Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization
This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluste...
Gespeichert in:
| Veröffentlicht in: | Computer aided design Jg. 45; H. 2; S. 312 - 320 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2013
|
| Schlagworte: | |
| ISSN: | 0010-4485, 1879-2685 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents an unsupervised algorithm for co-segmentation of a set of 3D shapes of the same family. Taking the over-segmentation results as input, our approach clusters the primitive patches to generate an initial guess. Then, it iteratively builds a statistical model to describe each cluster of parts from the previous estimation, and employs the multi-label optimization to improve the co-segmentation results. In contrast to the existing “one-shot” algorithms, our method is superior in that it can improve the co-segmentation results automatically. The experimental results on the Princeton Segmentation Benchmark demonstrate that our approach is able to co-segment 3D shapes with significant variability and achieves comparable performance to the existing supervised algorithms and better performance than the unsupervised ones.
[Display omitted] |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0010-4485 1879-2685 |
| DOI: | 10.1016/j.cad.2012.10.014 |