Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning

Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the network edge, hence significantly reducing the service latency and network traffic. In edge computing, many applications are composed of dependent tasks where the outputs of some are the i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. 71; no. 10; pp. 2449 - 2461
Main Authors: Wang, Jin, Hu, Jia, Min, Geyong, Zhan, Wenhan, Zomaya, Albert Y., Georgalas, Nektarios
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the network edge, hence significantly reducing the service latency and network traffic. In edge computing, many applications are composed of dependent tasks where the outputs of some are the inputs of others. How to offload these tasks to the network edge is a vital and challenging problem which aims to determine the placement of each running task in order to maximize the Quality-of-Service (QoS). Most of the existing studies either design heuristic algorithms that lack strong adaptivity or learning-based methods but without considering the intrinsic task dependency. Different from the existing work, we propose an intelligent task offloading scheme leveraging off-policy reinforcement learning empowered by a Sequence-to-Sequence (S2S) neural network, where the dependent tasks are represented by a Directed Acyclic Graph (DAG). To improve the training efficiency, we combine a specific off-policy policy gradient algorithm with a clipped surrogate objective. We then conduct extensive simulation experiments using heterogeneous applications modelled by synthetic DAGs. The results demonstrate that: 1) our method converges fast and steadily in training; 2) it outperforms the existing methods and approximates the optimal solution in latency and energy consumption under various scenarios.
AbstractList Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the network edge, hence significantly reducing the service latency and network traffic. In edge computing, many applications are composed of dependent tasks where the outputs of some are the inputs of others. How to offload these tasks to the network edge is a vital and challenging problem which aims to determine the placement of each running task in order to maximize the Quality-of-Service (QoS). Most of the existing studies either design heuristic algorithms that lack strong adaptivity or learning-based methods but without considering the intrinsic task dependency. Different from the existing work, we propose an intelligent task offloading scheme leveraging off-policy reinforcement learning empowered by a Sequence-to-Sequence (S2S) neural network, where the dependent tasks are represented by a Directed Acyclic Graph (DAG). To improve the training efficiency, we combine a specific off-policy policy gradient algorithm with a clipped surrogate objective. We then conduct extensive simulation experiments using heterogeneous applications modelled by synthetic DAGs. The results demonstrate that: 1) our method converges fast and steadily in training; 2) it outperforms the existing methods and approximates the optimal solution in latency and energy consumption under various scenarios.
Author Wang, Jin
Hu, Jia
Georgalas, Nektarios
Zomaya, Albert Y.
Min, Geyong
Zhan, Wenhan
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-2487-2148
  surname: Wang
  fullname: Wang, Jin
  email: jw855@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 2
  givenname: Jia
  orcidid: 0000-0001-5406-8420
  surname: Hu
  fullname: Hu, Jia
  email: j.hu@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 3
  givenname: Geyong
  orcidid: 0000-0003-1395-7314
  surname: Min
  fullname: Min, Geyong
  email: g.min@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, U.K
– sequence: 4
  givenname: Wenhan
  orcidid: 0000-0002-1851-7185
  surname: Zhan
  fullname: Zhan, Wenhan
  email: zhanwenhan@uestc.edu.cn
  organization: School of Computer Science and Engeeneering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 5
  givenname: Albert Y.
  orcidid: 0000-0002-3090-1059
  surname: Zomaya
  fullname: Zomaya, Albert Y.
  email: albert.zomaya@sydney.edu.au
  organization: School of Information Technologies, The University of Sydney, Camperdown, NSW, Australia
– sequence: 6
  givenname: Nektarios
  orcidid: 0000-0001-9746-3236
  surname: Georgalas
  fullname: Georgalas, Nektarios
  email: nektarios.georgalas@bt.com
  organization: Applied Research Department, British Telecom, London, U.K
BookMark eNp9kD1rwzAQQEVJoWnauUMXQWcnJ8mWrLE46QcEQos7C9k-B6eJ5MrO0H9fm4QOHTodHO_dwbsmE-cdEnLHYM4Y6EWezTlwNhdMMIjhgkxZkqhI60ROyBSApZEWMVyR667bAYDkoKfkbYktugpdT3PbfdJNXe-9rRq3pbUPdFVtkWb-0B77cVXYDivqHV0itvQdGzdAJR5GfY02uAG6IZe13Xd4e54z8vG0yrOXaL15fs0e11EpBPRRodNS17IQhQWlE6FQYQVWxqyEVNRWFrXmFWcxk0IrJaysoEyxsJrbqgQtZuThdLcN_uuIXW92_hjc8NJwNRSRAsRILU5UGXzXBaxNG5qDDd-GgRm7mTwzYzdz7jYYyR-jbHrbN971wTb7f7z7k9cg4u8XLblSUogfGBR61Q
CODEN ITCOB4
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3568848
crossref_primary_10_1109_TSC_2025_3552338
crossref_primary_10_3390_electronics13122387
crossref_primary_10_3390_electronics14163184
crossref_primary_10_1002_cpe_8315
crossref_primary_10_1109_TCC_2023_3290777
crossref_primary_10_1109_ACCESS_2024_3452190
crossref_primary_10_1109_TNSM_2024_3391664
crossref_primary_10_1145_3544836
crossref_primary_10_1088_1742_6596_2670_1_012021
crossref_primary_10_1186_s13677_022_00365_8
crossref_primary_10_1109_JIOT_2024_3516838
crossref_primary_10_1109_JSAC_2022_3233532
crossref_primary_10_1007_s41870_025_02725_4
crossref_primary_10_1109_TGCN_2024_3514578
crossref_primary_10_1109_TC_2025_3587620
crossref_primary_10_1109_JIOT_2025_3586685
crossref_primary_10_1109_COMST_2022_3212586
crossref_primary_10_1109_TVT_2024_3389951
crossref_primary_10_1109_JIOT_2025_3542574
crossref_primary_10_1109_TII_2025_3563531
crossref_primary_10_1016_j_jnca_2025_104211
crossref_primary_10_3390_fi16060181
crossref_primary_10_1016_j_eswa_2024_124657
crossref_primary_10_1109_TII_2022_3217477
crossref_primary_10_1109_TSC_2024_3478826
crossref_primary_10_1016_j_sysarc_2025_103447
crossref_primary_10_1109_JIOT_2024_3447036
crossref_primary_10_1109_JIOT_2023_3288379
crossref_primary_10_3390_electronics12061304
crossref_primary_10_1016_j_adhoc_2025_103754
crossref_primary_10_1109_TMC_2024_3406721
crossref_primary_10_1109_TMC_2024_3506221
crossref_primary_10_3390_app131810027
crossref_primary_10_1109_TNSM_2024_3491432
crossref_primary_10_1016_j_future_2024_04_034
crossref_primary_10_1109_TMC_2024_3362912
crossref_primary_10_1109_JIOT_2024_3520954
crossref_primary_10_1109_TNSM_2024_3375839
crossref_primary_10_1109_TNSM_2023_3295653
crossref_primary_10_3390_electronics12122599
crossref_primary_10_1109_TMC_2023_3264901
crossref_primary_10_7717_peerj_cs_893
crossref_primary_10_1002_cpe_8050
crossref_primary_10_1109_TNSM_2024_3428496
crossref_primary_10_3390_fi15120395
crossref_primary_10_1016_j_dcan_2024_08_015
crossref_primary_10_1109_ACCESS_2024_3494775
crossref_primary_10_1007_s00607_024_01327_5
crossref_primary_10_1109_TMC_2025_3531887
crossref_primary_10_1007_s40747_023_01322_x
crossref_primary_10_1109_TKDE_2025_3555328
crossref_primary_10_1007_s00607_025_01449_4
crossref_primary_10_1109_JIOT_2024_3397296
crossref_primary_10_1016_j_future_2024_04_028
crossref_primary_10_1109_TWC_2024_3429510
crossref_primary_10_1109_TMC_2022_3219983
crossref_primary_10_1109_TCE_2024_3357459
crossref_primary_10_1109_JIOT_2024_3506159
crossref_primary_10_1016_j_simpat_2025_103168
crossref_primary_10_1109_TC_2023_3337317
crossref_primary_10_1007_s10586_025_05468_w
crossref_primary_10_1109_JIOT_2024_3510805
crossref_primary_10_1109_TMC_2023_3289611
crossref_primary_10_1109_TC_2023_3321938
crossref_primary_10_1016_j_future_2024_107588
crossref_primary_10_1109_TCCN_2024_3508784
crossref_primary_10_1109_TSC_2025_3556614
crossref_primary_10_1109_TSC_2024_3495510
crossref_primary_10_1109_JIOT_2022_3233667
crossref_primary_10_1109_TCC_2024_3381646
crossref_primary_10_1016_j_asoc_2025_113105
crossref_primary_10_1007_s11235_025_01310_1
crossref_primary_10_1109_TMC_2025_3573379
crossref_primary_10_3389_fdata_2024_1422546
crossref_primary_10_1038_s41598_025_93731_w
crossref_primary_10_1007_s11276_023_03283_y
crossref_primary_10_1109_JIOT_2024_3439332
crossref_primary_10_1007_s10586_024_04732_9
crossref_primary_10_1109_TC_2025_3585630
crossref_primary_10_1109_TVT_2025_3546914
crossref_primary_10_1109_JIOT_2025_3526984
crossref_primary_10_1109_TC_2024_3355767
crossref_primary_10_1109_TCCN_2024_3520961
crossref_primary_10_1145_3603703
crossref_primary_10_1109_TVT_2023_3328845
crossref_primary_10_1109_TMC_2023_3320104
crossref_primary_10_1109_TC_2024_3354033
crossref_primary_10_1109_JIOT_2025_3549441
crossref_primary_10_1007_s10586_024_04893_7
crossref_primary_10_1109_JIOT_2024_3461853
crossref_primary_10_1109_JIOT_2024_3517342
crossref_primary_10_1109_TNET_2023_3323514
crossref_primary_10_1109_TCE_2024_3419098
crossref_primary_10_3390_electronics13132528
crossref_primary_10_1109_TSC_2025_3589122
crossref_primary_10_1109_TPDS_2024_3468892
crossref_primary_10_1109_TMC_2024_3355868
crossref_primary_10_1109_JIOT_2024_3374969
crossref_primary_10_7717_peerj_cs_851
crossref_primary_10_1109_TVT_2024_3523376
crossref_primary_10_1007_s42452_024_06396_x
crossref_primary_10_1109_ACCESS_2023_3302528
crossref_primary_10_1109_MNET_2024_3383242
crossref_primary_10_1109_JIOT_2025_3534737
crossref_primary_10_1109_TC_2025_3558020
crossref_primary_10_1016_j_jnca_2023_103785
crossref_primary_10_1109_TCC_2023_3328614
crossref_primary_10_1016_j_iot_2023_100868
crossref_primary_10_1016_j_comnet_2025_111445
crossref_primary_10_1109_JIOT_2022_3150419
Cites_doi 10.1145/1999995.2000000
10.1109/TCC.2017.2701794
10.1126/science.aar6404
10.1109/TCOMM.2017.2699660
10.1109/TMC.2018.2815015
10.1109/TC.2020.2987567
10.1109/TC.2020.2976996
10.1109/TVT.2017.2740724
10.1109/JSAC.2018.2815360
10.1109/TC.2020.2969148
10.1109/TC.2016.2536019
10.1109/TCOMM.2018.2866572
10.1109/JIOT.2018.2876279
10.1109/TPDS.2013.57
10.1109/MCOM.2019.1800971
10.1007/978-1-4615-3618-5_2
10.1109/COMST.2017.2682318
10.1038/nature14236
10.1109/WCNC.2018.8377343
10.1109/MobileCloud.2015.22
10.1145/344588.344618
10.1109/TVT.2020.2966500
10.1038/s41586-019-1724-z
10.1109/TMC.2020.3036871
10.1109/TSC.2014.2381227
10.1109/71.993206
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2021.3131040
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 2461
ExternalDocumentID 10_1109_TC_2021_3131040
9627763
Genre orig-research
GrantInformation_xml – fundername: EU Horizon 2020 INITIATE Project
  grantid: 101008297
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-b98c9f6b3ba079537e7ed0a641c083fa6bf92d2141639773a6d0c8eba92adc093
IEDL.DBID RIE
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850876700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Nov 30 04:34:31 EST 2025
Sat Nov 29 01:35:43 EST 2025
Tue Nov 18 22:18:33 EST 2025
Wed Aug 27 02:14:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-b98c9f6b3ba079537e7ed0a641c083fa6bf92d2141639773a6d0c8eba92adc093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5406-8420
0000-0003-1395-7314
0000-0002-1851-7185
0000-0001-9746-3236
0000-0003-2487-2148
0000-0002-3090-1059
OpenAccessLink https://ore.exeter.ac.uk/repository/bitstream/10871/127931/1/rl-taskoffloading.pdf
PQID 2711063039
PQPubID 85452
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TC_2021_3131040
crossref_primary_10_1109_TC_2021_3131040
ieee_primary_9627763
proquest_journals_2711063039
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
dai (ref38) 2017
ref2
mnih (ref20) 2016
ref39
ref17
ref16
abbas (ref6) 0; 8
mnih (ref19) 2015; 518
ref18
sabell (ref1) 2019; 20
ba (ref30) 2016
schulman (ref23) 2017
bahdanau (ref26) 2015
ref21
sutskever (ref25) 2014
doerr (ref22) 2019
ref29
ref7
schulman (ref24) 2016
ref9
ref4
ref3
ref5
lillicrap (ref8) 2016
kool (ref28) 2019
vinyals (ref27) 2015
References_xml – ident: ref13
  doi: 10.1145/1999995.2000000
– ident: ref14
  doi: 10.1109/TCC.2017.2701794
– ident: ref7
  doi: 10.1126/science.aar6404
– year: 2016
  ident: ref30
  article-title: Layer normalization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1109/TCOMM.2017.2699660
– ident: ref34
  doi: 10.1109/TMC.2018.2815015
– ident: ref12
  doi: 10.1109/TC.2020.2987567
– ident: ref5
  doi: 10.1109/TC.2020.2976996
– year: 2017
  ident: ref23
  article-title: Proximal policy optimization algorithms
– ident: ref17
  doi: 10.1109/TVT.2017.2740724
– ident: ref4
  doi: 10.1109/JSAC.2018.2815360
– ident: ref9
  doi: 10.1109/TC.2020.2969148
– ident: ref33
  doi: 10.1109/TC.2016.2536019
– start-page: 2692
  year: 2015
  ident: ref27
  article-title: Pointer networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– year: 2019
  ident: ref28
  article-title: Attention, learn to solve routing problems!
  publication-title: Proc Int Conf Learn Representations
– ident: ref37
  doi: 10.1109/TCOMM.2018.2866572
– ident: ref36
  doi: 10.1109/JIOT.2018.2876279
– ident: ref29
  doi: 10.1109/TPDS.2013.57
– year: 2016
  ident: ref8
  article-title: Continuous control with deep reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 3104
  year: 2014
  ident: ref25
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc 27th Int Conf Adv Neural Inf Process Syst
– ident: ref11
  doi: 10.1109/MCOM.2019.1800971
– start-page: 6348
  year: 2017
  ident: ref38
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2016
  ident: ref24
  article-title: High-dimensional continuous control using generalized advantage estimation
  publication-title: Proc Int Conf Learn Representations
– ident: ref21
  doi: 10.1007/978-1-4615-3618-5_2
– ident: ref32
  doi: 10.1109/COMST.2017.2682318
– year: 2015
  ident: ref26
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc Int Conf Learn Representations
– volume: 518
  start-page: 529
  year: 2015
  ident: ref19
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 8
  year: 0
  ident: ref6
  article-title: Reward-oriented task offloading under limited edge server power for multi-access edge computing
  publication-title: IEEE Internet of Things J
– ident: ref35
  doi: 10.1109/WCNC.2018.8377343
– ident: ref15
  doi: 10.1109/MobileCloud.2015.22
– start-page: 1928
  year: 2016
  ident: ref20
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref18
  doi: 10.1145/344588.344618
– ident: ref16
  doi: 10.1109/TVT.2020.2966500
– start-page: 1636
  year: 2019
  ident: ref22
  article-title: Trajectory-based off-policy deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref39
  doi: 10.1038/s41586-019-1724-z
– volume: 20
  year: 2019
  ident: ref1
  article-title: Developing software for multi-access edge computing
  publication-title: ETSI White Paper
– ident: ref10
  doi: 10.1109/TMC.2020.3036871
– ident: ref2
  doi: 10.1109/TSC.2014.2381227
– ident: ref31
  doi: 10.1109/71.993206
SSID ssj0006209
Score 2.680576
Snippet Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the network edge, hence significantly reducing the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2449
SubjectTerms Algorithms
Communications traffic
Computation offloading
Deep learning
deep reinforcement learning
Edge computing
Energy consumption
Graphical representations
Heuristic methods
Machine learning
Multi-access edge computing
Neural networks
Reinforcement learning
sequence to sequence neural networks
Solid modeling
Task analysis
task offloading
Training
Wireless communication
Title Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9627763
https://www.proquest.com/docview/2711063039
Volume 71
WOSCitedRecordID wos000850876700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHUdCIounBgwcXutt99WgQ4gkfwYTbpk9iJCzh4e-3LYWQqAdPu9m0zWa_TmemO_0-gFtOSCgwjwMzG3AQU5EEjIc6kArnUicZoTp2YhPZcJiPx_SlAve7szBKKVd8pjr21v3Ll6VY262yrhWKMfZQhaq5bM5q7VbddFvOERoDJjH2ND4hpt1Rz-SBUWjSUxPL2F2OPQ_kJFV-rMPOuQzq_3utEzj2QSR62KB-ChU1a0B9K9CAvL024GiPbbAJr49e8HaFRmz5iZ61npauhB6ZyBX15UShzRj2kXVvEpUz9KjUHL0px7Aq3GYi8qSskzN4H_RHvafAKyoEghC8CjjNBdUpJ5zhjCYkU5mSmKWxwSsnmqVc00hGoY3STGBIWCqxyBVnNGJSYErOoTYrZ-oCkAkMNctjymOCLQEONwObjFQkCWGRSbpa0Nl-5UJ4unGrejEtXNqBaTHqFRaWwsPSgrtdh_mGaePvpk2Lwq6ZB6AF7S2MhbfEZRFlZoTUOGp6-XuvKziM7JEGV6DXhtpqsVbXcCC-Vh_LxY2bZN8y2c1O
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7UBdSDWxXrmoMHD06bmWSWHKUqFbUujOBtyCqitKWt_n6TNC2CevA2DEkY5svLey95-T6AY0FILLGgkZ0NOKJMphEXsYmUxoUyaU6YoV5sIu92i-dndl-D09ldGK21Lz7TTffoz_JVX364rbKWE4qx9jAHCymlCZ7c1pqtu9m0oCO2JkwoDkQ-MWatsm0zwSS2CaqNZtw-xzcf5EVVfqzE3r1crv3vw9ZhNYSR6GyC-wbUdG8T1qYSDShY7CasfOMbrMPDeZC8HaOSj97QnTHvfV9Ej2zsii7Ui0aTMdwr5-AU6vfQudYD9Kg9x6r024ko0LK-bMHT5UXZ7kRBUyGShOBxJFghmckEERznLCW5zrXCPKMWsYIYngnDEpXELk6zoSHhmcKy0IKzhCuJGdmG-V6_p3cA2dDQ8IIyQQl2FDjCDmxzUpmmhCc27WpAc_qXKxkIx53uxXvlEw_MqrJdOViqAEsDTmYdBhOujb-b1h0Ks2YBgAbsT2Gsgi2OqiS3I2TWVbPd33sdwVKnvL2pbq6613uwnLgLDr5cbx_mx8MPfQCL8nP8Ohoe-gn3BQxl0JU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependent+Task+Offloading+for+Edge+Computing+based+on+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+computers&rft.au=Wang%2C+Jin&rft.au=Hu%2C+Jia&rft.au=Min%2C+Geyong&rft.au=Zhan%2C+Wenhan&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=71&rft.issue=10&rft.spage=2449&rft_id=info:doi/10.1109%2FTC.2021.3131040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon