Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions

In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also ob...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 110; no. 3; pp. 521 - 541
Main Authors: Jeyakumar, V., Rubinov, A. M., Wu, Z. Y.
Format: Journal Article
Language:English
Published: Heidelberg Springer 01.09.2007
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. [PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-006-0012-5