Identification and experimental assessment of two-input Preisach model for coupling hysteresis in piezoelectric stack actuators

•We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actua...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and actuators. A. Physical. Ročník 220; s. 92 - 100
Hlavní autoři: Dong, Yangyang, Hu, Hong, Wang, Hongjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2014
Témata:
ISSN:0924-4247, 1873-3069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actuators, the feasibility of the two-input Preisach model using in hysteresis characterization is confirmed.•Experiments verify the accuracy of the two-input Preisach model for estimating hysteresis in piezoelectric stack actuators that is subject to two inputs: excitation voltage and external load. Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions.
AbstractList Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions.
•We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actuators, the feasibility of the two-input Preisach model using in hysteresis characterization is confirmed.•Experiments verify the accuracy of the two-input Preisach model for estimating hysteresis in piezoelectric stack actuators that is subject to two inputs: excitation voltage and external load. Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions.
Author Hu, Hong
Wang, Hongjun
Dong, Yangyang
Author_xml – sequence: 1
  givenname: Yangyang
  orcidid: 0000-0002-6293-0604
  surname: Dong
  fullname: Dong, Yangyang
  organization: Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
– sequence: 2
  givenname: Hong
  surname: Hu
  fullname: Hu, Hong
  email: honghu@hit.edu.cn
  organization: Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
– sequence: 3
  givenname: Hongjun
  surname: Wang
  fullname: Wang, Hongjun
  organization: The Center for Space Automation Technologies & Systems, State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, China
BookMark eNp9kEtv1DAQgC3USmxLfwA3H7kkjONsnIgTqnhUqgQHerZmnQn1krWDxwHaC38dL8uJQy_z0nwjzXchzkIMJMRLBbUC1b3e1xywbkC1NQw1NN0zsVG90ZWGbjgTGxiatmqb1jwXF8x7ANDamI34fTNSyH7yDrOPQWIYJf1aKPlDmeMskZmYj42Mk8w_Y-XDsmb5OZFndPfyEEea5RSTdHFdZh--yvsHzpSIPUsf5OLpMdJMLifvJGd03yS6vGKOiV-I8wlnpqt_-VLcvX_35fpjdfvpw83129vKaQ252mmcQGFnRrMrcdqWApUxY9_vugl7pGnrjNm5hrRS2OLWKD3qXuvtYDoCfSlene4uKX5fibM9eHY0zxgormxV1wEMAzSqrJrTqkuROdFknc9_7eSEfrYK7FG53dui3B6VWxhsUV5I9R-5FI-YHp5k3pwYKt__8JQsO0_B0ehTUWbH6J-g_wDGn5-K
CitedBy_id crossref_primary_10_1088_1361_665X_ad23f8
crossref_primary_10_3390_mi16060626
crossref_primary_10_1088_0957_0233_26_11_115603
crossref_primary_10_3390_mi12111366
crossref_primary_10_1177_1045389X251332432
crossref_primary_10_1007_s00542_020_05092_1
crossref_primary_10_3233_JAE_209469
crossref_primary_10_1016_j_cja_2018_09_006
crossref_primary_10_3390_act12120442
crossref_primary_10_3390_mi12010086
crossref_primary_10_1016_j_ymssp_2024_111715
crossref_primary_10_1016_j_eswa_2015_02_061
crossref_primary_10_1007_s11071_016_3088_3
crossref_primary_10_1109_ACCESS_2022_3148325
crossref_primary_10_1177_0954406220928370
crossref_primary_10_1016_j_sna_2019_111674
crossref_primary_10_3390_app11167533
crossref_primary_10_3390_act14040170
Cites_doi 10.1109/TMECH.2012.2205265
10.1016/j.jmatprotec.2004.07.016
10.1109/TMECH.2007.892824
10.1016/j.mechatronics.2011.08.006
10.1109/20.278950
10.1109/TCST.2010.2089687
10.1016/j.compstruc.2010.06.009
10.1109/TMECH.2005.844708
10.1063/1.3065963
10.1109/TMECH.2005.844705
10.1109/TCST.2012.2206029
10.1109/TMECH.2008.2006501
10.1109/TMAG.2011.2172581
10.1109/TMECH.2012.2203315
10.1016/j.physb.2007.08.024
10.1109/TMECH.2002.802724
10.1155/2013/435938
10.1080/00150198008018803
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2014.09.026
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 100
ExternalDocumentID 10_1016_j_sna_2014_09_026
S0924424714004221
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
WUQ
~HD
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c330t-b3af01a67d7ba67f57d7a177d88b6fa8aef5c77bc2e311a4a5713d38335976e03
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346546800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-4247
IngestDate Sun Sep 28 02:42:08 EDT 2025
Tue Nov 18 21:45:13 EST 2025
Sat Nov 29 02:29:08 EST 2025
Fri Feb 23 02:16:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric stack actuator
Identification algorithm
Coupling hysteresis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-b3af01a67d7ba67f57d7a177d88b6fa8aef5c77bc2e311a4a5713d38335976e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6293-0604
PQID 1660099021
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1660099021
crossref_citationtrail_10_1016_j_sna_2014_09_026
crossref_primary_10_1016_j_sna_2014_09_026
elsevier_sciencedirect_doi_10_1016_j_sna_2014_09_026
PublicationCentury 2000
PublicationDate 2014-12-01
2014-12-00
20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ang, Garmon, Khosla, Riviere (bib0090) 2003
Gu, Zhu, Su, Ding (bib0005) 2013; 18
Xu, Li (bib0075) 2010; 132
Guo, Mao (bib0070) 2010
Hu, Georgiou, Mrad (bib0035) 2005; 10
Ma, Mao, Zhang (bib0125) 2011; 19
Charalampakis, Dimou (bib0140) 2010; 88
Coelho, Guerra, Leite (bib0145) 2012; 48
Xiao, Li (bib0085) 2013; 21
Brokate, Sprekels (bib0050) 1996
Esbrook, Guibord, Tan, Khalil (bib0065) 2010
Mayergoyz (bib0030) 2003
Janaideh, Mao, Rakheja, Xie, Su (bib0060) 2008
Xu, Wong (bib0135) 2011; 21
Georgiou, Mrad (bib0020) 2005; 128
Mrad, Hu (bib0080) 2002; 7
Kang (bib0150) 2006
Chen, Montgomery (bib0025) 1980; 23
Suzuki, Matsumoto (bib0110) 2005; 161
Bashash, Jalili (bib0010) 2009; 14
Bergqvist, Engdahl (bib0105) 1991; 27
Zhang, Chen, Mao, Wang (bib0130) 2011
Shan, Leang (bib0055) 2009
Cavallo, Davino, Maria (bib0120) 2008; 403
Janaideh, Krejci (bib0100) 2013; 18
Song, Zhao, Zhou, Abreu-Garcia (bib0045) 2005; 10
Ang, Khosla, Riviere (bib0095) 2007; 12
Davino, Giustiniani, Visone (bib0115) 2009; 105
Ge, Jouaneh (bib0040) 1996; 4
Lau, Liu, Chen, Withers (bib0015) 2013; 2013
Kang (10.1016/j.sna.2014.09.026_bib0150) 2006
Georgiou (10.1016/j.sna.2014.09.026_bib0020) 2005; 128
Ge (10.1016/j.sna.2014.09.026_bib0040) 1996; 4
Ma (10.1016/j.sna.2014.09.026_bib0125) 2011; 19
Hu (10.1016/j.sna.2014.09.026_bib0035) 2005; 10
Brokate (10.1016/j.sna.2014.09.026_bib0050) 1996
Janaideh (10.1016/j.sna.2014.09.026_bib0100) 2013; 18
Lau (10.1016/j.sna.2014.09.026_bib0015) 2013; 2013
Bashash (10.1016/j.sna.2014.09.026_bib0010) 2009; 14
Gu (10.1016/j.sna.2014.09.026_bib0005) 2013; 18
Janaideh (10.1016/j.sna.2014.09.026_bib0060) 2008
Song (10.1016/j.sna.2014.09.026_bib0045) 2005; 10
Guo (10.1016/j.sna.2014.09.026_bib0070) 2010
Davino (10.1016/j.sna.2014.09.026_bib0115) 2009; 105
Xiao (10.1016/j.sna.2014.09.026_bib0085) 2013; 21
Coelho (10.1016/j.sna.2014.09.026_bib0145) 2012; 48
Ang (10.1016/j.sna.2014.09.026_bib0095) 2007; 12
Xu (10.1016/j.sna.2014.09.026_bib0075) 2010; 132
Suzuki (10.1016/j.sna.2014.09.026_bib0110) 2005; 161
Zhang (10.1016/j.sna.2014.09.026_bib0130) 2011
Mrad (10.1016/j.sna.2014.09.026_bib0080) 2002; 7
Xu (10.1016/j.sna.2014.09.026_bib0135) 2011; 21
Bergqvist (10.1016/j.sna.2014.09.026_bib0105) 1991; 27
Cavallo (10.1016/j.sna.2014.09.026_bib0120) 2008; 403
Chen (10.1016/j.sna.2014.09.026_bib0025) 1980; 23
Ang (10.1016/j.sna.2014.09.026_bib0090) 2003
Mayergoyz (10.1016/j.sna.2014.09.026_bib0030) 2003
Esbrook (10.1016/j.sna.2014.09.026_bib0065) 2010
Charalampakis (10.1016/j.sna.2014.09.026_bib0140) 2010; 88
Shan (10.1016/j.sna.2014.09.026_bib0055) 2009
References_xml – start-page: 535
  year: 2011
  end-page: 540
  ident: bib0130
  article-title: A generalized stress-dependent Prandtl–Ishlinskii model and its adaptive inverse compensation with model reference for GMA
  publication-title: Proceedings of 2011 8th Asian Control Conference (ASCC)
– volume: 105
  start-page: 1
  year: 2009
  end-page: 3
  ident: bib0115
  article-title: Experimental properties of an efficient stress-dependent magnetostriction model
  publication-title: J. Appl. Phys.
– start-page: 301
  year: 2009
  end-page: 306
  ident: bib0055
  article-title: Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nano-positioning
  publication-title: American Control Conference, Hyatt Regency Riverfront
– start-page: 1975
  year: 2003
  end-page: 1980
  ident: bib0090
  article-title: Modeling rate-dependent hysteresis in piezoelectric actuators
  publication-title: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 2
– volume: 48
  start-page: 283
  year: 2012
  end-page: 286
  ident: bib0145
  article-title: Multi-objective exponential particle swarm optimization approach applied to hysteresis parameters estimation
  publication-title: IEEE Trans. Magn.
– volume: 18
  start-page: 1498
  year: 2013
  end-page: 1507
  ident: bib0100
  article-title: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezo-micro-positioning actuator
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 128
  start-page: 558
  year: 2005
  end-page: 567
  ident: bib0020
  article-title: Electromechanical modeling of piezoceramic actuators for dynamic loading applications
  publication-title: Dyn. Syst. Meas. Control
– start-page: 6531
  year: 2010
  end-page: 6536
  ident: bib0065
  article-title: Control of systems with hysteresis via servo compensation and its application to nanopositioning
  publication-title: American Control Conference, Marriott Waterfront
– year: 2006
  ident: bib0150
  article-title: Computational Color Technology
– volume: 88
  start-page: 1197
  year: 2010
  end-page: 1205
  ident: bib0140
  article-title: Identification of Bouc–Wen hysteretic systems using particle swarm optimization
  publication-title: Comput. Struct.
– volume: 23
  start-page: 199
  year: 1980
  end-page: 207
  ident: bib0025
  article-title: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity
  publication-title: Ferroelectrics
– volume: 132
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib0075
  article-title: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation
  publication-title: Dyn. Syst. Meas. Control
– volume: 14
  start-page: 11
  year: 2009
  end-page: 20
  ident: bib0010
  article-title: Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 10
  start-page: 198
  year: 2005
  end-page: 209
  ident: bib0045
  article-title: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 7
  start-page: 479
  year: 2002
  end-page: 489
  ident: bib0080
  article-title: A Model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 27
  start-page: 4796
  year: 1991
  end-page: 4798
  ident: bib0105
  article-title: A stress-dependent magnetic Preisach hysteresis model
  publication-title: IEEE Trans. Magn.
– volume: 403
  start-page: 261
  year: 2008
  end-page: 265
  ident: bib0120
  article-title: Hysteresis compensation of smart actuators under variable stress conditions
  publication-title: Phys. B: Condens. Matter
– volume: 12
  start-page: 134
  year: 2007
  end-page: 142
  ident: bib0095
  article-title: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 18
  start-page: 1459
  year: 2013
  end-page: 1471
  ident: bib0005
  article-title: Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation
  publication-title: IEEE/ASME Trans. Mechatron.
– year: 2003
  ident: bib0030
  article-title: Mathematical Models of Hysteresis and their Applications
– volume: 19
  start-page: 1527
  year: 2011
  end-page: 1533
  ident: bib0125
  article-title: On generalized dynamic Preisach operator with application to hysteresis nonlinear systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib0015
  article-title: Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy
  publication-title: Adv. Condens. Matter Phys. B
– start-page: 5182
  year: 2008
  end-page: 5187
  ident: bib0060
  article-title: Generalized Prandtl–Ishlinskii hysteresis model: hysteresis modeling and its inverse for compensation in smart actuators
  publication-title: Proceedings of the 47th IEEE Conference on Decision and Control
– year: 1996
  ident: bib0050
  article-title: Hysteresis Phase Transitions
– volume: 161
  start-page: 141
  year: 2005
  end-page: 145
  ident: bib0110
  article-title: Comparison of Jiles–Atherton and Preisach models extended to stress-dependence in magnetoelastic behaviors of a ferromagnetic material
  publication-title: J. Mater. Process. Technol.
– volume: 21
  start-page: 1239
  year: 2011
  end-page: 1251
  ident: bib0135
  article-title: Rate-dependent hysteresis modeling and compensation of a piezostage using least squares support vector machines
  publication-title: Mechatronics
– volume: 10
  start-page: 230
  year: 2005
  end-page: 239
  ident: bib0035
  article-title: Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions
  publication-title: IEEE/ASME Trans. Mechatron.
– start-page: 147
  year: 2010
  end-page: 158
  ident: bib0070
  article-title: Modeling of Hysteresis Nonlinearity based on Generalized Bouc–Wen model for GMA, Intelligent Robotics and Applications
– volume: 21
  start-page: 1549
  year: 2013
  end-page: 1557
  ident: bib0085
  article-title: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 4
  start-page: 209
  year: 1996
  end-page: 216
  ident: bib0040
  article-title: Tracking control of a piezoceramic actuator
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 18
  start-page: 1498
  issue: October (5)
  year: 2013
  ident: 10.1016/j.sna.2014.09.026_bib0100
  article-title: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezo-micro-positioning actuator
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2205265
– volume: 161
  start-page: 141
  issue: April (1–2)
  year: 2005
  ident: 10.1016/j.sna.2014.09.026_bib0110
  article-title: Comparison of Jiles–Atherton and Preisach models extended to stress-dependence in magnetoelastic behaviors of a ferromagnetic material
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.07.016
– volume: 12
  start-page: 134
  issue: April (2)
  year: 2007
  ident: 10.1016/j.sna.2014.09.026_bib0095
  article-title: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2007.892824
– volume: 21
  start-page: 1239
  issue: 7
  year: 2011
  ident: 10.1016/j.sna.2014.09.026_bib0135
  article-title: Rate-dependent hysteresis modeling and compensation of a piezostage using least squares support vector machines
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.08.006
– start-page: 6531
  year: 2010
  ident: 10.1016/j.sna.2014.09.026_bib0065
  article-title: Control of systems with hysteresis via servo compensation and its application to nanopositioning
– volume: 27
  start-page: 4796
  issue: November (6)
  year: 1991
  ident: 10.1016/j.sna.2014.09.026_bib0105
  article-title: A stress-dependent magnetic Preisach hysteresis model
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.278950
– start-page: 147
  year: 2010
  ident: 10.1016/j.sna.2014.09.026_bib0070
– volume: 128
  start-page: 558
  issue: October (3)
  year: 2005
  ident: 10.1016/j.sna.2014.09.026_bib0020
  article-title: Electromechanical modeling of piezoceramic actuators for dynamic loading applications
  publication-title: Dyn. Syst. Meas. Control
– volume: 4
  start-page: 209
  issue: May (3)
  year: 1996
  ident: 10.1016/j.sna.2014.09.026_bib0040
  article-title: Tracking control of a piezoceramic actuator
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 132
  start-page: 1
  issue: June (4)
  year: 2010
  ident: 10.1016/j.sna.2014.09.026_bib0075
  article-title: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation
  publication-title: Dyn. Syst. Meas. Control
– volume: 19
  start-page: 1527
  issue: November (6)
  year: 2011
  ident: 10.1016/j.sna.2014.09.026_bib0125
  article-title: On generalized dynamic Preisach operator with application to hysteresis nonlinear systems
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2089687
– volume: 88
  start-page: 1197
  issue: November (21–22)
  year: 2010
  ident: 10.1016/j.sna.2014.09.026_bib0140
  article-title: Identification of Bouc–Wen hysteretic systems using particle swarm optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2010.06.009
– volume: 10
  start-page: 198
  issue: April (2)
  year: 2005
  ident: 10.1016/j.sna.2014.09.026_bib0045
  article-title: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2005.844708
– start-page: 1975
  year: 2003
  ident: 10.1016/j.sna.2014.09.026_bib0090
  article-title: Modeling rate-dependent hysteresis in piezoelectric actuators
– start-page: 535
  year: 2011
  ident: 10.1016/j.sna.2014.09.026_bib0130
  article-title: A generalized stress-dependent Prandtl–Ishlinskii model and its adaptive inverse compensation with model reference for GMA
– year: 2003
  ident: 10.1016/j.sna.2014.09.026_bib0030
– volume: 105
  start-page: 1
  year: 2009
  ident: 10.1016/j.sna.2014.09.026_bib0115
  article-title: Experimental properties of an efficient stress-dependent magnetostriction model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3065963
– volume: 10
  start-page: 230
  issue: April (2)
  year: 2005
  ident: 10.1016/j.sna.2014.09.026_bib0035
  article-title: Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2005.844705
– volume: 21
  start-page: 1549
  issue: September (5)
  year: 2013
  ident: 10.1016/j.sna.2014.09.026_bib0085
  article-title: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2206029
– volume: 14
  start-page: 11
  issue: February (1)
  year: 2009
  ident: 10.1016/j.sna.2014.09.026_bib0010
  article-title: Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2008.2006501
– volume: 48
  start-page: 283
  issue: February (2)
  year: 2012
  ident: 10.1016/j.sna.2014.09.026_bib0145
  article-title: Multi-objective exponential particle swarm optimization approach applied to hysteresis parameters estimation
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2172581
– volume: 18
  start-page: 1459
  issue: October (5)
  year: 2013
  ident: 10.1016/j.sna.2014.09.026_bib0005
  article-title: Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2203315
– year: 1996
  ident: 10.1016/j.sna.2014.09.026_bib0050
– start-page: 5182
  year: 2008
  ident: 10.1016/j.sna.2014.09.026_bib0060
  article-title: Generalized Prandtl–Ishlinskii hysteresis model: hysteresis modeling and its inverse for compensation in smart actuators
– volume: 403
  start-page: 261
  issue: February (2–3)
  year: 2008
  ident: 10.1016/j.sna.2014.09.026_bib0120
  article-title: Hysteresis compensation of smart actuators under variable stress conditions
  publication-title: Phys. B: Condens. Matter
  doi: 10.1016/j.physb.2007.08.024
– volume: 7
  start-page: 479
  issue: December (4)
  year: 2002
  ident: 10.1016/j.sna.2014.09.026_bib0080
  article-title: A Model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2002.802724
– start-page: 301
  year: 2009
  ident: 10.1016/j.sna.2014.09.026_bib0055
  article-title: Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nano-positioning
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.sna.2014.09.026_bib0015
  article-title: Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy
  publication-title: Adv. Condens. Matter Phys. B
  doi: 10.1155/2013/435938
– volume: 23
  start-page: 199
  issue: 1
  year: 1980
  ident: 10.1016/j.sna.2014.09.026_bib0025
  article-title: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity
  publication-title: Ferroelectrics
  doi: 10.1080/00150198008018803
– year: 2006
  ident: 10.1016/j.sna.2014.09.026_bib0150
SSID ssj0003377
Score 2.2364795
Snippet •We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two...
Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Actuators
Algorithms
Coupling hysteresis
Hysteresis
Identification algorithm
Joining
Mathematical models
Peas
Piezoelectric stack actuator
Piezoelectricity
Stacks
Three dimensional
Title Identification and experimental assessment of two-input Preisach model for coupling hysteresis in piezoelectric stack actuators
URI https://dx.doi.org/10.1016/j.sna.2014.09.026
https://www.proquest.com/docview/1660099021
Volume 220
WOSCitedRecordID wos000346546800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiJ9iGyAjIQ6gVHGcxO6xQp0ATQWJTpST5SQOpExOWJsxuCDxl_PsOGk6YBoHLlFkOW3U76vfe_Z730PoSagk2JUk98DWZUZUO_CSmEovSSIGIS7NOcttswk2m_HFYvx2MPjZ1sKcHjOt-dnZuPqvUMMYgG1KZ_8B7u5DYQDuAXS4AuxwvRTwTelt7vbi7OHAloy_7LQ4bX7A19IrdFWvTTJGsTLVVbY5jk0_TMu6suXqn4zeMwTmRZN1XqjvZdM_p0jNZkT62Why1CZ-X_W93XcQI5tmPlYQtp0wej4Z2ZY7hh6jzpF2qcEfpP74TTpzaulmjWO5GXnvdrjN2LLW_W0LEvZSQNz-YxB6YdDIbbZL8SQI_N5q2nTJc3aZWEXT35f8ZvdhOVppIyNFGtna4A_y2rM34uDo8FDMp4v50-qLZzqPmRN614blCtoJWDTmQ7QzeTVdvO7sOaW2f2f3wu3ZuM0SPPetf_Nuztl567zMb6IbLurAk4Ytt9BA6dvoek-L8g76sc0bDJjhPm_whje4zHHHG9zyBlveYOANbnmDN7zBhcZbvMGWN7ijxV10dDCdv3jpue4cXkqpv_YSKnOfyJhlLIFrHsGNJIxlnCdxLrlUeZQylqSBooTIUEaM0IyaIj9wgZVP76GhLrW6jzCPSR4rnpp6spBkkYkp_DHPQgVzKfd3kd_-qiJ10vWmg8qxaHMUlwKAEAYI4Y8FALGLnnWPVI1uy0WTwxYq4RzPxqEUQLKLHnvcwipgUTYnbVKrsl4JEscm9AL_ee8Sc_bRtc0_5AEark9q9RBdTU_XxerkkaPjL47GtTg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+experimental+assessment+of+two-input+Preisach+model+for+coupling+hysteresis+in+piezoelectric+stack+actuators&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Dong%2C+Yangyang&rft.au=Hu%2C+Hong&rft.au=Wang%2C+Hongjun&rft.date=2014-12-01&rft.issn=0924-4247&rft.volume=A220&rft.spage=92&rft.epage=100&rft_id=info:doi/10.1016%2Fj.sna.2014.09.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon