Adaptive tracking of system oscillatory modes using an extended RLS algorithm

•A nonstationary RLS algorithm is combined with a Kalman filter to deal with measured ambient power system data.•By tracking the evolving dynamics of system oscillations, the system instability conditions can be determined.•Extensions and generalizations to current adaptive filtering algorithms to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research Jg. 114; S. 28 - 38
Hauptverfasser: Moreno, I., Messina, A.R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.09.2014
Elsevier
Schlagworte:
ISSN:0378-7796, 1873-2046
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A nonstationary RLS algorithm is combined with a Kalman filter to deal with measured ambient power system data.•By tracking the evolving dynamics of system oscillations, the system instability conditions can be determined.•Extensions and generalizations to current adaptive filtering algorithms to account for nonstationarity are tested.•The correspondence between the Kalman and RLS variables is examined.•Early simulation studies conducted on time-synchronized data show that this method can be used for real-time applications. The study of low-frequency electromechanical modes in power systems has experienced much progress in the past few years. In this research, a nonstationary recursive least-squares (RLS) algorithm with variable forgetting factor is combined with a Kalman filter to simultaneously estimate low-frequency electromechanical modes from measured ambient power system data. Extensions and generalizations to current adaptive filtering algorithms to account for nonstationarity are implemented and tested and the correspondence between the Kalman and RLS variables is examined. Applications of the proposed nonstationary RLS algorithm to track the evolving dynamics of critical power system electromechanical modes in both, simulated and measured data, are presented. Comparison with other RLS and least-mean squares algorithms demonstrate the accuracy of the proposed framework in tracking changes in modal parameters over time. The issues of computational efficiency and memory requirements are discussed in detail.
AbstractList •A nonstationary RLS algorithm is combined with a Kalman filter to deal with measured ambient power system data.•By tracking the evolving dynamics of system oscillations, the system instability conditions can be determined.•Extensions and generalizations to current adaptive filtering algorithms to account for nonstationarity are tested.•The correspondence between the Kalman and RLS variables is examined.•Early simulation studies conducted on time-synchronized data show that this method can be used for real-time applications. The study of low-frequency electromechanical modes in power systems has experienced much progress in the past few years. In this research, a nonstationary recursive least-squares (RLS) algorithm with variable forgetting factor is combined with a Kalman filter to simultaneously estimate low-frequency electromechanical modes from measured ambient power system data. Extensions and generalizations to current adaptive filtering algorithms to account for nonstationarity are implemented and tested and the correspondence between the Kalman and RLS variables is examined. Applications of the proposed nonstationary RLS algorithm to track the evolving dynamics of critical power system electromechanical modes in both, simulated and measured data, are presented. Comparison with other RLS and least-mean squares algorithms demonstrate the accuracy of the proposed framework in tracking changes in modal parameters over time. The issues of computational efficiency and memory requirements are discussed in detail.
Author Messina, A.R.
Moreno, I.
Author_xml – sequence: 1
  givenname: I.
  surname: Moreno
  fullname: Moreno, I.
  email: imoreno@gdl.cinvestav.mx
– sequence: 2
  givenname: A.R.
  orcidid: 0000-0002-4553-9005
  surname: Messina
  fullname: Messina, A.R.
  email: aroman@gdl.cinvestav.mx
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28535094$$DView record in Pascal Francis
BookMark eNp9kEtLAzEUhYNUsK3-AVfZuJyaTOYJbkrxBRXBxzrcSe7U1JnJkMRi_70zVDcuCgfu5vsO3DMjk852SMglZwvOeHa9XWDv3SJmPFkwMSQ5IVNe5CKKWZJNyJSJvIjyvMzOyMz7LWMsK_N0Sp6WGvpgdkiDA_Vpug21NfV7H7Cl1ivTNBCs29PWavT0y48EdBS_A3YaNX1Zv1JoNtaZ8NGek9MaGo8Xv3dO3u9u31YP0fr5_nG1XEdKCBYiAF1DntUlqLgqU0w0VirhVcFZWmRJHCMrFHCtUwUlTyueV1U5MElVxxkILebk6tDbg1fQ1A46ZbzsnWnB7WVcpCJlZTJwxYFTznrvsJbKBAjGdsO3ppGcyXE-uZXjfHKcTzIxZFTjf-pf-1Hp5iDh8PzOoJPDgtgp1MahClJbc0z_ASyIjYQ
CODEN EPSRDN
CitedBy_id crossref_primary_10_1002_etep_2210
crossref_primary_10_1109_TPWRS_2019_2898168
crossref_primary_10_1016_j_microrel_2020_113968
crossref_primary_10_1109_TPWRS_2022_3229651
crossref_primary_10_1177_01423312211067801
Cites_doi 10.1049/el:20000727
10.1109/59.630467
10.1109/79.295229
10.1109/TPWRS.2008.919415
10.1109/TPWRS.2007.901104
10.1214/aos/1176349739
10.1109/TPWRS.2008.2002173
10.1111/j.1467-9892.1991.tb00084.x
10.1109/TAC.1976.1101260
10.1147/rd.183.0267
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.epsr.2014.03.034
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2046
EndPage 38
ExternalDocumentID 28535094
10_1016_j_epsr_2014_03_034
S0378779614001291
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-aadfa76f9ac2b95e4debc41b810586422e08ca1dd5ca915b17bb9deb4bf26a3d3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337992000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Wed Apr 02 07:37:50 EDT 2025
Sat Nov 29 06:43:26 EST 2025
Tue Nov 18 22:39:57 EST 2025
Fri Feb 23 02:33:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power phasor measurement
WAMS
Kalman filtering
RLS algorithms
Performance evaluation
Phase measurement
Adaptive algorithm
Adaptive system
Power system control
Kalman filter
Adaptive filtering
Recursive algorithm
Low frequency
Implementation
Power system measurement
Algorithm performance
Electrical network
Least squares method
Recursive method
Comparative study
Electromechanical system
Least mean squares methods
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-aadfa76f9ac2b95e4debc41b810586422e08ca1dd5ca915b17bb9deb4bf26a3d3
ORCID 0000-0002-4553-9005
PageCount 11
ParticipantIDs pascalfrancis_primary_28535094
crossref_citationtrail_10_1016_j_epsr_2014_03_034
crossref_primary_10_1016_j_epsr_2014_03_034
elsevier_sciencedirect_doi_10_1016_j_epsr_2014_03_034
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Manolakis, Ingle, Kogon (bib0065) 2005
Godard (bib0085) 1974; 18
Ghasemi (bib0035) 2006
Song, Lim, Baek, Sung (bib0055) 2000; 36
Myers, Tapley (bib0090) 1976; 21
Messina (bib0040) 2009
Haykin (bib0105) 1991
Wies (bib0005) 1999
Zhou, Trudnowski, Pierre, Mittelstadt (bib0015) 2008; 23
Ali, Sayed (bib0100) 2008
Wies, Pierre (bib0020) 2002
Zhou, Pierre, Trudnowski, Guttromson (bib0010) 2007; 22
Uhlen, Warland, Gjerde, Breidablik, Uusitalo, Leirbukt, Korba (bib0045) 2008
Bell, Hilmer (bib0080) 1991; 12
Ljung, Soderstrom (bib0075) 1983
Trudnowski, Pierre, Zhou, Hauer, Parashar (bib0050) 2008; 23
Pierre, Trudnowski, Donelly (bib0030) 1997; 12
Moreno, Messina (bib0060) 2011
Sayed, Kailath (bib0070) 1994; 11
Ansley, Kohn (bib0095) 1985; 13
Wies, Balasubramanian, Pierre (bib0025) 2006
Wies (10.1016/j.epsr.2014.03.034_bib0020) 2002
Moreno (10.1016/j.epsr.2014.03.034_bib0060) 2011
Song (10.1016/j.epsr.2014.03.034_bib0055) 2000; 36
Trudnowski (10.1016/j.epsr.2014.03.034_bib0050) 2008; 23
Ljung (10.1016/j.epsr.2014.03.034_bib0075) 1983
Bell (10.1016/j.epsr.2014.03.034_bib0080) 1991; 12
Zhou (10.1016/j.epsr.2014.03.034_bib0015) 2008; 23
Ghasemi (10.1016/j.epsr.2014.03.034_bib0035) 2006
Uhlen (10.1016/j.epsr.2014.03.034_bib0045) 2008
Myers (10.1016/j.epsr.2014.03.034_bib0090) 1976; 21
Wies (10.1016/j.epsr.2014.03.034_bib0005) 1999
Ansley (10.1016/j.epsr.2014.03.034_bib0095) 1985; 13
Wies (10.1016/j.epsr.2014.03.034_bib0025) 2006
Pierre (10.1016/j.epsr.2014.03.034_bib0030) 1997; 12
Manolakis (10.1016/j.epsr.2014.03.034_bib0065) 2005
Messina (10.1016/j.epsr.2014.03.034_bib0040) 2009
Zhou (10.1016/j.epsr.2014.03.034_bib0010) 2007; 22
Godard (10.1016/j.epsr.2014.03.034_bib0085) 1974; 18
Haykin (10.1016/j.epsr.2014.03.034_bib0105) 1991
Ali (10.1016/j.epsr.2014.03.034_bib0100) 2008
Sayed (10.1016/j.epsr.2014.03.034_bib0070) 1994; 11
References_xml – start-page: 1
  year: 2006
  end-page: 8
  ident: bib0025
  article-title: Using adaptive step-size least mean squares (ASLMS) for estimating low-frequency electromechanical modes in power systems
  publication-title: The 9th International Conference on Probabilistic Methods applied to Power System
– year: 2005
  ident: bib0065
  article-title: Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing
– volume: 13
  start-page: 1286
  year: 1985
  end-page: 1316
  ident: bib0095
  article-title: Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions
  publication-title: Ann. Stat.
– year: 2008
  ident: bib0100
  article-title: Adaptive Filters
– volume: 12
  start-page: 283
  year: 1991
  end-page: 300
  ident: bib0080
  article-title: Initializing the Kalman filter for nonstationary time series models
  publication-title: J. Time Ser. Anal.
– volume: 23
  start-page: 1670
  year: 2008
  end-page: 1680
  ident: bib0015
  article-title: Electromechanical mode online estimation using regularized robust RLS methods
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 988
  year: 2000
  end-page: 990
  ident: bib0055
  article-title: Gauss Newton variable forgetting factor recursive least-squares for time varying parameter tracking
  publication-title: Electron. Lett.
– volume: 21
  start-page: 520
  year: 1976
  end-page: 523
  ident: bib0090
  article-title: Adaptive sequential estimation with unknown noise statistics
  publication-title: IEEE Trans. Automatic Control
– year: 2009
  ident: bib0040
  article-title: Inter-area Oscillations in Power Systems – A Nonlinear and Nonstationary Perspective
– start-page: 1
  year: 2002
  end-page: 7
  ident: bib0020
  article-title: Use of least-mean squares (LMS) adaptive filtering techniques for estimating low-frequency electromechanical modes in power systems
  publication-title: Proceedings of the American Control Conference
– volume: 22
  start-page: 1240
  year: 2007
  end-page: 1249
  ident: bib0010
  article-title: Robust RLS methods for online estimation of power system electromechanical modes
  publication-title: IEEE Trans. Power Syst.
– year: 1991
  ident: bib0105
  article-title: Adaptive Filter Theory
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0060
  article-title: Adaptive tracking of ambient system oscillations by nonstationary RLS techniques
  publication-title: IEEE Power and Energy Society General Meeting
– year: 1999
  ident: bib0005
  article-title: Estimating Low-Frequency Electromechanical Modes of Power System Using Ambient Data
– year: 2006
  ident: bib0035
  article-title: On-line Monitoring and Oscillatory Stability Margin Prediction in Power Systems Based on System Identification
– volume: 23
  start-page: 680
  year: 2008
  end-page: 690
  ident: bib0050
  article-title: Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 1245
  year: 1997
  end-page: 1251
  ident: bib0030
  article-title: Initial results in electromechanical mode identification from ambient data
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2008
  end-page: 7
  ident: bib0045
  article-title: Monitoring amplitude, frequency and damping of power system oscillations with PMU measurements
  publication-title: IEEE Power and Energy Society General Meeting
– year: 1983
  ident: bib0075
  article-title: Theory and Practice of Recursive Identification
– volume: 18
  start-page: 267
  year: 1974
  end-page: 273
  ident: bib0085
  article-title: Channel equalization using a Kalman Filter for fast data transmission
  publication-title: IBM J. Res. Dev.
– volume: 11
  start-page: 18
  year: 1994
  end-page: 60
  ident: bib0070
  article-title: A state-space approach to adaptive RLS filtering
  publication-title: IEEE Signal Process. Mag.
– year: 1983
  ident: 10.1016/j.epsr.2014.03.034_bib0075
– year: 1999
  ident: 10.1016/j.epsr.2014.03.034_bib0005
– year: 2005
  ident: 10.1016/j.epsr.2014.03.034_bib0065
– start-page: 1
  year: 2002
  ident: 10.1016/j.epsr.2014.03.034_bib0020
  article-title: Use of least-mean squares (LMS) adaptive filtering techniques for estimating low-frequency electromechanical modes in power systems
– volume: 36
  start-page: 988
  year: 2000
  ident: 10.1016/j.epsr.2014.03.034_bib0055
  article-title: Gauss Newton variable forgetting factor recursive least-squares for time varying parameter tracking
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000727
– start-page: 1
  year: 2011
  ident: 10.1016/j.epsr.2014.03.034_bib0060
  article-title: Adaptive tracking of ambient system oscillations by nonstationary RLS techniques
– volume: 12
  start-page: 1245
  year: 1997
  ident: 10.1016/j.epsr.2014.03.034_bib0030
  article-title: Initial results in electromechanical mode identification from ambient data
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.630467
– volume: 11
  start-page: 18
  year: 1994
  ident: 10.1016/j.epsr.2014.03.034_bib0070
  article-title: A state-space approach to adaptive RLS filtering
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.295229
– start-page: 1
  year: 2008
  ident: 10.1016/j.epsr.2014.03.034_bib0045
  article-title: Monitoring amplitude, frequency and damping of power system oscillations with PMU measurements
– year: 1991
  ident: 10.1016/j.epsr.2014.03.034_bib0105
– start-page: 1
  year: 2006
  ident: 10.1016/j.epsr.2014.03.034_bib0025
  article-title: Using adaptive step-size least mean squares (ASLMS) for estimating low-frequency electromechanical modes in power systems
– volume: 23
  start-page: 680
  year: 2008
  ident: 10.1016/j.epsr.2014.03.034_bib0050
  article-title: Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.919415
– volume: 22
  start-page: 1240
  year: 2007
  ident: 10.1016/j.epsr.2014.03.034_bib0010
  article-title: Robust RLS methods for online estimation of power system electromechanical modes
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.901104
– volume: 13
  start-page: 1286
  year: 1985
  ident: 10.1016/j.epsr.2014.03.034_bib0095
  article-title: Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176349739
– volume: 23
  start-page: 1670
  year: 2008
  ident: 10.1016/j.epsr.2014.03.034_bib0015
  article-title: Electromechanical mode online estimation using regularized robust RLS methods
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2002173
– volume: 12
  start-page: 283
  year: 1991
  ident: 10.1016/j.epsr.2014.03.034_bib0080
  article-title: Initializing the Kalman filter for nonstationary time series models
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1991.tb00084.x
– year: 2009
  ident: 10.1016/j.epsr.2014.03.034_bib0040
– volume: 21
  start-page: 520
  year: 1976
  ident: 10.1016/j.epsr.2014.03.034_bib0090
  article-title: Adaptive sequential estimation with unknown noise statistics
  publication-title: IEEE Trans. Automatic Control
  doi: 10.1109/TAC.1976.1101260
– year: 2006
  ident: 10.1016/j.epsr.2014.03.034_bib0035
– volume: 18
  start-page: 267
  year: 1974
  ident: 10.1016/j.epsr.2014.03.034_bib0085
  article-title: Channel equalization using a Kalman Filter for fast data transmission
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.183.0267
– year: 2008
  ident: 10.1016/j.epsr.2014.03.034_bib0100
SSID ssj0006975
Score 2.1244407
Snippet •A nonstationary RLS algorithm is combined with a Kalman filter to deal with measured ambient power system data.•By tracking the evolving dynamics of system...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Applied sciences
Capacitors. Resistors. Filters
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
Kalman filtering
Miscellaneous
Operation. Load control. Reliability
Power networks and lines
Power phasor measurement
RLS algorithms
Various equipment and components
WAMS
Title Adaptive tracking of system oscillatory modes using an extended RLS algorithm
URI https://dx.doi.org/10.1016/j.epsr.2014.03.034
Volume 114
WOSCitedRecordID wos000337992000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgywGECpQiSqHygVsUlMRJHB9XaBGgdotKQXuLbMeBbUs22qSoP5_xR0y2iAIHpFW0ipwP5b3MjCfjNwi9ZBK8CjjaUPGchBD_1yGrSR4qGSUsB0ITo1vw-ZDO58ViwT64_p2daSdAm6a4umLtf4Ua9gHYeunsP8DtTwo74D-ADluAHbZ_Bfy04q2pB-rXXJ67omYr2Bxo5UrA3XxY1z1wuuCys6sUgyEbHpwcfgz4xZfVetl__baRuDcdc5YyaHVnNXdK_dVhlBDT0B2fzObHGwnZI22z51Njh165EkWXaYhTX0rl0l_OV48sFIEpKKW2Ja03p3E6NojFyLVaHZdfjLbNH5zBoE4rtMapkZ11Oc4NhexrnsvXEyYQdGglwNtoK4EJUDRBW9N3s8V775NzZiSX_Q275VO20u_6dX8XotxveQcvTm07nozCkNOHaNvNH_DU4v4I3VLNDnrg5hLYWepuB90bCU0-RkcDKfBACryqsUUQj0iBDSmwIQXmDR5IgYEU2JNiF316Mzt9_TZ0jTRCSUjUh5xXNad5zbhMBMtUWikh01gUEFwXMAFNVFRIHldVJjmLMxFTIRiMSUWd5JxU5AmaNKtGPUW4FhmTaS5hFIFIWjFOKNUajKqgLBLFHoqHZ1dKpzKvm51clEM54Vmpn3epn3cZEfileyjwx7RWY-XG0dkASemiRBv9lcCnG4872MDPX2ogz7M_DdhHd3--Fs_RpF9fqhfojvzeL7v1gaPcDy_okKs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+tracking+of+system+oscillatory+modes+using+an+extended+RLS+algorithm&rft.jtitle=Electric+power+systems+research&rft.au=MORENO%2C+I&rft.au=MESSINA%2C+A.+R&rft.date=2014-09-01&rft.pub=Elsevier&rft.issn=0378-7796&rft.volume=114&rft.spage=28&rft.epage=38&rft_id=info:doi/10.1016%2Fj.epsr.2014.03.034&rft.externalDBID=n%2Fa&rft.externalDocID=28535094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon