publication-title: Journal of Artificial Intelligence Research (JAIR)
  doi: 10.1613/jair.530
– ident: 10.1016/j.jnca.2013.04.001_bib32
  doi: 10.1109/SURV.2011.040310.00002
SSID ssj0006493
Score 2.4208422
SecondaryResourceType review_article
Snippet This paper surveys intelligent routing protocols which contribute to the optimization of network lifetime in wireless sensor networks (WSNs). Different from...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 185
SubjectTerms Access methods and protocols, osi model
Ant colony optimization
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Fuzzy logic
Genetic algorithm
Intelligent routing protocols
Neural networks
Radiocommunications
Reinforcement learning
Software
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Title A survey on intelligent routing protocols in wireless sensor networks
URI https://dx.doi.org/10.1016/j.jnca.2013.04.001
Volume 38
WOSCitedRecordID wos000330908700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006493
  issn: 1084-8045
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kNL6CNtSfoIOvRmHGQ9LOm4lC1tD6HQlOzN2FotZAn2YntDfn5HluR4WxLaQi_GyLIlNJ9mRuN5IPRBU5qtQHKllOck5UsOfJDZMtVkZZUqWWVKX2xCnp2pxUJ_CxHX3VBOQNa1urnRm_9KamgDYrvQ2b8g9_hRaIB7IDpcgexw_SPCz5Ju217DVh-cGGPCzT5pm23vQ8-bvgHyD46wLlPxlWN2HRxnmzapvVd4d4fOGh7HYLihHkQy_Qc-uvNsBxPsha3XUTZOrdMX9nJqbsh49FCONrAYB3PrdOTYJlEcZJ1PDHlqQ5sWqRJ6h9f6TC6BWWZKTOQu9aP8xtK9dWF9unYmHujEhtS0YUq7qbK_u3m4abh_dHDOFA_RPpVCA8Pen32ZL76OMjrnOoRe-HmHcCrv-ffrSHepLAebsoONtPIVUCZqyflz9DTQBs88Dl6gB7Y-RM9irQ4cWPchejJJPPkSzWfYgwQ3NZ6ABAeQ4BEk8BRHkGAPEhxB8gr9-DQ___g5DQU1UsMY6VNTVbnQ1bKiFZWZIUzqFSjgTHJSSktNviTScJNZYWSeC2o4q5g1LNdlKeHgy16jvbqp7RHCmaqW5RL6kNxyCutYUQJ7XFkFt3AqPkZZXLPChGzzrujJVRHdCteFW-fCrXNBuPOtPEbJ-M7G51q5t7eIpCiCtui1wAKQc-97Jzt0G4eiypVCEPrNP374LXp8u2Heob2-3dr36JG57i-79iQg8CfgP5pi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+intelligent+routing+protocols+in+wireless+sensor+networks&rft.jtitle=Journal+of+network+and+computer+applications&rft.au=Guo%2C+Wenjing&rft.au=Zhang%2C+Wei&rft.date=2014-02-01&rft.pub=Elsevier+Ltd&rft.issn=1084-8045&rft.eissn=1095-8592&rft.volume=38&rft.spage=185&rft.epage=201&rft_id=info:doi/10.1016%2Fj.jnca.2013.04.001&rft.externalDocID=S1084804513001045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-8045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-8045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-8045&client=summon