Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments

When memory-based evolutionary algorithms are applied in dynamic environments, the certainly use of uncertain prior knowledge for future environments may mislead the evolutionary algorithms. To address this problem, this paper presents a new, memory-based evolutionary approach for applying the Bayes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 334-335; s. 44 - 64
Hlavní autori: Kaedi, Marjan, Ghasem-Aghaee, Nasser, Ahn, Chang Wook
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 20.03.2016
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract When memory-based evolutionary algorithms are applied in dynamic environments, the certainly use of uncertain prior knowledge for future environments may mislead the evolutionary algorithms. To address this problem, this paper presents a new, memory-based evolutionary approach for applying the Bayesian optimization algorithm (BOA) in dynamic environments. Our proposed method, unlike existing memory-based methods, uses the knowledge of former environments probabilistically in future environments. For this purpose, the run of BOA is modeled as the movements in a Markov chain, in which the states become the Bayesian networks that are learned in every generation. When the environment changes, a stationary distribution of the Markov chain is defined on the basis of the retrieved prior knowledge. Then, the transition probabilities of BOA in the Markov chain are modified (biased) to comply with the defined stationary distribution. To this end, we employ the Metropolis algorithm and modify the K2 algorithm for learning the Bayesian network in BOA in order to reflect the obtained transition probabilities. Experimental results show that the proposed method achieves improved performance compared to conventional methods, especially in random environments.
AbstractList When memory-based evolutionary algorithms are applied in dynamic environments, the certainly use of uncertain prior knowledge for future environments may mislead the evolutionary algorithms. To address this problem, this paper presents a new, memory-based evolutionary approach for applying the Bayesian optimization algorithm (BOA) in dynamic environments. Our proposed method, unlike existing memory-based methods, uses the knowledge of former environments probabilistically in future environments. For this purpose, the run of BOA is modeled as the movements in a Markov chain, in which the states become the Bayesian networks that are learned in every generation. When the environment changes, a stationary distribution of the Markov chain is defined on the basis of the retrieved prior knowledge. Then, the transition probabilities of BOA in the Markov chain are modified (biased) to comply with the defined stationary distribution. To this end, we employ the Metropolis algorithm and modify the K2 algorithm for learning the Bayesian network in BOA in order to reflect the obtained transition probabilities. Experimental results show that the proposed method achieves improved performance compared to conventional methods, especially in random environments.
Author Ahn, Chang Wook
Kaedi, Marjan
Ghasem-Aghaee, Nasser
Author_xml – sequence: 1
  givenname: Marjan
  surname: Kaedi
  fullname: Kaedi, Marjan
  email: Kaedi@eng.ui.ac.ir
  organization: Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib St., Isfahan 81746-73441, Iran
– sequence: 2
  givenname: Nasser
  surname: Ghasem-Aghaee
  fullname: Ghasem-Aghaee, Nasser
  email: aghaee@eng.ui.ac.ir
  organization: Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib St., Isfahan 81746-73441, Iran
– sequence: 3
  givenname: Chang Wook
  orcidid: 0000-0002-9902-5966
  surname: Ahn
  fullname: Ahn, Chang Wook
  email: cwan@skku.edu, cwan@evolution.re.kr
  organization: Department of Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 440-746, Republic of Korea
BookMark eNp9kE1v1DAQhi1UJLaFH8DNRy4JHidxEnGiFV9SKy5wtqbOuDtLYi-2u2j59aRdTj30NK807zPSPOfiLMRAQrwFVYMC835Xc8i1VtDVALVq1AuxgaHXldEjnImNUlpVSnfdK3Ge804p1fbGbMRyyZg53MmyJVkShsyFY5DRy0s8UmZc877wwn_xcYHzXUxctou8pfKHKMgbTL_iQbotcpC5YKEs1zQdAy7sJIUDpxgWCiW_Fi89zpne_J8X4ufnTz-uvlbX3798u_p4XbmmUaXC8ZbG1qveUesN4NADkJ4aGFqvB9NOnfGgpoYQfafH0SCBH3oyGozyfmwuxLvT3X2Kv-8pF7twdjTPGCjeZwv92OimH8Z2rcKp6lLMOZG3-8QLpqMFZR_U2p1d1doHtRbArmpXpn_COC6PelaDPD9LfjiRtH5_YEo2O6bgaOJErtgp8jP0P-FTmAw
CitedBy_id crossref_primary_10_1016_j_asoc_2017_03_042
crossref_primary_10_1109_ACCESS_2019_2906121
crossref_primary_10_1109_TII_2020_3019572
crossref_primary_10_3390_su10103692
crossref_primary_10_1186_s13673_017_0119_0
crossref_primary_10_1016_j_jestch_2022_101173
crossref_primary_10_1016_j_asoc_2022_109444
Cites_doi 10.1214/aos/1176344136
10.1016/j.ins.2014.10.002
10.1016/S0004-3702(01)00058-3
10.1109/TEVC.2005.846356
10.1023/B:NACO.0000023417.31393.c7
10.1016/j.ins.2014.09.039
10.1093/biomet/57.1.97
10.1007/3-540-44868-3_65
10.1016/j.ins.2014.10.062
10.1016/j.ins.2014.12.053
10.1007/s00500-004-0422-3
10.3233/FI-1998-35123405
10.1007/s00500-010-0547-5
10.1016/j.autcon.2006.11.008
10.1023/A:1013500812258
10.1016/j.ins.2014.05.053
10.1016/j.ins.2014.02.084
10.1016/j.ins.2013.11.025
10.1109/TEVC.2013.2248159
10.1109/TEVC.2007.913070
10.1016/j.ins.2014.11.036
10.1016/j.engappai.2012.02.009
10.1007/BF00994110
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2015.11.030
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 64
ExternalDocumentID 10_1016_j_ins_2015_11_030
S0020025515008488
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-a9be94f07ce4f61a8711e2d3184f2864d56f10d3eaaf52996ae1f87e62160ff93
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370088500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Sep 27 21:14:27 EDT 2025
Sat Nov 29 06:24:59 EST 2025
Tue Nov 18 22:18:50 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Markov chain
Memory-based method
Bayesian optimization algorithm
Dynamic environments
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-a9be94f07ce4f61a8711e2d3184f2864d56f10d3eaaf52996ae1f87e62160ff93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9902-5966
PQID 1793237894
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1793237894
crossref_primary_10_1016_j_ins_2015_11_030
crossref_citationtrail_10_1016_j_ins_2015_11_030
elsevier_sciencedirect_doi_10_1016_j_ins_2015_11_030
PublicationCentury 2000
PublicationDate 2016-03-20
PublicationDateYYYYMMDD 2016-03-20
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shen, Yao (bib0043) 2015; 298
Taormina, Chau, Sethi (bib0044) 2012; 25
Pelikan (bib0035) 2005
Zhang, Chau (bib0054) 2009; 15
Morrison, De Jong (bib0028) 1999
Mukherjee, Patra, Kundu, Das (bib0031) 2014; 267
Mujtaba, Kendall, Rauf Baig, Özcan (bib0030) 2015; 302
Yang (bib0049) 2005
Pelikan, Sastry, Cantu-Paz (bib0037) 2006
Hastings (bib0013) 1970; 57
Larranaga, Lozano (bib0022) 2002
Pelikan (bib0034) 2002
Pelikan, Goldberg, Lobo (bib0036) 2002; 21
Yang, Yao (bib0052) 2005; 9
Rudolph (bib0040) 1998; 35
Cooper, Herskovits (bib0007) 1992; 9
Shapiro (bib0042) 2005; 13
R.M. Neal, Probabilistic Inference using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
Holland (bib0016) 1975
Gonzalez, Rodrguez, Lozano, Larranaga (bib0012) 2003
Branke, Abbass (bib0003) 2005
Chatterjee, Das (bib0005) 2015; 295
Turky, Abdullah (bib0047) 2014; 272
Chau (bib0006) 2007; 16
Lamma, Riguzzi, Storari (bib0021) 2006
Muhlenbein, Paaß (bib0029) 1996
Yang, Yao (bib0053) 2008; 12
Schwarz (bib0041) 1978; 6
Gonzalez (bib0011) 2005
Robinson, Hartemink (bib0039) 2010; 11
Tinos, Yang (bib0045) 2007
Yang (bib0048) 2003
He, Yao (bib0015) 2004; 3
Dick, Whigham (bib0009) 2005
Nguyen, Zhang, Johnston, Tan (bib0033) 2014; 18
S. Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, Computer Science Department, Carnegie Mellon University, 1994.
Levin, Peres, Wilmer (bib0023) 2008
Lucas, Gámez, Salmerón (bib0025) 2007
Koller, Friedman (bib0020) 2009
Yang (bib0051) 2007
He, Yao (bib0014) 2001; 127
Hong, Ren, Zeng, Chang (bib0017) 2005
Kaedi, Ghasem-Aghaee, Ahn (bib0019) 2013; 9
Mavrovouniotis, Yang (bib0026) 2015; 294
Davis (bib0008) 1991
Yang (bib0050) 2005
Branke, Salihoğlu, Uyar (bib0004) 2005
Goldberg (bib0010) 1989
Tinós, Yang (bib0046) 2014; 282
Peng, Gao, Yang (bib0038) 2010; 15
Li, Nguyen, Yang, Yang, Zeng (bib0024) 2015; 296
Branke (bib0002) 2002
Jin, Branke (bib0018) 2005; 9
V. Mihajlovic, M. Petkovic, Dynamic Bayesian networks: a state of the art, CTIT Technical Report TR-CTIT-34, Center for Telematics and Information Technology, University of Twente, The Netherlands, 2001.
Li (10.1016/j.ins.2015.11.030_bib0024) 2015; 296
Shapiro (10.1016/j.ins.2015.11.030_bib0042) 2005; 13
Tinós (10.1016/j.ins.2015.11.030_bib0046) 2014; 282
Tinos (10.1016/j.ins.2015.11.030_bib0045) 2007
He (10.1016/j.ins.2015.11.030_bib0014) 2001; 127
Branke (10.1016/j.ins.2015.11.030_bib0004) 2005
Gonzalez (10.1016/j.ins.2015.11.030_bib0012) 2003
Hastings (10.1016/j.ins.2015.11.030_bib0013) 1970; 57
Robinson (10.1016/j.ins.2015.11.030_bib0039) 2010; 11
Levin (10.1016/j.ins.2015.11.030_bib0023) 2008
Chau (10.1016/j.ins.2015.11.030_bib0006) 2007; 16
Yang (10.1016/j.ins.2015.11.030_bib0048) 2003
He (10.1016/j.ins.2015.11.030_bib0015) 2004; 3
Hong (10.1016/j.ins.2015.11.030_bib0017) 2005
Branke (10.1016/j.ins.2015.11.030_bib0003) 2005
Cooper (10.1016/j.ins.2015.11.030_bib0007) 1992; 9
Mavrovouniotis (10.1016/j.ins.2015.11.030_bib0026) 2015; 294
10.1016/j.ins.2015.11.030_bib0027
Kaedi (10.1016/j.ins.2015.11.030_bib0019) 2013; 9
Rudolph (10.1016/j.ins.2015.11.030_bib0040) 1998; 35
Gonzalez (10.1016/j.ins.2015.11.030_bib0011) 2005
Pelikan (10.1016/j.ins.2015.11.030_bib0036) 2002; 21
Holland (10.1016/j.ins.2015.11.030_bib0016) 1975
Jin (10.1016/j.ins.2015.11.030_bib0018) 2005; 9
Shen (10.1016/j.ins.2015.11.030_bib0043) 2015; 298
Nguyen (10.1016/j.ins.2015.11.030_bib0033) 2014; 18
Pelikan (10.1016/j.ins.2015.11.030_bib0034) 2002
Yang (10.1016/j.ins.2015.11.030_bib0053) 2008; 12
Yang (10.1016/j.ins.2015.11.030_bib0052) 2005; 9
Davis (10.1016/j.ins.2015.11.030_bib0008) 1991
10.1016/j.ins.2015.11.030_bib0032
Koller (10.1016/j.ins.2015.11.030_bib0020) 2009
Mujtaba (10.1016/j.ins.2015.11.030_bib0030) 2015; 302
Branke (10.1016/j.ins.2015.11.030_bib0002) 2002
Mukherjee (10.1016/j.ins.2015.11.030_bib0031) 2014; 267
Zhang (10.1016/j.ins.2015.11.030_bib0054) 2009; 15
Pelikan (10.1016/j.ins.2015.11.030_bib0037) 2006
Turky (10.1016/j.ins.2015.11.030_bib0047) 2014; 272
Yang (10.1016/j.ins.2015.11.030_bib0050) 2005
Yang (10.1016/j.ins.2015.11.030_bib0051) 2007
Lamma (10.1016/j.ins.2015.11.030_bib0021) 2006
10.1016/j.ins.2015.11.030_bib0001
Dick (10.1016/j.ins.2015.11.030_bib0009) 2005
Pelikan (10.1016/j.ins.2015.11.030_bib0035) 2005
Goldberg (10.1016/j.ins.2015.11.030_bib0010) 1989
Muhlenbein (10.1016/j.ins.2015.11.030_bib0029) 1996
Chatterjee (10.1016/j.ins.2015.11.030_bib0005) 2015; 295
Larranaga (10.1016/j.ins.2015.11.030_bib0022) 2002
Schwarz (10.1016/j.ins.2015.11.030_bib0041) 1978; 6
Lucas (10.1016/j.ins.2015.11.030_bib0025) 2007
Taormina (10.1016/j.ins.2015.11.030_bib0044) 2012; 25
Morrison (10.1016/j.ins.2015.11.030_bib0028) 1999
Yang (10.1016/j.ins.2015.11.030_bib0049) 2005
Peng (10.1016/j.ins.2015.11.030_bib0038) 2010; 15
References_xml – volume: 15
  start-page: 311
  year: 2010
  end-page: 326
  ident: bib0038
  article-title: Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments
  publication-title: Soft Comput.
– start-page: 207
  year: 2006
  end-page: 217
  ident: bib0021
  article-title: Improving the K2 algorithm using association rule parameters
  publication-title: Journal of Modern Information Processing: From Theory to applications
– volume: 298
  start-page: 198
  year: 2015
  end-page: 224
  ident: bib0043
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inf. Sci. (Ny)
– volume: 21
  start-page: 5
  year: 2002
  end-page: 20
  ident: bib0036
  article-title: A survey of optimization by building and using probabilistic models
  publication-title: Comput. Optim. Appl.
– start-page: 2047
  year: 1999
  end-page: 2053
  ident: bib0028
  article-title: A test problem generator for non-stationary environments
  publication-title: Proceedings of 1999 Congress Evolutionary Computation (Cat. No. 99TH8406)
– year: 2006
  ident: bib0037
  article-title: Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications
– volume: 296
  start-page: 95
  year: 2015
  end-page: 118
  ident: bib0024
  article-title: Multi-population methods in unconstrained continuous dynamic environments: the challenges
  publication-title: Inf. Sci. (Ny)
– volume: 25
  start-page: 1670
  year: 2012
  end-page: 1676
  ident: bib0044
  article-title: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1855
  year: 2005
  end-page: 1860
  ident: bib0009
  article-title: The behaviour of genetic drift in a spatially-structured evolutionary algorithm
  publication-title: Proceedings of 2005 IEEE Congress Evolutionary Computation
– volume: 9
  start-page: 815
  year: 2005
  end-page: 834
  ident: bib0052
  article-title: Experimental study on population-based incremental learning algorithms for dynamic optimization problems
  publication-title: Soft Comput.
– volume: 9
  start-page: 2485
  year: 2013
  end-page: 2503
  ident: bib0019
  article-title: Evolutionary optimization in dynamic environments: Bayesian optimization algorithm and dynamic Bayesian networks in concert
  publication-title: Int. J. Innov. Comput. I.
– year: 2002
  ident: bib0022
  article-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
– year: 2007
  ident: bib0025
  article-title: Advances in Probabilistic Graphical Models (Studies in Fuzziness and Soft Computing)
– volume: 282
  start-page: 214
  year: 2014
  end-page: 236
  ident: bib0046
  article-title: Analysis of fitness landscape modifications in evolutionary dynamic optimization
  publication-title: Inf. Sci. (Ny)
– year: 2005
  ident: bib0035
  article-title: Hierarchical Bayesian Optimization Algorithm, Toward a New Generation of Evolutionary Algorithms
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: bib0013
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika.
– volume: 15
  start-page: 840
  year: 2009
  end-page: 858
  ident: bib0054
  article-title: Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization
  publication-title: J. Univers. Comput. Sci.
– volume: 9
  start-page: 303
  year: 2005
  end-page: 317
  ident: bib0018
  article-title: Evolutionary optimization in uncertain environments—a survey
  publication-title: IEEE Trans. Evol. Comput.
– volume: 295
  start-page: 67
  year: 2015
  end-page: 90
  ident: bib0005
  article-title: Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network
  publication-title: Inf. Sci. (Ny)
– year: 2002
  ident: bib0002
  article-title: Evolutionary Optimization in Dynamic Environments
– volume: 3
  start-page: 21
  year: 2004
  end-page: 35
  ident: bib0015
  article-title: A study of drift analysis for estimating computation time of evolutionary algorithms
  publication-title: Nat. Comput.
– start-page: 105
  year: 2007
  end-page: 127
  ident: bib0045
  article-title: Genetic algorithms with self-organizing behaviour in dynamic environments
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments.
– year: 2008
  ident: bib0023
  article-title: Markov Chains and Mixing Times
– volume: 11
  start-page: 3647
  year: 2010
  end-page: 3680
  ident: bib0039
  article-title: Learning non-stationary dynamic Bayesian networks
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 99
  year: 2005
  end-page: 125
  ident: bib0042
  article-title: Drift and scaling in estimation of distribution algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 178
  year: 1996
  end-page: 187
  ident: bib0029
  article-title: From recombination of genes to the estimation of distributions I: binary parameters
  publication-title: Proceedings of 4th International Conference Parallel Problem Solving from Nature Berlin (PPSN IV)
– volume: 9
  start-page: 309
  year: 1992
  end-page: 347
  ident: bib0007
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Mach. Learn.
– year: 2009
  ident: bib0020
  article-title: Probabilistic Graphical Models: Principles and Techniques
– start-page: 2349
  year: 2005
  end-page: 2356
  ident: bib0003
  article-title: Multiobjective optimization for dynamic environments
  publication-title: Proceedings of 2005 IEEE Congress Evolutionary Computation
– volume: 12
  start-page: 542
  year: 2008
  end-page: 561
  ident: bib0053
  article-title: Population-based incremental learning with associative memory for dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
– year: 1989
  ident: bib0010
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– reference: S. Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, Computer Science Department, Carnegie Mellon University, 1994.
– volume: 127
  start-page: 57
  year: 2001
  end-page: 85
  ident: bib0014
  article-title: Drift analysis and average time complexity of evolutionary algorithms
  publication-title: Artif. Intell.
– year: 2005
  ident: bib0017
  article-title: Convergence of estimation of distribution algorithms in optimization of additively noisy fitness functions
  publication-title: Proceedings of 17th IEEE International Conference Tools with Artificial Intelligence
– start-page: 1433
  year: 2005
  end-page: 1440
  ident: bib0004
  article-title: Towards an analysis of dynamic environments
  publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, GECCO ’05
– year: 2005
  ident: bib0011
  article-title: Contributions on Theoretical Aspects of Estimation of Distribution Algorithms
– year: 1975
  ident: bib0016
  article-title: Adaptation in Natural and Artificial Systems
– reference: V. Mihajlovic, M. Petkovic, Dynamic Bayesian networks: a state of the art, CTIT Technical Report TR-CTIT-34, Center for Telematics and Information Technology, University of Twente, The Netherlands, 2001.
– start-page: 2246
  year: 2003
  end-page: 2253
  ident: bib0048
  article-title: Non-stationary problem optimization using the primal-dual genetic algorithm
  publication-title: Proceedings of 2003 Congress Evolutionary Computation 2003. CEC ’03.
– volume: 267
  start-page: 58
  year: 2014
  end-page: 82
  ident: bib0031
  article-title: Cluster-based differential evolution with crowding archive for niching in dynamic environments
  publication-title: Inf. Sci. (Ny)
– start-page: 510
  year: 2003
  end-page: 517
  ident: bib0012
  article-title: Analysis of the univariate marginal distribution algorithm modeled by Markov chains
  publication-title: Lecture Notes Computer Science
– volume: 294
  start-page: 456
  year: 2015
  end-page: 477
  ident: bib0026
  article-title: Ant algorithms with immigrants schemes for the dynamic vehicle routing problem
  publication-title: Inf. Sci. (Ny)
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib0041
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– year: 1991
  ident: bib0008
  article-title: Toward an Extrapolation Of The Simulated Annealing Convergence Theory Onto The Simple Genetic Algorithm
– volume: 18
  start-page: 193
  year: 2014
  end-page: 208
  ident: bib0033
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 3
  year: 2007
  end-page: 28
  ident: bib0051
  article-title: Explicit memory schemes for evolutionary algorithms in dynamic environments
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments.
– volume: 16
  start-page: 642
  year: 2007
  end-page: 646
  ident: bib0006
  article-title: Application of a PSO-based neural network in analysis of outcomes of construction claims
  publication-title: Autom. Constr.
– start-page: 711
  year: 2005
  end-page: 718
  ident: bib0050
  article-title: Population-based incremental learning with memory scheme for changing environments
  publication-title: Proceedings of 7th Annual Conference on Genetic and Evolutionary Computation - GECCO ’05
– reference: R.M. Neal, Probabilistic Inference using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
– start-page: 2560
  year: 2005
  end-page: 2567
  ident: bib0049
  article-title: Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems
  publication-title: Proceedings of 2005 IEEE Congress Evolutionary Computation.
– volume: 302
  start-page: 33
  year: 2015
  end-page: 49
  ident: bib0030
  article-title: Detecting change and dealing with uncertainty in imperfect evolutionary environments
  publication-title: Inf. Sci. (Ny)
– year: 2002
  ident: bib0034
  article-title: Bayesian Optimization Algorithm: From Single Level to Hierarchy
– volume: 272
  start-page: 84
  year: 2014
  end-page: 95
  ident: bib0047
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Inf. Sci. (Ny)
– volume: 35
  start-page: 67
  year: 1998
  end-page: 89
  ident: bib0040
  article-title: Finite Markov chain results in evolutionary computation: a tour d'horizon
  publication-title: Fundam. Informaticae.
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.ins.2015.11.030_bib0041
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 294
  start-page: 456
  year: 2015
  ident: 10.1016/j.ins.2015.11.030_bib0026
  article-title: Ant algorithms with immigrants schemes for the dynamic vehicle routing problem
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.10.002
– volume: 127
  start-page: 57
  year: 2001
  ident: 10.1016/j.ins.2015.11.030_bib0014
  article-title: Drift analysis and average time complexity of evolutionary algorithms
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(01)00058-3
– volume: 9
  start-page: 303
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0018
  article-title: Evolutionary optimization in uncertain environments—a survey
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– start-page: 3
  year: 2007
  ident: 10.1016/j.ins.2015.11.030_bib0051
  article-title: Explicit memory schemes for evolutionary algorithms in dynamic environments
– volume: 3
  start-page: 21
  year: 2004
  ident: 10.1016/j.ins.2015.11.030_bib0015
  article-title: A study of drift analysis for estimating computation time of evolutionary algorithms
  publication-title: Nat. Comput.
  doi: 10.1023/B:NACO.0000023417.31393.c7
– year: 1975
  ident: 10.1016/j.ins.2015.11.030_bib0016
– start-page: 105
  year: 2007
  ident: 10.1016/j.ins.2015.11.030_bib0045
  article-title: Genetic algorithms with self-organizing behaviour in dynamic environments
– year: 2002
  ident: 10.1016/j.ins.2015.11.030_bib0022
– start-page: 2246
  year: 2003
  ident: 10.1016/j.ins.2015.11.030_bib0048
  article-title: Non-stationary problem optimization using the primal-dual genetic algorithm
– volume: 295
  start-page: 67
  year: 2015
  ident: 10.1016/j.ins.2015.11.030_bib0005
  article-title: Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.09.039
– volume: 13
  start-page: 99
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0042
  article-title: Drift and scaling in estimation of distribution algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 207
  year: 2006
  ident: 10.1016/j.ins.2015.11.030_bib0021
  article-title: Improving the K2 algorithm using association rule parameters
– volume: 15
  start-page: 840
  year: 2009
  ident: 10.1016/j.ins.2015.11.030_bib0054
  article-title: Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization
  publication-title: J. Univers. Comput. Sci.
– volume: 57
  start-page: 97
  year: 1970
  ident: 10.1016/j.ins.2015.11.030_bib0013
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika.
  doi: 10.1093/biomet/57.1.97
– start-page: 510
  year: 2003
  ident: 10.1016/j.ins.2015.11.030_bib0012
  article-title: Analysis of the univariate marginal distribution algorithm modeled by Markov chains
  doi: 10.1007/3-540-44868-3_65
– volume: 296
  start-page: 95
  year: 2015
  ident: 10.1016/j.ins.2015.11.030_bib0024
  article-title: Multi-population methods in unconstrained continuous dynamic environments: the challenges
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.10.062
– year: 2009
  ident: 10.1016/j.ins.2015.11.030_bib0020
– year: 1991
  ident: 10.1016/j.ins.2015.11.030_bib0008
– start-page: 2047
  year: 1999
  ident: 10.1016/j.ins.2015.11.030_bib0028
  article-title: A test problem generator for non-stationary environments
– volume: 11
  start-page: 3647
  year: 2010
  ident: 10.1016/j.ins.2015.11.030_bib0039
  article-title: Learning non-stationary dynamic Bayesian networks
  publication-title: J. Mach. Learn. Res.
– volume: 302
  start-page: 33
  year: 2015
  ident: 10.1016/j.ins.2015.11.030_bib0030
  article-title: Detecting change and dealing with uncertainty in imperfect evolutionary environments
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.12.053
– start-page: 1855
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0009
  article-title: The behaviour of genetic drift in a spatially-structured evolutionary algorithm
– year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0011
– year: 2007
  ident: 10.1016/j.ins.2015.11.030_bib0025
– volume: 9
  start-page: 815
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0052
  article-title: Experimental study on population-based incremental learning algorithms for dynamic optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-004-0422-3
– year: 2002
  ident: 10.1016/j.ins.2015.11.030_bib0034
– volume: 35
  start-page: 67
  year: 1998
  ident: 10.1016/j.ins.2015.11.030_bib0040
  article-title: Finite Markov chain results in evolutionary computation: a tour d'horizon
  publication-title: Fundam. Informaticae.
  doi: 10.3233/FI-1998-35123405
– volume: 15
  start-page: 311
  year: 2010
  ident: 10.1016/j.ins.2015.11.030_bib0038
  article-title: Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0547-5
– volume: 16
  start-page: 642
  year: 2007
  ident: 10.1016/j.ins.2015.11.030_bib0006
  article-title: Application of a PSO-based neural network in analysis of outcomes of construction claims
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2006.11.008
– start-page: 1433
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0004
  article-title: Towards an analysis of dynamic environments
– ident: 10.1016/j.ins.2015.11.030_bib0027
– year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0035
– volume: 21
  start-page: 5
  year: 2002
  ident: 10.1016/j.ins.2015.11.030_bib0036
  article-title: A survey of optimization by building and using probabilistic models
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1013500812258
– year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0017
  article-title: Convergence of estimation of distribution algorithms in optimization of additively noisy fitness functions
– volume: 9
  start-page: 2485
  year: 2013
  ident: 10.1016/j.ins.2015.11.030_bib0019
  article-title: Evolutionary optimization in dynamic environments: Bayesian optimization algorithm and dynamic Bayesian networks in concert
  publication-title: Int. J. Innov. Comput. I.
– volume: 282
  start-page: 214
  year: 2014
  ident: 10.1016/j.ins.2015.11.030_bib0046
  article-title: Analysis of fitness landscape modifications in evolutionary dynamic optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.05.053
– start-page: 2560
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0049
  article-title: Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems
– volume: 272
  start-page: 84
  year: 2014
  ident: 10.1016/j.ins.2015.11.030_bib0047
  article-title: A multi-population harmony search algorithm with external archive for dynamic optimization problems
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.02.084
– start-page: 178
  year: 1996
  ident: 10.1016/j.ins.2015.11.030_bib0029
  article-title: From recombination of genes to the estimation of distributions I: binary parameters
– ident: 10.1016/j.ins.2015.11.030_bib0032
– year: 1989
  ident: 10.1016/j.ins.2015.11.030_bib0010
– volume: 267
  start-page: 58
  year: 2014
  ident: 10.1016/j.ins.2015.11.030_bib0031
  article-title: Cluster-based differential evolution with crowding archive for niching in dynamic environments
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.11.025
– volume: 18
  start-page: 193
  year: 2014
  ident: 10.1016/j.ins.2015.11.030_bib0033
  article-title: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2248159
– start-page: 711
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0050
  article-title: Population-based incremental learning with memory scheme for changing environments
– year: 2006
  ident: 10.1016/j.ins.2015.11.030_bib0037
– volume: 12
  start-page: 542
  year: 2008
  ident: 10.1016/j.ins.2015.11.030_bib0053
  article-title: Population-based incremental learning with associative memory for dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.913070
– ident: 10.1016/j.ins.2015.11.030_bib0001
– start-page: 2349
  year: 2005
  ident: 10.1016/j.ins.2015.11.030_bib0003
  article-title: Multiobjective optimization for dynamic environments
– year: 2002
  ident: 10.1016/j.ins.2015.11.030_bib0002
– volume: 298
  start-page: 198
  year: 2015
  ident: 10.1016/j.ins.2015.11.030_bib0043
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.11.036
– volume: 25
  start-page: 1670
  year: 2012
  ident: 10.1016/j.ins.2015.11.030_bib0044
  article-title: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.02.009
– year: 2008
  ident: 10.1016/j.ins.2015.11.030_bib0023
– volume: 9
  start-page: 309
  year: 1992
  ident: 10.1016/j.ins.2015.11.030_bib0007
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994110
SSID ssj0004766
Score 2.2021008
Snippet When memory-based evolutionary algorithms are applied in dynamic environments, the certainly use of uncertain prior knowledge for future environments may...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Algorithms
Bayesian analysis
Bayesian optimization algorithm
Dynamic environments
Dynamics
Evolutionary algorithms
Markov chain
Markov chains
Memory-based method
Movements
Optimization
Transition probabilities
Title Biasing the transition of Bayesian optimization algorithm between Markov chain states in dynamic environments
URI https://dx.doi.org/10.1016/j.ins.2015.11.030
https://www.proquest.com/docview/1793237894
Volume 334-335
WOSCitedRecordID wos000370088500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLdg4wCHCQaIMYaMhHZgCsrDceJjhzoeqgqHDnqz3MReU61JabJp_Pd8ju0mG2IaBy5RFCVpmt_P3yPfC6G3GdhAYLbmXsQyAQ4KpR6sIvBSckakYDMSt4H276NkPE6nU_bNhmLqdpxAUpbp1RVb_Veo4RiArUtn_wHuzU3hAOwD6LAF2GF7J-CPC1G7GqhGa6LCGYXH4pdsayYrkBNLW4B5JM7PqnXRzJebnC1dv1Nd6prgojxqK45M0qwZXn-tNq5v29rKpvamVrF2kSIBStLWBi06Qn6cgxJdeoOzuTAJQWNR112-8GDuUgLg__xw7oD9RhFQnaQV-n25C06q9l76cjeyXzGN5DRdIK0ONo3N_5Du5kPDAlwS3Wg9iN_r_qs2rHOtk_b4Kz85HY34ZDidHK5-enrImA7G24kr99F2mMQM5Pj24PNw-qUrpE1McNs9rguDtwmBN371b4bMDZXe2imTx2jHOhh4YIjxBN2T5S561Gs7uYsObLEKPsQ9zLAV80_R0lIIA4VwRyFcKewohPsUwhsKYUshbCiEWwphQyEMe5ZCuE-hZ-j0ZDj58MmzYzm8LIr8xoMVLBlRfpJJomggwOUOZJiDciAqTCnJY6oCP4-kECoGa4cKGag0kTQMqK8Ui56jrbIq5QuEWQQkYHkwIzm8ex-MZRkzBkbjLKVq5pM95Lt3zDPbs16PTjnnLjlxwQEWrmEBX5YDLHvo3eaSlWnYctvJxAHH7cIwliQHyt122RsHMgdprENsopTVRc21ugujJGXk5R3O2UcPu9XyCm016wt5gB5kl01Rr19bcv4Gn3-xFw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biasing+the+transition+of+Bayesian+optimization+algorithm+between+Markov+chain+states+in+dynamic+environments&rft.jtitle=Information+sciences&rft.au=Kaedi%2C+Marjan&rft.au=Ghasem-Aghaee%2C+Nasser&rft.au=Ahn%2C+Chang+Wook&rft.date=2016-03-20&rft.issn=0020-0255&rft.volume=334&rft.spage=44&rft.epage=64&rft_id=info:doi/10.1016%2Fj.ins.2015.11.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon