Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization

This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design Jg. 45; H. 2; S. 312 - 320
Hauptverfasser: Meng, Min, Xia, Jiazhi, Luo, Jun, He, Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2013
Schlagworte:
ISSN:0010-4485, 1879-2685
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluster of parts from the previous estimation, and employs the multi-label optimization to improve the co-segmentation results. In contrast to the existing “one-shot” algorithms, our method is superior in that it can improve the co-segmentation results automatically. The experimental results on the Princeton Segmentation Benchmark demonstrate that our approach is able to co-segment 3D shapes with significant variability and achieves comparable performance to the existing supervised algorithms and better performance than the unsupervised ones. [Display omitted]
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0010-4485
1879-2685
DOI:10.1016/j.cad.2012.10.014