Identification and experimental assessment of two-input Preisach model for coupling hysteresis in piezoelectric stack actuators
•We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actua...
Uloženo v:
| Vydáno v: | Sensors and actuators. A. Physical. Ročník 220; s. 92 - 100 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2014
|
| Témata: | |
| ISSN: | 0924-4247, 1873-3069 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actuators, the feasibility of the two-input Preisach model using in hysteresis characterization is confirmed.•Experiments verify the accuracy of the two-input Preisach model for estimating hysteresis in piezoelectric stack actuators that is subject to two inputs: excitation voltage and external load.
Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions. |
|---|---|
| AbstractList | Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions. •We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two databases.•Experimental set-up is established to testify the performance of the model.•By discussing the properties of coupling hysteresis in piezo-actuators, the feasibility of the two-input Preisach model using in hysteresis characterization is confirmed.•Experiments verify the accuracy of the two-input Preisach model for estimating hysteresis in piezoelectric stack actuators that is subject to two inputs: excitation voltage and external load. Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that causes deterioration of the tracking performance. To take account of this loading factor, the two-input Preisach model (TPM) is introduced to estimate the coupling hysteresis in PEAs for loading applications. This paper tackles the identification problem of TPM using a three-dimension interpolation algorithm based on the first-order reversal curves (FORCs) technique. To prove the feasibility of the TPM in describing piezoelectric hysteresis, the coupling hysteresis properties in PEA via experimental data are discussed. To assess the accuracy of the TPM in predicting expansion in a case where the PEA is subject to two inputs, it is compared with the single-input classical Preisach model (CPM) by performing several experiments under various excitation conditions. |
| Author | Hu, Hong Wang, Hongjun Dong, Yangyang |
| Author_xml | – sequence: 1 givenname: Yangyang orcidid: 0000-0002-6293-0604 surname: Dong fullname: Dong, Yangyang organization: Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China – sequence: 2 givenname: Hong surname: Hu fullname: Hu, Hong email: honghu@hit.edu.cn organization: Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China – sequence: 3 givenname: Hongjun surname: Wang fullname: Wang, Hongjun organization: The Center for Space Automation Technologies & Systems, State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, China |
| BookMark | eNp9kEtv1DAQgC3USmxLfwA3H7kkjONsnIgTqnhUqgQHerZmnQn1krWDxwHaC38dL8uJQy_z0nwjzXchzkIMJMRLBbUC1b3e1xywbkC1NQw1NN0zsVG90ZWGbjgTGxiatmqb1jwXF8x7ANDamI34fTNSyH7yDrOPQWIYJf1aKPlDmeMskZmYj42Mk8w_Y-XDsmb5OZFndPfyEEea5RSTdHFdZh--yvsHzpSIPUsf5OLpMdJMLifvJGd03yS6vGKOiV-I8wlnpqt_-VLcvX_35fpjdfvpw83129vKaQ252mmcQGFnRrMrcdqWApUxY9_vugl7pGnrjNm5hrRS2OLWKD3qXuvtYDoCfSlene4uKX5fibM9eHY0zxgormxV1wEMAzSqrJrTqkuROdFknc9_7eSEfrYK7FG53dui3B6VWxhsUV5I9R-5FI-YHp5k3pwYKt__8JQsO0_B0ehTUWbH6J-g_wDGn5-K |
| CitedBy_id | crossref_primary_10_1088_1361_665X_ad23f8 crossref_primary_10_3390_mi16060626 crossref_primary_10_1088_0957_0233_26_11_115603 crossref_primary_10_3390_mi12111366 crossref_primary_10_1177_1045389X251332432 crossref_primary_10_1007_s00542_020_05092_1 crossref_primary_10_3233_JAE_209469 crossref_primary_10_1016_j_cja_2018_09_006 crossref_primary_10_3390_act12120442 crossref_primary_10_3390_mi12010086 crossref_primary_10_1016_j_ymssp_2024_111715 crossref_primary_10_1016_j_eswa_2015_02_061 crossref_primary_10_1007_s11071_016_3088_3 crossref_primary_10_1109_ACCESS_2022_3148325 crossref_primary_10_1177_0954406220928370 crossref_primary_10_1016_j_sna_2019_111674 crossref_primary_10_3390_app11167533 crossref_primary_10_3390_act14040170 |
| Cites_doi | 10.1109/TMECH.2012.2205265 10.1016/j.jmatprotec.2004.07.016 10.1109/TMECH.2007.892824 10.1016/j.mechatronics.2011.08.006 10.1109/20.278950 10.1109/TCST.2010.2089687 10.1016/j.compstruc.2010.06.009 10.1109/TMECH.2005.844708 10.1063/1.3065963 10.1109/TMECH.2005.844705 10.1109/TCST.2012.2206029 10.1109/TMECH.2008.2006501 10.1109/TMAG.2011.2172581 10.1109/TMECH.2012.2203315 10.1016/j.physb.2007.08.024 10.1109/TMECH.2002.802724 10.1155/2013/435938 10.1080/00150198008018803 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7SP 7TB 7U5 8FD FR3 L7M |
| DOI | 10.1016/j.sna.2014.09.026 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3069 |
| EndPage | 100 |
| ExternalDocumentID | 10_1016_j_sna_2014_09_026 S0924424714004221 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW WUQ ~HD 7SP 7TB 7U5 8FD FR3 L7M |
| ID | FETCH-LOGICAL-c330t-b3af01a67d7ba67f57d7a177d88b6fa8aef5c77bc2e311a4a5713d38335976e03 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346546800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-4247 |
| IngestDate | Sun Sep 28 02:42:08 EDT 2025 Tue Nov 18 21:45:13 EST 2025 Sat Nov 29 02:29:08 EST 2025 Fri Feb 23 02:16:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Piezoelectric stack actuator Identification algorithm Coupling hysteresis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-b3af01a67d7ba67f57d7a177d88b6fa8aef5c77bc2e311a4a5713d38335976e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6293-0604 |
| PQID | 1660099021 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1660099021 crossref_citationtrail_10_1016_j_sna_2014_09_026 crossref_primary_10_1016_j_sna_2014_09_026 elsevier_sciencedirect_doi_10_1016_j_sna_2014_09_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 2014-12-00 20141201 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Sensors and actuators. A. Physical. |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ang, Garmon, Khosla, Riviere (bib0090) 2003 Gu, Zhu, Su, Ding (bib0005) 2013; 18 Xu, Li (bib0075) 2010; 132 Guo, Mao (bib0070) 2010 Hu, Georgiou, Mrad (bib0035) 2005; 10 Ma, Mao, Zhang (bib0125) 2011; 19 Charalampakis, Dimou (bib0140) 2010; 88 Coelho, Guerra, Leite (bib0145) 2012; 48 Xiao, Li (bib0085) 2013; 21 Brokate, Sprekels (bib0050) 1996 Esbrook, Guibord, Tan, Khalil (bib0065) 2010 Mayergoyz (bib0030) 2003 Janaideh, Mao, Rakheja, Xie, Su (bib0060) 2008 Xu, Wong (bib0135) 2011; 21 Georgiou, Mrad (bib0020) 2005; 128 Mrad, Hu (bib0080) 2002; 7 Kang (bib0150) 2006 Chen, Montgomery (bib0025) 1980; 23 Suzuki, Matsumoto (bib0110) 2005; 161 Bashash, Jalili (bib0010) 2009; 14 Bergqvist, Engdahl (bib0105) 1991; 27 Zhang, Chen, Mao, Wang (bib0130) 2011 Shan, Leang (bib0055) 2009 Cavallo, Davino, Maria (bib0120) 2008; 403 Janaideh, Krejci (bib0100) 2013; 18 Song, Zhao, Zhou, Abreu-Garcia (bib0045) 2005; 10 Ang, Khosla, Riviere (bib0095) 2007; 12 Davino, Giustiniani, Visone (bib0115) 2009; 105 Ge, Jouaneh (bib0040) 1996; 4 Lau, Liu, Chen, Withers (bib0015) 2013; 2013 Kang (10.1016/j.sna.2014.09.026_bib0150) 2006 Georgiou (10.1016/j.sna.2014.09.026_bib0020) 2005; 128 Ge (10.1016/j.sna.2014.09.026_bib0040) 1996; 4 Ma (10.1016/j.sna.2014.09.026_bib0125) 2011; 19 Hu (10.1016/j.sna.2014.09.026_bib0035) 2005; 10 Brokate (10.1016/j.sna.2014.09.026_bib0050) 1996 Janaideh (10.1016/j.sna.2014.09.026_bib0100) 2013; 18 Lau (10.1016/j.sna.2014.09.026_bib0015) 2013; 2013 Bashash (10.1016/j.sna.2014.09.026_bib0010) 2009; 14 Gu (10.1016/j.sna.2014.09.026_bib0005) 2013; 18 Janaideh (10.1016/j.sna.2014.09.026_bib0060) 2008 Song (10.1016/j.sna.2014.09.026_bib0045) 2005; 10 Guo (10.1016/j.sna.2014.09.026_bib0070) 2010 Davino (10.1016/j.sna.2014.09.026_bib0115) 2009; 105 Xiao (10.1016/j.sna.2014.09.026_bib0085) 2013; 21 Coelho (10.1016/j.sna.2014.09.026_bib0145) 2012; 48 Ang (10.1016/j.sna.2014.09.026_bib0095) 2007; 12 Xu (10.1016/j.sna.2014.09.026_bib0075) 2010; 132 Suzuki (10.1016/j.sna.2014.09.026_bib0110) 2005; 161 Zhang (10.1016/j.sna.2014.09.026_bib0130) 2011 Mrad (10.1016/j.sna.2014.09.026_bib0080) 2002; 7 Xu (10.1016/j.sna.2014.09.026_bib0135) 2011; 21 Bergqvist (10.1016/j.sna.2014.09.026_bib0105) 1991; 27 Cavallo (10.1016/j.sna.2014.09.026_bib0120) 2008; 403 Chen (10.1016/j.sna.2014.09.026_bib0025) 1980; 23 Ang (10.1016/j.sna.2014.09.026_bib0090) 2003 Mayergoyz (10.1016/j.sna.2014.09.026_bib0030) 2003 Esbrook (10.1016/j.sna.2014.09.026_bib0065) 2010 Charalampakis (10.1016/j.sna.2014.09.026_bib0140) 2010; 88 Shan (10.1016/j.sna.2014.09.026_bib0055) 2009 |
| References_xml | – start-page: 535 year: 2011 end-page: 540 ident: bib0130 article-title: A generalized stress-dependent Prandtl–Ishlinskii model and its adaptive inverse compensation with model reference for GMA publication-title: Proceedings of 2011 8th Asian Control Conference (ASCC) – volume: 105 start-page: 1 year: 2009 end-page: 3 ident: bib0115 article-title: Experimental properties of an efficient stress-dependent magnetostriction model publication-title: J. Appl. Phys. – start-page: 301 year: 2009 end-page: 306 ident: bib0055 article-title: Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nano-positioning publication-title: American Control Conference, Hyatt Regency Riverfront – start-page: 1975 year: 2003 end-page: 1980 ident: bib0090 article-title: Modeling rate-dependent hysteresis in piezoelectric actuators publication-title: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003 (IROS 2003), vol. 2 – volume: 48 start-page: 283 year: 2012 end-page: 286 ident: bib0145 article-title: Multi-objective exponential particle swarm optimization approach applied to hysteresis parameters estimation publication-title: IEEE Trans. Magn. – volume: 18 start-page: 1498 year: 2013 end-page: 1507 ident: bib0100 article-title: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezo-micro-positioning actuator publication-title: IEEE/ASME Trans. Mechatron. – volume: 128 start-page: 558 year: 2005 end-page: 567 ident: bib0020 article-title: Electromechanical modeling of piezoceramic actuators for dynamic loading applications publication-title: Dyn. Syst. Meas. Control – start-page: 6531 year: 2010 end-page: 6536 ident: bib0065 article-title: Control of systems with hysteresis via servo compensation and its application to nanopositioning publication-title: American Control Conference, Marriott Waterfront – year: 2006 ident: bib0150 article-title: Computational Color Technology – volume: 88 start-page: 1197 year: 2010 end-page: 1205 ident: bib0140 article-title: Identification of Bouc–Wen hysteretic systems using particle swarm optimization publication-title: Comput. Struct. – volume: 23 start-page: 199 year: 1980 end-page: 207 ident: bib0025 article-title: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity publication-title: Ferroelectrics – volume: 132 start-page: 1 year: 2010 end-page: 12 ident: bib0075 article-title: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation publication-title: Dyn. Syst. Meas. Control – volume: 14 start-page: 11 year: 2009 end-page: 20 ident: bib0010 article-title: Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages publication-title: IEEE/ASME Trans. Mechatron. – volume: 10 start-page: 198 year: 2005 end-page: 209 ident: bib0045 article-title: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model publication-title: IEEE/ASME Trans. Mechatron. – volume: 7 start-page: 479 year: 2002 end-page: 489 ident: bib0080 article-title: A Model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations publication-title: IEEE/ASME Trans. Mechatron. – volume: 27 start-page: 4796 year: 1991 end-page: 4798 ident: bib0105 article-title: A stress-dependent magnetic Preisach hysteresis model publication-title: IEEE Trans. Magn. – volume: 403 start-page: 261 year: 2008 end-page: 265 ident: bib0120 article-title: Hysteresis compensation of smart actuators under variable stress conditions publication-title: Phys. B: Condens. Matter – volume: 12 start-page: 134 year: 2007 end-page: 142 ident: bib0095 article-title: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications publication-title: IEEE/ASME Trans. Mechatron. – volume: 18 start-page: 1459 year: 2013 end-page: 1471 ident: bib0005 article-title: Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation publication-title: IEEE/ASME Trans. Mechatron. – year: 2003 ident: bib0030 article-title: Mathematical Models of Hysteresis and their Applications – volume: 19 start-page: 1527 year: 2011 end-page: 1533 ident: bib0125 article-title: On generalized dynamic Preisach operator with application to hysteresis nonlinear systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 2013 start-page: 1 year: 2013 end-page: 5 ident: bib0015 article-title: Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy publication-title: Adv. Condens. Matter Phys. B – start-page: 5182 year: 2008 end-page: 5187 ident: bib0060 article-title: Generalized Prandtl–Ishlinskii hysteresis model: hysteresis modeling and its inverse for compensation in smart actuators publication-title: Proceedings of the 47th IEEE Conference on Decision and Control – year: 1996 ident: bib0050 article-title: Hysteresis Phase Transitions – volume: 161 start-page: 141 year: 2005 end-page: 145 ident: bib0110 article-title: Comparison of Jiles–Atherton and Preisach models extended to stress-dependence in magnetoelastic behaviors of a ferromagnetic material publication-title: J. Mater. Process. Technol. – volume: 21 start-page: 1239 year: 2011 end-page: 1251 ident: bib0135 article-title: Rate-dependent hysteresis modeling and compensation of a piezostage using least squares support vector machines publication-title: Mechatronics – volume: 10 start-page: 230 year: 2005 end-page: 239 ident: bib0035 article-title: Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions publication-title: IEEE/ASME Trans. Mechatron. – start-page: 147 year: 2010 end-page: 158 ident: bib0070 article-title: Modeling of Hysteresis Nonlinearity based on Generalized Bouc–Wen model for GMA, Intelligent Robotics and Applications – volume: 21 start-page: 1549 year: 2013 end-page: 1557 ident: bib0085 article-title: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model publication-title: IEEE Trans. Control Syst. Technol. – volume: 4 start-page: 209 year: 1996 end-page: 216 ident: bib0040 article-title: Tracking control of a piezoceramic actuator publication-title: IEEE Trans. Control Syst. Technol. – volume: 18 start-page: 1498 issue: October (5) year: 2013 ident: 10.1016/j.sna.2014.09.026_bib0100 article-title: Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezo-micro-positioning actuator publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2012.2205265 – volume: 161 start-page: 141 issue: April (1–2) year: 2005 ident: 10.1016/j.sna.2014.09.026_bib0110 article-title: Comparison of Jiles–Atherton and Preisach models extended to stress-dependence in magnetoelastic behaviors of a ferromagnetic material publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.07.016 – volume: 12 start-page: 134 issue: April (2) year: 2007 ident: 10.1016/j.sna.2014.09.026_bib0095 article-title: Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2007.892824 – volume: 21 start-page: 1239 issue: 7 year: 2011 ident: 10.1016/j.sna.2014.09.026_bib0135 article-title: Rate-dependent hysteresis modeling and compensation of a piezostage using least squares support vector machines publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.08.006 – start-page: 6531 year: 2010 ident: 10.1016/j.sna.2014.09.026_bib0065 article-title: Control of systems with hysteresis via servo compensation and its application to nanopositioning – volume: 27 start-page: 4796 issue: November (6) year: 1991 ident: 10.1016/j.sna.2014.09.026_bib0105 article-title: A stress-dependent magnetic Preisach hysteresis model publication-title: IEEE Trans. Magn. doi: 10.1109/20.278950 – start-page: 147 year: 2010 ident: 10.1016/j.sna.2014.09.026_bib0070 – volume: 128 start-page: 558 issue: October (3) year: 2005 ident: 10.1016/j.sna.2014.09.026_bib0020 article-title: Electromechanical modeling of piezoceramic actuators for dynamic loading applications publication-title: Dyn. Syst. Meas. Control – volume: 4 start-page: 209 issue: May (3) year: 1996 ident: 10.1016/j.sna.2014.09.026_bib0040 article-title: Tracking control of a piezoceramic actuator publication-title: IEEE Trans. Control Syst. Technol. – volume: 132 start-page: 1 issue: June (4) year: 2010 ident: 10.1016/j.sna.2014.09.026_bib0075 article-title: Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation publication-title: Dyn. Syst. Meas. Control – volume: 19 start-page: 1527 issue: November (6) year: 2011 ident: 10.1016/j.sna.2014.09.026_bib0125 article-title: On generalized dynamic Preisach operator with application to hysteresis nonlinear systems publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2089687 – volume: 88 start-page: 1197 issue: November (21–22) year: 2010 ident: 10.1016/j.sna.2014.09.026_bib0140 article-title: Identification of Bouc–Wen hysteretic systems using particle swarm optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2010.06.009 – volume: 10 start-page: 198 issue: April (2) year: 2005 ident: 10.1016/j.sna.2014.09.026_bib0045 article-title: Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2005.844708 – start-page: 1975 year: 2003 ident: 10.1016/j.sna.2014.09.026_bib0090 article-title: Modeling rate-dependent hysteresis in piezoelectric actuators – start-page: 535 year: 2011 ident: 10.1016/j.sna.2014.09.026_bib0130 article-title: A generalized stress-dependent Prandtl–Ishlinskii model and its adaptive inverse compensation with model reference for GMA – year: 2003 ident: 10.1016/j.sna.2014.09.026_bib0030 – volume: 105 start-page: 1 year: 2009 ident: 10.1016/j.sna.2014.09.026_bib0115 article-title: Experimental properties of an efficient stress-dependent magnetostriction model publication-title: J. Appl. Phys. doi: 10.1063/1.3065963 – volume: 10 start-page: 230 issue: April (2) year: 2005 ident: 10.1016/j.sna.2014.09.026_bib0035 article-title: Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2005.844705 – volume: 21 start-page: 1549 issue: September (5) year: 2013 ident: 10.1016/j.sna.2014.09.026_bib0085 article-title: Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2206029 – volume: 14 start-page: 11 issue: February (1) year: 2009 ident: 10.1016/j.sna.2014.09.026_bib0010 article-title: Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2008.2006501 – volume: 48 start-page: 283 issue: February (2) year: 2012 ident: 10.1016/j.sna.2014.09.026_bib0145 article-title: Multi-objective exponential particle swarm optimization approach applied to hysteresis parameters estimation publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2172581 – volume: 18 start-page: 1459 issue: October (5) year: 2013 ident: 10.1016/j.sna.2014.09.026_bib0005 article-title: Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2012.2203315 – year: 1996 ident: 10.1016/j.sna.2014.09.026_bib0050 – start-page: 5182 year: 2008 ident: 10.1016/j.sna.2014.09.026_bib0060 article-title: Generalized Prandtl–Ishlinskii hysteresis model: hysteresis modeling and its inverse for compensation in smart actuators – volume: 403 start-page: 261 issue: February (2–3) year: 2008 ident: 10.1016/j.sna.2014.09.026_bib0120 article-title: Hysteresis compensation of smart actuators under variable stress conditions publication-title: Phys. B: Condens. Matter doi: 10.1016/j.physb.2007.08.024 – volume: 7 start-page: 479 issue: December (4) year: 2002 ident: 10.1016/j.sna.2014.09.026_bib0080 article-title: A Model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2002.802724 – start-page: 301 year: 2009 ident: 10.1016/j.sna.2014.09.026_bib0055 article-title: Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nano-positioning – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.sna.2014.09.026_bib0015 article-title: Effect of annealing temperature on the morphology and piezoresponse characterisation of poly (vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy publication-title: Adv. Condens. Matter Phys. B doi: 10.1155/2013/435938 – volume: 23 start-page: 199 issue: 1 year: 1980 ident: 10.1016/j.sna.2014.09.026_bib0025 article-title: A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity publication-title: Ferroelectrics doi: 10.1080/00150198008018803 – year: 2006 ident: 10.1016/j.sna.2014.09.026_bib0150 |
| SSID | ssj0003377 |
| Score | 2.2364795 |
| Snippet | •We present a complete identifiable procedure for the two-input Preisach model by employing a three-dimension interpolation algorithm based on two... Piezoelectric stack actuators (PEAs) do not always perform as desired because external loads have an effect on the inclination of the hysteresis loop that... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 92 |
| SubjectTerms | Actuators Algorithms Coupling hysteresis Hysteresis Identification algorithm Joining Mathematical models Peas Piezoelectric stack actuator Piezoelectricity Stacks Three dimensional |
| Title | Identification and experimental assessment of two-input Preisach model for coupling hysteresis in piezoelectric stack actuators |
| URI | https://dx.doi.org/10.1016/j.sna.2014.09.026 https://www.proquest.com/docview/1660099021 |
| Volume | 220 |
| WOSCitedRecordID | wos000346546800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003377 issn: 0924-4247 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEOiJ9iGyAjIQ6gVHGcxO6xQp0ATQWJTpST5SQOpExOWJsxuCDxl_PsOGk6YBoHLlFkOW3U76vfe_Z730PoSagk2JUk98DWZUZUO_CSmEovSSIGIS7NOcttswk2m_HFYvx2MPjZ1sKcHjOt-dnZuPqvUMMYgG1KZ_8B7u5DYQDuAXS4AuxwvRTwTelt7vbi7OHAloy_7LQ4bX7A19IrdFWvTTJGsTLVVbY5jk0_TMu6suXqn4zeMwTmRZN1XqjvZdM_p0jNZkT62Why1CZ-X_W93XcQI5tmPlYQtp0wej4Z2ZY7hh6jzpF2qcEfpP74TTpzaulmjWO5GXnvdrjN2LLW_W0LEvZSQNz-YxB6YdDIbbZL8SQI_N5q2nTJc3aZWEXT35f8ZvdhOVppIyNFGtna4A_y2rM34uDo8FDMp4v50-qLZzqPmRN614blCtoJWDTmQ7QzeTVdvO7sOaW2f2f3wu3ZuM0SPPetf_Nuztl567zMb6IbLurAk4Ytt9BA6dvoek-L8g76sc0bDJjhPm_whje4zHHHG9zyBlveYOANbnmDN7zBhcZbvMGWN7ijxV10dDCdv3jpue4cXkqpv_YSKnOfyJhlLIFrHsGNJIxlnCdxLrlUeZQylqSBooTIUEaM0IyaIj9wgZVP76GhLrW6jzCPSR4rnpp6spBkkYkp_DHPQgVzKfd3kd_-qiJ10vWmg8qxaHMUlwKAEAYI4Y8FALGLnnWPVI1uy0WTwxYq4RzPxqEUQLKLHnvcwipgUTYnbVKrsl4JEscm9AL_ee8Sc_bRtc0_5AEark9q9RBdTU_XxerkkaPjL47GtTg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+experimental+assessment+of+two-input+Preisach+model+for+coupling+hysteresis+in+piezoelectric+stack+actuators&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Dong%2C+Yangyang&rft.au=Hu%2C+Hong&rft.au=Wang%2C+Hongjun&rft.date=2014-12-01&rft.issn=0924-4247&rft.volume=A220&rft.spage=92&rft.epage=100&rft_id=info:doi/10.1016%2Fj.sna.2014.09.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |