Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions

In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also ob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 110; číslo 3; s. 521 - 541
Hlavní autoři: Jeyakumar, V., Rubinov, A. M., Wu, Z. Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer 01.09.2007
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-006-0012-5