Nonnegative graph embedding induced unsupervised feature selection

Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and accelerate the subsequent learning tasks. However, most existing UFS methods suffer from the following three drawbacks: (1) They usually ignore the...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 282; p. 127664
Main Authors: Mi, Yong, Chen, Hongmei, Yuan, Zhong, Luo, Chuan, Horng, Shi-Jinn, Li, Tianrui
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.07.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and accelerate the subsequent learning tasks. However, most existing UFS methods suffer from the following three drawbacks: (1) They usually ignore the nonnegative attribute of feature when conducting feature selection, which inevitably loses partial information; (2) Most adopt a separate strategy to rank all features and then select the first k features, which introduces an additional parameter and often obtains suboptimal results; (3) Most generally confront the problem of high time-consuming. To tackle the previously mentioned shortage, we present a novel UFS method, i.e., Nonnegative Graph Embedding Induced Unsupervised Feature Selection, which considers nonnegative feature attributes and selects informative feature subsets in a one-step way. Specifically, the raw data are projected into a low-dimensional subspace, where the learned low-dimensional representation keeps a nonnegative attribute. Then, a novel scheme is designed to preserve the local geometric structure of the original data, and ℓ2,0 norm is introduced to guide feature selection without ranking and selecting processes. Finally, we design a high-efficiency solution strategy with low computational complexity, and experiments on real-life datasets verify the efficiency and advancement compared with advanced UFS methods. •A learning scheme is designed to preserve local structure and nonnegative attributes.•ℓ2,0-norm is adopted to avoid introducing additional parameters and selection steps.•A high-efficiency strategy with low computational complexity is designed.
AbstractList Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and accelerate the subsequent learning tasks. However, most existing UFS methods suffer from the following three drawbacks: (1) They usually ignore the nonnegative attribute of feature when conducting feature selection, which inevitably loses partial information; (2) Most adopt a separate strategy to rank all features and then select the first k features, which introduces an additional parameter and often obtains suboptimal results; (3) Most generally confront the problem of high time-consuming. To tackle the previously mentioned shortage, we present a novel UFS method, i.e., Nonnegative Graph Embedding Induced Unsupervised Feature Selection, which considers nonnegative feature attributes and selects informative feature subsets in a one-step way. Specifically, the raw data are projected into a low-dimensional subspace, where the learned low-dimensional representation keeps a nonnegative attribute. Then, a novel scheme is designed to preserve the local geometric structure of the original data, and ℓ2,0 norm is introduced to guide feature selection without ranking and selecting processes. Finally, we design a high-efficiency solution strategy with low computational complexity, and experiments on real-life datasets verify the efficiency and advancement compared with advanced UFS methods. •A learning scheme is designed to preserve local structure and nonnegative attributes.•ℓ2,0-norm is adopted to avoid introducing additional parameters and selection steps.•A high-efficiency strategy with low computational complexity is designed.
ArticleNumber 127664
Author Yuan, Zhong
Horng, Shi-Jinn
Li, Tianrui
Mi, Yong
Luo, Chuan
Chen, Hongmei
Author_xml – sequence: 1
  givenname: Yong
  surname: Mi
  fullname: Mi, Yong
  email: miyong@my.swjtu.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
– sequence: 2
  givenname: Hongmei
  orcidid: 0000-0002-7225-5577
  surname: Chen
  fullname: Chen, Hongmei
  email: hmchen@swjtu.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
– sequence: 3
  givenname: Zhong
  orcidid: 0000-0002-7456-4445
  surname: Yuan
  fullname: Yuan, Zhong
  email: yuanzhong@scu.edu.cn
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 4
  givenname: Chuan
  surname: Luo
  fullname: Luo, Chuan
  email: cluo@scu.edu.cn
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 5
  givenname: Shi-Jinn
  surname: Horng
  fullname: Horng, Shi-Jinn
  email: horngsj@asia.edu.tw
  organization: Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan
– sequence: 6
  givenname: Tianrui
  orcidid: 0000-0001-7780-104X
  surname: Li
  fullname: Li, Tianrui
  email: trli@swjtu.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
BookMark eNp9kMtOwzAQRb0oEm3hB1jlBxLGSWwnEhuoeEkVbGBtOfa4uEqdyk6C-HsSlRWLrkZXmjO6Z1Zk4TuPhNxQyChQfrvPMH6rLIecZTQXnJcLsoSaibSkorwkqxj3AFQAiCV5eOu8x53q3YjJLqjjV4KHBo1xfpc4bwaNJhl8HI4YRhenYFH1Q8AkYou6d52_IhdWtRGv_-aafD49fmxe0u378-vmfpvqooA-1ZWqkdoSteU2rxUUheGispUFbsu8AQTBFTPTMoIRnFGlsWG6KUpmGEKxJvnprg5djAGtPAZ3UOFHUpCzudzL2VzO5vJkPkHVP0i7Xs21-6Bcex69O6E4SY0Og4zaoZ8e4sJkLk3nzuG_dZ16KQ
CitedBy_id crossref_primary_10_1016_j_aej_2025_08_007
Cites_doi 10.1109/TPAMI.2022.3160205
10.1109/TKDE.2021.3124255
10.1109/TNNLS.2023.3238103
10.1109/TNNLS.2022.3194957
10.1109/TMM.2023.3272169
10.1109/TFUZZ.2022.3185285
10.1145/1273496.1273641
10.1109/TPAMI.2023.3238011
10.1109/TCYB.2021.3139898
10.1016/j.patcog.2023.110183
10.1109/TCYB.2022.3185554
10.1109/TIP.2023.3251025
10.1109/TIP.2024.3353572
10.1109/TIP.2023.3234497
10.1016/j.eswa.2024.124568
10.1007/s00521-023-08938-7
10.1016/j.patcog.2021.107996
10.1109/TCYB.2022.3160244
10.1109/TCYB.2021.3087632
10.1016/j.eswa.2024.123673
10.1016/j.ins.2022.05.073
10.1109/TNNLS.2021.3071603
10.1109/TKDE.2023.3267505
10.1109/TSMCB.2006.883267
10.1016/j.eswa.2024.124696
10.1109/TIP.2020.3011253
10.1109/TII.2022.3192044
10.1016/j.patcog.2020.107663
10.1016/j.ins.2009.02.014
10.1007/s10462-023-10547-8
10.1073/pnas.35.11.652
10.1109/TNNLS.2021.3083763
10.1109/TETCI.2022.3171784
10.1109/TNNLS.2020.3042330
10.1109/TNNLS.2022.3186171
10.1109/TEVC.2023.3238420
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.127664
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_127664
S0957417425012862
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c330t-c8a9e1f4ecf6f29a033d678f8f06f42b0e076a5d330e0d7651aceb5cb345d5e03
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481509800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 22:32:31 EST 2025
Sat Nov 29 07:56:26 EST 2025
Sat Jun 21 16:53:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised feature selection
One-step way
ℓ2,0norm
Nonnegative attribute
Low computational complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-c8a9e1f4ecf6f29a033d678f8f06f42b0e076a5d330e0d7651aceb5cb345d5e03
ORCID 0000-0002-7456-4445
0000-0001-7780-104X
0000-0002-7225-5577
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_127664
crossref_citationtrail_10_1016_j_eswa_2025_127664
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127664
PublicationCentury 2000
PublicationDate 2025-07-05
PublicationDateYYYYMMDD 2025-07-05
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cai, Nie, Huang (b2) 2013; vol. 13
Zhou, Wang, Gao, Yang, Gao (b43) 2024; 33
Fan (b7) 1949; 35
Ghosh, Kirby (b9) 2023; 35
Wan, Chen, Li, Sang, Yuan (b30) 2022; 31
You, Hou, Ren, You, Dai, Yao (b37) 2022; 606
Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In
Shi, Zhu, Li, Zhang, Chang (b26) 2023; 32
Huang, Kang, Xu, Liu (b12) 2021; 117
Tang, Liu, Zhu, Xiong, Li, Xia, Wang, Wang (b29) 2020; 32
Yang, Lin, Liu, Nie, Lin (b35) 2022; 19
Liu, Wang, Zhu, Chen, Pelusi, Vasilakos (b19) 2024; 249
Miao, Zhao, Yang, Fan, Tian, Shi, Xu (b22) 2024; 255
Chen, Guan, Li (b3) 2023; 45
Dong, Nie, Wu, Wang, Li (b6) 2024
Li, Nie, Bian, Wu, Li (b15) 2023; 45
Wang, Li, Ruiz (b32) 2023; 53
SamarehJahani, SaberiMovahed, Eftekhari, Aghamollaei, Tiwari (b24) 2024; 240
Nie, Ma, Wang, Li (b23) 2024; 35
Zhu, Ong, Dash (b45) 2007; 37
Chen, Nie, Wang, Li (b5) 2023; 35
Xu, Yuan, Li, Ding (b34) 2023; 7
Fan, Zhang, Hu, Gu, Tao (b8) 2022; 33
Wang, Wang, Gu, Wei, Liu (b33) 2024; 148
norm regularized discriminative feature selection for unsupervised learning. In
Maldonado, Weber (b21) 2009; 179
Zhou, Chen, Du, Li (b42) 2022; 53
Sun, Ren, Hu, Peng, Wang (b27) 2024; 26
Lim, Kim (b17) 2021; 111
Lin, Guan, Chen, Zeng (b18) 2021; 33
Li, Nie, Wu, Hu, Li (b16) 2023; 53
You, Yuan, Zou, He, Li (b38) 2023; 35
Ahadzadeh, Abdar, Safara, Khosravi, Menhaj, Suganthan (b1) 2023; 27
.
Jiang, Wu, Zhou, Liu, Cohn, Sheng, Chen (b13) 2024; 35
Hou, Fan, Zeng, Hu (b11) 2023; 45
Shang, Liu, Zhang, Li, Xu (b25) 2024; 255
Zhang, Li (b39) 2020; 29
He, Cai, Niyogi (b10) 2005; 18
(pp. 1151–1157).
Zhu, Chen, Yang, Nie (b44) 2023; 35
Liu, Zhu, Zhang, Lai, Huo (b20) 2023; 56
Sun, Wang, Peng, Ren, Shen (b28) 2023; 32
Yang, Y., Shen, H. T., Ma, Z., Huang, Z., & Zhou, X. (2011).
Zhang, Zhang, Li (b40) 2022; 33
Wang, Gao, Zhou, Sato, Cheng, Wang (b31) 2023; 53
Chen, Nie, Wang, Li (b4) 2022; 35
Lefoane, Ghafir, Kabir, Awan (b14) 2023; 19
Liu (10.1016/j.eswa.2025.127664_b19) 2024; 249
Maldonado (10.1016/j.eswa.2025.127664_b21) 2009; 179
Nie (10.1016/j.eswa.2025.127664_b23) 2024; 35
Xu (10.1016/j.eswa.2025.127664_b34) 2023; 7
Zhang (10.1016/j.eswa.2025.127664_b39) 2020; 29
Lin (10.1016/j.eswa.2025.127664_b18) 2021; 33
10.1016/j.eswa.2025.127664_b41
Wang (10.1016/j.eswa.2025.127664_b31) 2023; 53
Sun (10.1016/j.eswa.2025.127664_b27) 2024; 26
Hou (10.1016/j.eswa.2025.127664_b11) 2023; 45
Miao (10.1016/j.eswa.2025.127664_b22) 2024; 255
Zhang (10.1016/j.eswa.2025.127664_b40) 2022; 33
Lim (10.1016/j.eswa.2025.127664_b17) 2021; 111
You (10.1016/j.eswa.2025.127664_b37) 2022; 606
Fan (10.1016/j.eswa.2025.127664_b8) 2022; 33
Jiang (10.1016/j.eswa.2025.127664_b13) 2024; 35
Shi (10.1016/j.eswa.2025.127664_b26) 2023; 32
Tang (10.1016/j.eswa.2025.127664_b29) 2020; 32
Zhou (10.1016/j.eswa.2025.127664_b42) 2022; 53
Wang (10.1016/j.eswa.2025.127664_b32) 2023; 53
Zhu (10.1016/j.eswa.2025.127664_b45) 2007; 37
Chen (10.1016/j.eswa.2025.127664_b5) 2023; 35
Shang (10.1016/j.eswa.2025.127664_b25) 2024; 255
Huang (10.1016/j.eswa.2025.127664_b12) 2021; 117
Zhou (10.1016/j.eswa.2025.127664_b43) 2024; 33
10.1016/j.eswa.2025.127664_b36
Li (10.1016/j.eswa.2025.127664_b16) 2023; 53
SamarehJahani (10.1016/j.eswa.2025.127664_b24) 2024; 240
Fan (10.1016/j.eswa.2025.127664_b7) 1949; 35
Li (10.1016/j.eswa.2025.127664_b15) 2023; 45
Wang (10.1016/j.eswa.2025.127664_b33) 2024; 148
Yang (10.1016/j.eswa.2025.127664_b35) 2022; 19
Cai (10.1016/j.eswa.2025.127664_b2) 2013; vol. 13
You (10.1016/j.eswa.2025.127664_b38) 2023; 35
Ahadzadeh (10.1016/j.eswa.2025.127664_b1) 2023; 27
Chen (10.1016/j.eswa.2025.127664_b4) 2022; 35
Dong (10.1016/j.eswa.2025.127664_b6) 2024
Lefoane (10.1016/j.eswa.2025.127664_b14) 2023; 19
Liu (10.1016/j.eswa.2025.127664_b20) 2023; 56
Sun (10.1016/j.eswa.2025.127664_b28) 2023; 32
He (10.1016/j.eswa.2025.127664_b10) 2005; 18
Wan (10.1016/j.eswa.2025.127664_b30) 2022; 31
Ghosh (10.1016/j.eswa.2025.127664_b9) 2023; 35
Zhu (10.1016/j.eswa.2025.127664_b44) 2023; 35
Chen (10.1016/j.eswa.2025.127664_b3) 2023; 45
References_xml – volume: 179
  start-page: 2208
  year: 2009
  end-page: 2217
  ident: b21
  article-title: A wrapper method for feature selection using support vector machines
  publication-title: Information Sciences
– year: 2024
  ident: b6
  article-title: Joint structured bipartite graph and row-sparse projection for large-scale feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 19
  start-page: 921
  year: 2023
  end-page: 929
  ident: b14
  article-title: Unsupervised learning for feature selection: A proposed solution for botnet detection in 5G networks
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b35
  article-title: Fast spectral embedded clustering based on structured graph learning for large-scale hyperspectral image
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 32
  start-page: 838
  year: 2023
  end-page: 853
  ident: b26
  article-title: Unsupervised adaptive feature selection with binary hashing
  publication-title: IEEE Transactions on Image Processing
– volume: 111
  year: 2021
  ident: b17
  article-title: Pairwise dependence-based unsupervised feature selection
  publication-title: Pattern Recognition
– volume: 240
  year: 2024
  ident: b24
  article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 1896
  year: 2023
  end-page: 1911
  ident: b1
  article-title: SFE: A simple, fast and efficient feature selection algorithm for high-dimensional data
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 35
  start-page: 21883
  year: 2023
  end-page: 21902
  ident: b9
  article-title: Nonlinear feature selection using sparsity-promoted centroid-encoder
  publication-title: Neural Computing and Applications
– volume: 45
  start-page: 9306
  year: 2023
  end-page: 9324
  ident: b11
  article-title: Adaptive feature selection with augmented attributes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 33
  start-page: 6881
  year: 2021
  end-page: 6892
  ident: b18
  article-title: Unsupervised feature selection via orthogonal basis clustering and local structure preserving
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 53
  start-page: 4232
  year: 2022
  end-page: 4244
  ident: b42
  article-title: Balanced spectral feature selection
  publication-title: IEEE Transactions on Cybernetics
– volume: vol. 13
  start-page: 1240
  year: 2013
  end-page: 1246
  ident: b2
  article-title: Exact top-k feature selection via l2, 0-norm constraint
  publication-title: IJCAI
– reference: Yang, Y., Shen, H. T., Ma, Z., Huang, Z., & Zhou, X. (2011).
– volume: 35
  start-page: 10514
  year: 2023
  end-page: 10525
  ident: b44
  article-title: Unsupervised adaptive bipartite graph embedding
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 35
  start-page: 652
  year: 1949
  end-page: 655
  ident: b7
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I
  publication-title: Proceedings of the National Academy of Sciences
– volume: 37
  start-page: 70
  year: 2007
  end-page: 76
  ident: b45
  article-title: Wrapper–filter feature selection algorithm using a memetic framework
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 53
  start-page: 5276
  year: 2023
  end-page: 5289
  ident: b31
  article-title: Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification
  publication-title: IEEE Transactions on Cybernetics
– reference: Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. In
– volume: 53
  start-page: 1260
  year: 2023
  end-page: 1271
  ident: b16
  article-title: Unsupervised feature selection with weighted and projected adaptive neighbors
  publication-title: IEEE Transactions on Cybernetics
– volume: 35
  start-page: 4781
  year: 2023
  end-page: 4793
  ident: b5
  article-title: Fast unsupervised feature selection with bipartite graph and
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 35
  start-page: 9943
  year: 2024
  end-page: 9957
  ident: b23
  article-title: Fast sparse discriminative K-means for unsupervised feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 45
  start-page: 5322
  year: 2023
  end-page: 5328
  ident: b15
  article-title: Sparse PCA via
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 35
  start-page: 3615
  year: 2024
  end-page: 3629
  ident: b13
  article-title: Semi-supervised multiview feature selection with adaptive graph learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: -norm regularized discriminative feature selection for unsupervised learning. In
– volume: 255
  year: 2024
  ident: b22
  article-title: Explicit unsupervised feature selection based on structured graph and locally linear embedding
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 213
  year: 2022
  end-page: 225
  ident: b30
  article-title: Feature grouping and selection with graph theory in robust fuzzy rough approximation space
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 255
  year: 2024
  ident: b25
  article-title: Unsupervised feature selection method based on dual manifold learning and dual spatial latent representation
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 972
  year: 2024
  end-page: 986
  ident: b43
  article-title: Unsupervised discriminative feature selection via contrastive graph learning
  publication-title: IEEE Transactions on Image Processing
– reference: .
– volume: 29
  start-page: 8097
  year: 2020
  end-page: 8106
  ident: b39
  article-title: Unsupervised feature selection via data reconstruction and side information
  publication-title: IEEE Transactions on Image Processing
– volume: 606
  start-page: 410
  year: 2022
  end-page: 422
  ident: b37
  article-title: Cluster center consistency guided sampling learning for multiple kernel clustering
  publication-title: Information Sciences
– volume: 32
  start-page: 1732
  year: 2023
  end-page: 1744
  ident: b28
  article-title: Hierarchical hashing learning for image set classification
  publication-title: IEEE Transactions on Image Processing
– volume: 7
  start-page: 76
  year: 2023
  end-page: 88
  ident: b34
  article-title: An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 53
  start-page: 707
  year: 2023
  end-page: 717
  ident: b32
  article-title: Feature selection with maximal relevance and minimal supervised redundancy
  publication-title: IEEE Transactions on Cybernetics
– volume: 33
  start-page: 1355
  year: 2022
  end-page: 1362
  ident: b40
  article-title: Unsupervised feature selection via adaptive graph learning and constraint
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 33
  start-page: 5859
  year: 2022
  end-page: 5872
  ident: b8
  article-title: Adaptive data structure regularized multiclass discriminative feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 18
  year: 2005
  ident: b10
  article-title: Laplacian score for feature selection
  publication-title: Advances in Neural Information Processing Systems
– volume: 56
  start-page: 959
  year: 2023
  end-page: 981
  ident: b20
  article-title: Manifold transfer subspace learning based on double relaxed discriminative regression
  publication-title: Artificial Intelligence Review
– volume: 117
  year: 2021
  ident: b12
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recognition
– volume: 45
  start-page: 2582
  year: 2023
  end-page: 2594
  ident: b3
  article-title: Unsupervised feature selection via graph regularized nonnegative CP decomposition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 32
  start-page: 1747
  year: 2020
  end-page: 1760
  ident: b29
  article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 249
  year: 2024
  ident: b19
  article-title: Domain adaptive learning based on equilibrium distribution and dynamic subspace approximation
  publication-title: Expert Systems with Applications
– reference: (pp. 1151–1157).
– volume: 35
  start-page: 3030
  year: 2023
  end-page: 3044
  ident: b38
  article-title: Robust unsupervised feature selection via multi-group adaptive graph representation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 148
  year: 2024
  ident: b33
  article-title: Unsupervised feature selection by learning exponential weights
  publication-title: Pattern Recognition
– volume: 26
  start-page: 824
  year: 2024
  end-page: 836
  ident: b27
  article-title: Hierarchical consensus hashing for cross-modal retrieval
  publication-title: IEEE Transactions on Multimedia
– volume: 35
  start-page: 2014
  year: 2022
  end-page: 2027
  ident: b4
  article-title: Unsupervised feature selection with flexible optimal graph
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 45
  start-page: 2582
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b3
  article-title: Unsupervised feature selection via graph regularized nonnegative CP decomposition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2022.3160205
– volume: 35
  start-page: 3030
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b38
  article-title: Robust unsupervised feature selection via multi-group adaptive graph representation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3124255
– volume: vol. 13
  start-page: 1240
  year: 2013
  ident: 10.1016/j.eswa.2025.127664_b2
  article-title: Exact top-k feature selection via l2, 0-norm constraint
– volume: 35
  start-page: 9943
  issue: 7
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b23
  article-title: Fast sparse discriminative K-means for unsupervised feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2023.3238103
– volume: 35
  start-page: 3615
  issue: 3
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b13
  article-title: Semi-supervised multiview feature selection with adaptive graph learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3194957
– year: 2024
  ident: 10.1016/j.eswa.2025.127664_b6
  article-title: Joint structured bipartite graph and row-sparse projection for large-scale feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 26
  start-page: 824
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b27
  article-title: Hierarchical consensus hashing for cross-modal retrieval
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2023.3272169
– volume: 31
  start-page: 213
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b30
  article-title: Feature grouping and selection with graph theory in robust fuzzy rough approximation space
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2022.3185285
– ident: 10.1016/j.eswa.2025.127664_b41
  doi: 10.1145/1273496.1273641
– volume: 45
  start-page: 9306
  issue: 8
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b11
  article-title: Adaptive feature selection with augmented attributes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2023.3238011
– volume: 53
  start-page: 707
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b32
  article-title: Feature selection with maximal relevance and minimal supervised redundancy
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3139898
– volume: 148
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b33
  article-title: Unsupervised feature selection by learning exponential weights
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.110183
– volume: 53
  start-page: 5276
  issue: 8
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b31
  article-title: Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2022.3185554
– volume: 18
  year: 2005
  ident: 10.1016/j.eswa.2025.127664_b10
  article-title: Laplacian score for feature selection
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  start-page: 1732
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b28
  article-title: Hierarchical hashing learning for image set classification
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3251025
– volume: 33
  start-page: 972
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b43
  article-title: Unsupervised discriminative feature selection via contrastive graph learning
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2024.3353572
– volume: 32
  start-page: 838
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b26
  article-title: Unsupervised adaptive feature selection with binary hashing
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3234497
– volume: 255
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b22
  article-title: Explicit unsupervised feature selection based on structured graph and locally linear embedding
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124568
– volume: 35
  start-page: 21883
  issue: 29
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b9
  article-title: Nonlinear feature selection using sparsity-promoted centroid-encoder
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08938-7
– volume: 117
  year: 2021
  ident: 10.1016/j.eswa.2025.127664_b12
  article-title: Robust deep k-means: An effective and simple method for data clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2021.107996
– volume: 53
  start-page: 4232
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b42
  article-title: Balanced spectral feature selection
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2022.3160244
– volume: 53
  start-page: 1260
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b16
  article-title: Unsupervised feature selection with weighted and projected adaptive neighbors
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3087632
– volume: 249
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b19
  article-title: Domain adaptive learning based on equilibrium distribution and dynamic subspace approximation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123673
– volume: 240
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b24
  article-title: Low-redundant unsupervised feature selection based on data structure learning and feature orthogonalization
  publication-title: Expert Systems with Applications
– volume: 606
  start-page: 410
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b37
  article-title: Cluster center consistency guided sampling learning for multiple kernel clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.05.073
– volume: 33
  start-page: 5859
  issue: 10
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b8
  article-title: Adaptive data structure regularized multiclass discriminative feature selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3071603
– volume: 35
  start-page: 10514
  issue: 10
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b44
  article-title: Unsupervised adaptive bipartite graph embedding
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2023.3267505
– volume: 35
  start-page: 4781
  issue: 5
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b5
  article-title: Fast unsupervised feature selection with bipartite graph and ℓ2,0-norm constraint
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 37
  start-page: 70
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2025.127664_b45
  article-title: Wrapper–filter feature selection algorithm using a memetic framework
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2006.883267
– volume: 255
  year: 2024
  ident: 10.1016/j.eswa.2025.127664_b25
  article-title: Unsupervised feature selection method based on dual manifold learning and dual spatial latent representation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124696
– volume: 29
  start-page: 8097
  year: 2020
  ident: 10.1016/j.eswa.2025.127664_b39
  article-title: Unsupervised feature selection via data reconstruction and side information
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.3011253
– volume: 19
  start-page: 921
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b14
  article-title: Unsupervised learning for feature selection: A proposed solution for botnet detection in 5G networks
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3192044
– volume: 111
  year: 2021
  ident: 10.1016/j.eswa.2025.127664_b17
  article-title: Pairwise dependence-based unsupervised feature selection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107663
– volume: 179
  start-page: 2208
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2025.127664_b21
  article-title: A wrapper method for feature selection using support vector machines
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.02.014
– volume: 56
  start-page: 959
  issue: Suppl 1
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b20
  article-title: Manifold transfer subspace learning based on double relaxed discriminative regression
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-023-10547-8
– volume: 35
  start-page: 652
  issue: 11
  year: 1949
  ident: 10.1016/j.eswa.2025.127664_b7
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.35.11.652
– volume: 33
  start-page: 6881
  issue: 11
  year: 2021
  ident: 10.1016/j.eswa.2025.127664_b18
  article-title: Unsupervised feature selection via orthogonal basis clustering and local structure preserving
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3083763
– volume: 7
  start-page: 76
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b34
  article-title: An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2022.3171784
– volume: 33
  start-page: 1355
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b40
  article-title: Unsupervised feature selection via adaptive graph learning and constraint
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3042330
– volume: 35
  start-page: 2014
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b4
  article-title: Unsupervised feature selection with flexible optimal graph
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3186171
– volume: 27
  start-page: 1896
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b1
  article-title: SFE: A simple, fast and efficient feature selection algorithm for high-dimensional data
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2023.3238420
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.127664_b35
  article-title: Fast spectral embedded clustering based on structured graph learning for large-scale hyperspectral image
  publication-title: IEEE Geoscience and Remote Sensing Letters
– ident: 10.1016/j.eswa.2025.127664_b36
– volume: 45
  start-page: 5322
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.127664_b15
  article-title: Sparse PCA via ℓ2,p-norm regularization for unsupervised feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 32
  start-page: 1747
  issue: 9
  year: 2020
  ident: 10.1016/j.eswa.2025.127664_b29
  article-title: Feature selective projection with low-rank embedding and dual Laplacian regularization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
SSID ssj0017007
Score 2.4725494
Snippet Recently, many unsupervised feature selection (UFS) methods have been developed due to their effectiveness in selecting valuable features to improve and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127664
SubjectTerms Low computational complexity
Nonnegative attribute
One-step way
Unsupervised feature selection
ℓ2,0norm
Title Nonnegative graph embedding induced unsupervised feature selection
URI https://dx.doi.org/10.1016/j.eswa.2025.127664
Volume 282
WOSCitedRecordID wos001481509800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K8lAO3VSo7jmPnWFBRQWjFoUgLlyixx7SrNl1tNtCfz8R23LRARQ9cosRyHCvfl8l4PA9C3ihDdambIs20xQVKjmdKQZkyafKCsVorblyxCTmfq8Wi_Bz8dDtXTkC2rTo_L1f_FWpsQ7CH0NkbwB0HxQY8R9DxiLDj8Z-Anw-uK999Pm-XjnoGpw2YELxi-mHDv2-7fjVIiQ4vLLjknrPOlcQZcVpGHz1Yb0LC5zEUbrLpHQFzXgFfz8KP0DkMeIl2gG2ncBzFS-9Nrt-OJn0_9d5ie9QHsgY7RCacz6q4ZFCUac58zZ1Rtma-slCQjiyThc9Z_pvg9jaE5S50P4dsUJnYveh8OUv2lb9X9Ckc3dWW1TBGNYxR-TFuk-1MihJl3vbeh_3Fx7jLJKkPpx9nHoKqvP_f1Zn8WXGZKCOHD8i9sIpI9jz6D8ktaB-R-2OFjiQI7Mfk7YQMiSNDEsmQBDIkUzIkgQxJJMMT8uX9_uG7gzRUzUg153STalWXwGwO2hY2K2vKuUGNxCpLC5tnDQUqi1oY7AzUyELgBwmN0A3PhRFA-VOy1Z618IwkTOBqBnLFrNE5BamAF1w3TMnasLqUO4SNr6TSIaX8UNnkpPo7GDtkFu9Z-YQq1_YW45uugkroVb0KiXPNfc9v9JQX5O4Fo1-Src26h1fkjv6xOe7WrwNrfgFyWIQn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonnegative+graph+embedding+induced+unsupervised+feature+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Mi%2C+Yong&rft.au=Chen%2C+Hongmei&rft.au=Yuan%2C+Zhong&rft.au=Luo%2C+Chuan&rft.date=2025-07-05&rft.issn=0957-4174&rft.volume=282&rft.spage=127664&rft_id=info:doi/10.1016%2Fj.eswa.2025.127664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_127664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon