Optimization control for the far-distance rapid cooperative rendezvous of spacecraft with different masses

In this study, the dynamics equation of orbital elements without singularities is used to describe the far-distance cooperative rendezvous of two spacecraft with different masses. The convergent costate vector is obtained using the particle swarm optimization with differential evolution (PSODE) hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace science and technology Jg. 45; S. 449 - 461
Hauptverfasser: Feng, Weiming, Zhao, Di, Shi, Lei, Yang, Kun, Zhao, Junfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Masson SAS 01.09.2015
Schlagworte:
ISSN:1270-9638, 1626-3219
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, the dynamics equation of orbital elements without singularities is used to describe the far-distance cooperative rendezvous of two spacecraft with different masses. The convergent costate vector is obtained using the particle swarm optimization with differential evolution (PSODE) hybrid algorithm to optimize the far-distance cooperative rendezvous process of the spacecraft. This vector is then used as the initial value for a sequential quadratic programming (SQP) algorithm to again optimize within a small range to obtain a convergent, stable solution. This study focuses on optimizing the control of the far-distance rapid cooperative rendezvous of spacecraft with different masses and explores the interactions between the magnitude of the thrust, the duration of the rendezvous, and the fuel consumption. Optimization simulation results indicate that when the rendezvous duration is limited to within a certain interval, the optimal process for the rendezvous of spacecraft with different masses is a cooperative manoeuvring type, and an increase in thrust will significantly save fuel. In the case of unrestricted rendezvous duration, as the thrust increases, the rendezvous time decreases, but there is little change in the total fuel consumption.
AbstractList In this study, the dynamics equation of orbital elements without singularities is used to describe the far-distance cooperative rendezvous of two spacecraft with different masses. The convergent costate vector is obtained using the particle swarm optimization with differential evolution (PSODE) hybrid algorithm to optimize the far-distance cooperative rendezvous process of the spacecraft. This vector is then used as the initial value for a sequential quadratic programming (SQP) algorithm to again optimize within a small range to obtain a convergent, stable solution. This study focuses on optimizing the control of the far-distance rapid cooperative rendezvous of spacecraft with different masses and explores the interactions between the magnitude of the thrust, the duration of the rendezvous, and the fuel consumption. Optimization simulation results indicate that when the rendezvous duration is limited to within a certain interval, the optimal process for the rendezvous of spacecraft with different masses is a cooperative manoeuvring type, and an increase in thrust will significantly save fuel. In the case of unrestricted rendezvous duration, as the thrust increases, the rendezvous time decreases, but there is little change in the total fuel consumption.
In this study, the dynamics equation of orbital elements without singularities is used to describe the far-distance cooperative rendezvous of two spacecraft with different masses. The convergent costate vector is obtained using the particle swarm optimization with differential evolution (PSODE) hybrid algorithm to optimize the far-distance cooperative rendezvous process of the spacecraft. This vector is then used as the initial value for a sequential quadratic programming (SQP) algorithm to again optimize within a small range to obtain a convergent, stable solution. This study focuses on optimizing the control of the far-distance rapid cooperative rendezvous of spacecraft with different masses and explores the interactions between the magnitude of the thrust, the duration of the rendezvous, and the fuel consumption. Optimization simulation results indicate that when the rendezvous duration is limited to within a certain interval, the optimal process for the rendezvous of spacecraft with different masses is a cooperative manoeuvring type, and an increase in thrust will significantly save fuel. In the case of unrestricted rendezvous duration, as the thrust increases, the rendezvous time decreases, but there is little change in the total fuel consumption.
Author Feng, Weiming
Shi, Lei
Zhao, Di
Zhao, Junfeng
Yang, Kun
Author_xml – sequence: 1
  givenname: Weiming
  surname: Feng
  fullname: Feng, Weiming
  email: fwm@sdu.edu.cn
  organization: Department of Engineering Mechanics, Shandong University, Jinan, 260062, China
– sequence: 2
  givenname: Di
  surname: Zhao
  fullname: Zhao, Di
  organization: Department of Engineering Mechanics, Shandong University, Jinan, 260062, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-7854-0328
  surname: Shi
  fullname: Shi, Lei
  organization: Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, United States
– sequence: 4
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
  organization: Department of Engineering Mechanics, Shandong University, Jinan, 260062, China
– sequence: 5
  givenname: Junfeng
  surname: Zhao
  fullname: Zhao, Junfeng
  organization: Department of Engineering Mechanics, Shandong University, Jinan, 260062, China
BookMark eNp9kM1OAyEURonRxFp9AHcs3cx4gc4wE1fG-Jc0caNrQuESaabDCFijTy-1rly44SM359zAd0IOxzAiIecMagasvVzXOuWaA2tqaOsSB2TGWt5WgrP-sNy5hKpvRXdMTlJaAwDvF3xG1k9T9hv_pbMPIzVhzDEM1IVI8ytSp2Nlfcp6NEijnrwtSJgwFnxbJjha_NqG90SDo2nSBk3ULtMPn1-p9c5hQTLd6JQwnZIjp4eEZ785Jy93t883D9Xy6f7x5npZGSEgV6YzC9Y0CyFt2zaN7hcr2whsVsKuVk5b3lkNFlg5et0xaSVI16HgDmRvBIg5udjvnWJ4e8eU1cYng8OgRyxPVUwKANnwboeyPWpiSCmiU1P0Gx0_FQO161WtVelV7XpV0KoSxZF_HOPzT305aj_8a17tTSy_33qMKhmPpVrrI5qsbPD_2N88lpcw
CitedBy_id crossref_primary_10_1016_j_asr_2021_06_019
crossref_primary_10_1016_j_asr_2022_11_010
crossref_primary_10_1088_1742_6596_2068_1_012021
crossref_primary_10_1061__ASCE_AS_1943_5525_0001021
crossref_primary_10_1177_0954410020926768
crossref_primary_10_1016_j_asr_2020_07_010
crossref_primary_10_1016_j_asr_2017_05_037
crossref_primary_10_1016_j_asr_2018_08_006
crossref_primary_10_1016_j_ast_2016_09_011
crossref_primary_10_1177_0954410017740921
Cites_doi 10.1016/j.ast.2007.04.001
10.1177/0954410014524182
10.1002/oca.709
10.1007/BF03256529
10.2514/3.21126
10.1007/BF00940927
10.1007/BF03321510
10.1023/A:1008202821328
10.2514/3.21315
10.2514/3.21662
10.1007/s10569-012-9399-x
10.1080/00207176508905562
10.1007/BF01228432
10.1155/2012/493507
10.1007/BF03546273
10.1109/TCST.2010.2051228
ContentType Journal Article
Copyright 2015 Elsevier Masson SAS
Copyright_xml – notice: 2015 Elsevier Masson SAS
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.ast.2015.06.015
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
EndPage 461
ExternalDocumentID 10_1016_j_ast_2015_06_015
S1270963815001923
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c330t-c8c4155437d6655a94bd53e5b3dbbfad28da0d01a0d9a817d707f8e32f079c303
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360597800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Thu Oct 02 12:57:01 EDT 2025
Sat Nov 29 07:52:21 EST 2025
Tue Nov 18 21:49:29 EST 2025
Fri Feb 23 02:34:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle swarm and differential evolution hybrid algorithm
Cooperative rendezvous
Sequential quadratic programming method
Active–passive rendezvous
Optimization control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-c8c4155437d6655a94bd53e5b3dbbfad28da0d01a0d9a817d707f8e32f079c303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7854-0328
PQID 1730075280
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1730075280
crossref_primary_10_1016_j_ast_2015_06_015
crossref_citationtrail_10_1016_j_ast_2015_06_015
elsevier_sciencedirect_doi_10_1016_j_ast_2015_06_015
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Aerospace science and technology
PublicationYear 2015
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Dutta, Tsiotras (br0060) 2009; 57
Sun, Huo (br0170) 2013
Bate, Mueller, White (br0200) 1971
Powell, Skolnick (br0260) 1993
Tang, Luo, Li (br0100) 2007; 11
dos Santos, de Almeida Prado, Colasurdo (br0110) 2012; 2012
Prussing (br0080) 2000; 48
Crispin, Seo (br0140) 2011
Kennedy, Eberhart (br0210) 1995
Coverstone-Carroll, Prussing (br0120) 1993; 16
Albert, Bruce (br0280) 1996; 19
Betts (br0270) 1993; 41
Price (br0230) 1996
Broucke, Cefola (br0180) 1972; 5
Vinh, Lu, Howe, Gilbert (br0020) 1990; 66
Kahne (br0190) 1965; 2
Carter, Humi (br0090) 2012; 112
Coverstone-Carroll, Prussing (br0130) 1994; 17
Feng, Fei, Lei (br0070) February 25, 2014
Crispin, Ricour (br0050) 2007; vol. 5
Storn, Price (br0240) 1997; 11
Das, Abraham, Konar (br0250) 2008
Eberhart, Kennedy (br0220) 1995
Sun, Qiao, Cui (br0290) 2006; 27
Massioni, Keviczky, Gill, Verhaegen (br0010) 2011; 19
Coverstone-Carroll, Prussing (br0040) 1995; 43
Bertrand, Epenoy (br0160) 2002; 23
Coverstone-Carroll, Prussing (br0030) 1994; 17
dos Santos (10.1016/j.ast.2015.06.015_br0110) 2012; 2012
Sun (10.1016/j.ast.2015.06.015_br0170) 2013
Betts (10.1016/j.ast.2015.06.015_br0270) 1993; 41
Broucke (10.1016/j.ast.2015.06.015_br0180) 1972; 5
Carter (10.1016/j.ast.2015.06.015_br0090) 2012; 112
Price (10.1016/j.ast.2015.06.015_br0230) 1996
Crispin (10.1016/j.ast.2015.06.015_br0050) 2007; vol. 5
Crispin (10.1016/j.ast.2015.06.015_br0140) 2011
Kennedy (10.1016/j.ast.2015.06.015_br0210) 1995
Prussing (10.1016/j.ast.2015.06.015_br0080) 2000; 48
Das (10.1016/j.ast.2015.06.015_br0250) 2008
Coverstone-Carroll (10.1016/j.ast.2015.06.015_br0030) 1994; 17
Bertrand (10.1016/j.ast.2015.06.015_br0160) 2002; 23
Feng (10.1016/j.ast.2015.06.015_br0070) 2014
Coverstone-Carroll (10.1016/j.ast.2015.06.015_br0130) 1994; 17
Coverstone-Carroll (10.1016/j.ast.2015.06.015_br0040) 1995; 43
Kahne (10.1016/j.ast.2015.06.015_br0190) 1965; 2
Bate (10.1016/j.ast.2015.06.015_br0200) 1971
Powell (10.1016/j.ast.2015.06.015_br0260) 1993
Sun (10.1016/j.ast.2015.06.015_br0290) 2006; 27
Massioni (10.1016/j.ast.2015.06.015_br0010) 2011; 19
Dutta (10.1016/j.ast.2015.06.015_br0060) 2009; 57
Vinh (10.1016/j.ast.2015.06.015_br0020) 1990; 66
Albert (10.1016/j.ast.2015.06.015_br0280) 1996; 19
Eberhart (10.1016/j.ast.2015.06.015_br0220) 1995
Coverstone-Carroll (10.1016/j.ast.2015.06.015_br0120) 1993; 16
Storn (10.1016/j.ast.2015.06.015_br0240) 1997; 11
Tang (10.1016/j.ast.2015.06.015_br0100) 2007; 11
References_xml – volume: 19
  start-page: 592
  year: 1996
  end-page: 599
  ident: br0280
  article-title: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules
  publication-title: J. Guid. Control Dyn.
– start-page: 1
  year: 2008
  end-page: 34
  ident: br0250
  article-title: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives
  publication-title: Advances of Computational Intelligence in Industrial Systems
– volume: 17
  start-page: 1096
  year: 1994
  end-page: 1102
  ident: br0130
  article-title: Optimal cooperative power-limited rendezvous between coplanar circular orbits
  publication-title: J. Guid. Control Dyn.
– volume: 23
  start-page: 171
  year: 2002
  end-page: 197
  ident: br0160
  article-title: New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation
  publication-title: Optim. Control Appl. Methods
– volume: 57
  start-page: 393
  year: 2009
  end-page: 417
  ident: br0060
  article-title: Hohmann–Hohmann and Hohmann-phasing cooperative rendezvous maneuvers
  publication-title: J. Astronaut. Sci.
– year: February 25, 2014
  ident: br0070
  article-title: Optimal control for far-distance rapid cooperative rendezvous
  publication-title: Proc. Inst. Mech. Eng., G J. Aerosp. Eng.
– volume: 66
  start-page: 361
  year: 1990
  end-page: 390
  ident: br0020
  article-title: Optimal interception with time constraint
  publication-title: J. Optim. Theory Appl.
– volume: 2
  start-page: 425
  year: 1965
  end-page: 431
  ident: br0190
  article-title: Optimal cooperative state rendezvous and Pontryagin's maximum principle
  publication-title: Int. J. Control
– volume: vol. 5
  start-page: 5232
  year: 2007
  end-page: 5249
  ident: br0050
  article-title: Cooperative rendezvous between active low-thrust spacecraft
  publication-title: AIAA Guidance, Navigation, and Control Conference
– volume: 48
  start-page: 131
  year: 2000
  end-page: 148
  ident: br0080
  article-title: A class of optimal tow-impulse rendezvous using multiple-revolution Lambert solutions
  publication-title: J. Astronaut. Sci.
– start-page: 524
  year: 1996
  end-page: 527
  ident: br0230
  article-title: Differential evolution: a fast and simple numerical optimizer
  publication-title: Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: br0240
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 41
  start-page: 349
  year: 1993
  end-page: 371
  ident: br0270
  article-title: Using sparse nonlinear programming to compute low thrust orbit transfer
  publication-title: J. Astronaut. Sci.
– start-page: 424
  year: 1993
  end-page: 430
  ident: br0260
  article-title: Using genetic algorithms in engineering design optimization with nonlinear constraints
  publication-title: Proceedings of the 5th International Conference on Genetic Algorithms
– volume: 112
  start-page: 385
  year: 2012
  end-page: 426
  ident: br0090
  article-title: A new approach to impulsive rendezvous near circular orbit
  publication-title: Celest. Mech. Dyn. Astron.
– start-page: 39
  year: 1995
  end-page: 43
  ident: br0220
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the International Symposium on Micro Machine and Human Science
– volume: 11
  start-page: 563
  year: 2007
  end-page: 569
  ident: br0100
  article-title: Optimal robust linearized impulsive rendezvous
  publication-title: Aerosp. Sci. Technol.
– volume: 27
  start-page: 99
  year: 2006
  end-page: 102
  ident: br0290
  article-title: Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method
  publication-title: J. Astronaut.
– volume: 2012
  start-page: 493507
  year: 2012
  ident: br0110
  article-title: Four-impulsive rendezvous maneuvers for spacecrafts in circular orbits using genetic algorithms
  publication-title: Math. Probl. Eng.
– volume: 17
  start-page: 1096
  year: 1994
  end-page: 1102
  ident: br0030
  article-title: Optimal cooperative power-limited rendezvous between coplanar circular orbits
  publication-title: J. Guid. Control Dyn.
– start-page: 585
  year: 2011
  end-page: 596
  ident: br0140
  article-title: between two active spacecraft with continuous low thrust
  publication-title: Advances in Spacecraft Technologies
– start-page: 40
  year: 1971
  end-page: 43
  ident: br0200
  article-title: Fundamentals of Astrodynamics
– volume: 19
  start-page: 481
  year: 2011
  end-page: 492
  ident: br0010
  article-title: A decomposition-based approach to linear time-periodic distributed control of satellite formations
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: br0210
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks
– start-page: 5516
  year: 2013
  end-page: 5521
  ident: br0170
  article-title: Robust adaptive control for spacecraft cooperative rendezvous and docking
  publication-title: 2013 IEEE 52nd Annual Conference on Decision and Control, CDC
– volume: 43
  start-page: 289
  year: 1995
  end-page: 306
  ident: br0040
  article-title: Optimal cooperative power-limited rendezvous with propellant constraints
  publication-title: J. Astronaut. Sci.
– volume: 16
  start-page: 1045
  year: 1993
  end-page: 1054
  ident: br0120
  article-title: Optimal cooperative power-limited rendezvous between neighboring circular orbits
  publication-title: J. Guid. Control Dyn.
– volume: 5
  start-page: 303
  year: 1972
  end-page: 310
  ident: br0180
  article-title: On the equinoctial orbit elements
  publication-title: Celest. Mech.
– start-page: 585
  year: 2011
  ident: 10.1016/j.ast.2015.06.015_br0140
  article-title: Rendezvous between two active spacecraft with continuous low thrust
– volume: 27
  start-page: 99
  issue: 1
  year: 2006
  ident: 10.1016/j.ast.2015.06.015_br0290
  article-title: Study on the optimal trajectories of lunar soft-landing with fixed-thrust using SQP method
  publication-title: J. Astronaut.
– volume: 11
  start-page: 563
  issue: 7–8
  year: 2007
  ident: 10.1016/j.ast.2015.06.015_br0100
  article-title: Optimal robust linearized impulsive rendezvous
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2007.04.001
– year: 2014
  ident: 10.1016/j.ast.2015.06.015_br0070
  article-title: Optimal control for far-distance rapid cooperative rendezvous
  publication-title: Proc. Inst. Mech. Eng., G J. Aerosp. Eng.
  doi: 10.1177/0954410014524182
– volume: 23
  start-page: 171
  issue: 4
  year: 2002
  ident: 10.1016/j.ast.2015.06.015_br0160
  article-title: New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.709
– start-page: 1
  year: 2008
  ident: 10.1016/j.ast.2015.06.015_br0250
  article-title: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives
– volume: 41
  start-page: 349
  issue: 3
  year: 1993
  ident: 10.1016/j.ast.2015.06.015_br0270
  article-title: Using sparse nonlinear programming to compute low thrust orbit transfer
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03256529
– start-page: 424
  year: 1993
  ident: 10.1016/j.ast.2015.06.015_br0260
  article-title: Using genetic algorithms in engineering design optimization with nonlinear constraints
– volume: 16
  start-page: 1045
  issue: 6
  year: 1993
  ident: 10.1016/j.ast.2015.06.015_br0120
  article-title: Optimal cooperative power-limited rendezvous between neighboring circular orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.21126
– volume: 66
  start-page: 361
  issue: 3
  year: 1990
  ident: 10.1016/j.ast.2015.06.015_br0020
  article-title: Optimal interception with time constraint
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940927
– volume: 57
  start-page: 393
  issue: 1–2
  year: 2009
  ident: 10.1016/j.ast.2015.06.015_br0060
  article-title: Hohmann–Hohmann and Hohmann-phasing cooperative rendezvous maneuvers
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03321510
– start-page: 1942
  year: 1995
  ident: 10.1016/j.ast.2015.06.015_br0210
  article-title: Particle swarm optimization
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.ast.2015.06.015_br0240
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 17
  start-page: 1096
  issue: 5
  year: 1994
  ident: 10.1016/j.ast.2015.06.015_br0030
  article-title: Optimal cooperative power-limited rendezvous between coplanar circular orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.21315
– start-page: 40
  year: 1971
  ident: 10.1016/j.ast.2015.06.015_br0200
– start-page: 39
  year: 1995
  ident: 10.1016/j.ast.2015.06.015_br0220
  article-title: A new optimizer using particle swarm theory
– start-page: 524
  year: 1996
  ident: 10.1016/j.ast.2015.06.015_br0230
  article-title: Differential evolution: a fast and simple numerical optimizer
– volume: 19
  start-page: 592
  issue: 3
  year: 1996
  ident: 10.1016/j.ast.2015.06.015_br0280
  article-title: Direct optimization using collocation based on high-order Gauss–Lobatto quadrature rules
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.21662
– volume: 17
  start-page: 1096
  issue: 5
  year: 1994
  ident: 10.1016/j.ast.2015.06.015_br0130
  article-title: Optimal cooperative power-limited rendezvous between coplanar circular orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.21315
– volume: 112
  start-page: 385
  issue: 4
  year: 2012
  ident: 10.1016/j.ast.2015.06.015_br0090
  article-title: A new approach to impulsive rendezvous near circular orbit
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-012-9399-x
– volume: 43
  start-page: 289
  issue: 3
  year: 1995
  ident: 10.1016/j.ast.2015.06.015_br0040
  article-title: Optimal cooperative power-limited rendezvous with propellant constraints
  publication-title: J. Astronaut. Sci.
– volume: vol. 5
  start-page: 5232
  year: 2007
  ident: 10.1016/j.ast.2015.06.015_br0050
  article-title: Cooperative rendezvous between active low-thrust spacecraft
– volume: 2
  start-page: 425
  issue: 5
  year: 1965
  ident: 10.1016/j.ast.2015.06.015_br0190
  article-title: Optimal cooperative state rendezvous and Pontryagin's maximum principle
  publication-title: Int. J. Control
  doi: 10.1080/00207176508905562
– start-page: 5516
  year: 2013
  ident: 10.1016/j.ast.2015.06.015_br0170
  article-title: Robust adaptive control for spacecraft cooperative rendezvous and docking
– volume: 5
  start-page: 303
  issue: 3
  year: 1972
  ident: 10.1016/j.ast.2015.06.015_br0180
  article-title: On the equinoctial orbit elements
  publication-title: Celest. Mech.
  doi: 10.1007/BF01228432
– volume: 2012
  start-page: 493507
  year: 2012
  ident: 10.1016/j.ast.2015.06.015_br0110
  article-title: Four-impulsive rendezvous maneuvers for spacecrafts in circular orbits using genetic algorithms
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/493507
– volume: 48
  start-page: 131
  issue: 2–3
  year: 2000
  ident: 10.1016/j.ast.2015.06.015_br0080
  article-title: A class of optimal tow-impulse rendezvous using multiple-revolution Lambert solutions
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03546273
– volume: 19
  start-page: 481
  issue: 3
  year: 2011
  ident: 10.1016/j.ast.2015.06.015_br0010
  article-title: A decomposition-based approach to linear time-periodic distributed control of satellite formations
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2051228
SSID ssj0002942
Score 2.1181102
Snippet In this study, the dynamics equation of orbital elements without singularities is used to describe the far-distance cooperative rendezvous of two spacecraft...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 449
SubjectTerms Active–passive rendezvous
Algorithms
Cooperative rendezvous
Fuel consumption
Mathematical analysis
Optimization
Optimization control
Particle swarm and differential evolution hybrid algorithm
Rendezvous
Sequential quadratic programming method
Spacecraft
Thrust
Vectors (mathematics)
Title Optimization control for the far-distance rapid cooperative rendezvous of spacecraft with different masses
URI https://dx.doi.org/10.1016/j.ast.2015.06.015
https://www.proquest.com/docview/1730075280
Volume 45
WOSCitedRecordID wos000360597800049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5wQDxFeclInKiC8rZ9XEERLxUOBZZT5FdgV212tU1XFb-An834uWGrVvTAxYqsxEo8n8eT8TczCD3nNS1lRlUi8lInJVc0oW1KEpURXmeUiNrGwnz9SA4O6HTKPo9Gv0MszPqIdB09O2PL_ypq6ANhm9DZK4g7DgodcA1ChxbEDu0_Cf4TKIFjH10ZmeiBTNjyVaKMyWjW84ovZyaobbHUPv-3IcjqX2tDiwUjEpSNBKuSt71z14ZiKv3eMTdnxUPDdqJhuzX374VAIUvNPOe4h6myyuWbNuXEfgz81tZn-3oWXT4_Xdy2jj3fvWv7w2k39FVkVSRjBfWakzQxS36of8tqoEBLl8DU78WlS9R-Ts07j8P8JT8xdNissilYXVjo3ym1t7a6SEAM3LZ5A0M0ZojG8PtMtoKdnFSMjtHO5N3-9H3c1XNmCzHFLwgn5JYruPUeF9k4W7u9NWEOb6Gb_t8DTxxmbqOR7u6gG4OMlHfRfIge7NGDAT0Y0IOH6MEWPXiAHrxBD160eIMebNCDI3qwQ8899OXN_uGrt4kvx5HIokj7RFJprc-CqLquKs5KoapCV6JQQrRc5VTxVKUZNIzTjCiSkpbqIoe1zySYSvfRuFt0-gHCvKgVr0WuTHKnmresVCwVMpNK1JwJtYvSMIGN9LnqTcmUo-ZCwe2iF_GRpUvUctnNZZBK41eFsyAbQNhljz0LEmxAC5ujNd5pmNUmM2UfSJXT9OFV3uMRur5ZJo_RuF-d6ifomlz3s5PVUw_BP3uqr7Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+control+for+the+far-distance+rapid+cooperative+rendezvous+of+spacecraft+with+different+masses&rft.jtitle=Aerospace+science+and+technology&rft.au=Feng%2C+Weiming&rft.au=Zhao%2C+Di&rft.au=Shi%2C+Lei&rft.au=Yang%2C+Kun&rft.date=2015-09-01&rft.issn=1270-9638&rft.volume=45&rft.spage=449&rft.epage=461&rft_id=info:doi/10.1016%2Fj.ast.2015.06.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2015_06_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon