Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics

Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogene...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 311; s. 114260
Hlavní autori: Schug, Franz, Pfoch, Kira A., Pham, Vu-Dong, van der Linden, Sebastian, Okujeni, Akpona, Frantz, David, Radeloff, Volker C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.09.2024
Predmet:
ISSN:0034-4257
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients. •Spectral-temporal metrics from multi-spectral data distinguish land cover fractions.•Local models accurately map land cover fractions in all biomes.•Spatially generalized models yielded accurate results across sites and biomes.•Weighted training data especially useful for global subpixel fraction maps.
AbstractList Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients.
Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients. •Spectral-temporal metrics from multi-spectral data distinguish land cover fractions.•Local models accurately map land cover fractions in all biomes.•Spatially generalized models yielded accurate results across sites and biomes.•Weighted training data especially useful for global subpixel fraction maps.
ArticleNumber 114260
Author Frantz, David
Pfoch, Kira A.
Pham, Vu-Dong
van der Linden, Sebastian
Okujeni, Akpona
Schug, Franz
Radeloff, Volker C.
Author_xml – sequence: 1
  givenname: Franz
  surname: Schug
  fullname: Schug, Franz
  email: fschug@wisc.edu
  organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA
– sequence: 2
  givenname: Kira A.
  surname: Pfoch
  fullname: Pfoch, Kira A.
  email: pfoch@wisc.edu
  organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA
– sequence: 3
  givenname: Vu-Dong
  surname: Pham
  fullname: Pham, Vu-Dong
  email: vudong.pham@uni-greifswald.de
  organization: Earth Observation and Geoinformation Science Lab, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 16, 17489 Greifswald, Germany
– sequence: 4
  givenname: Sebastian
  surname: van der Linden
  fullname: van der Linden, Sebastian
  email: sebastian.linden@uni-greifswald.de
  organization: Earth Observation and Geoinformation Science Lab, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 16, 17489 Greifswald, Germany
– sequence: 5
  givenname: Akpona
  surname: Okujeni
  fullname: Okujeni, Akpona
  email: akpona.okujeni@geo.hu-berlin.de
  organization: Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 6
  givenname: David
  surname: Frantz
  fullname: Frantz, David
  email: david.frantz@uni-trier.de
  organization: Geoinformatics – Spatial Data Science, Trier University, 54286 Trier, Germany
– sequence: 7
  givenname: Volker C.
  surname: Radeloff
  fullname: Radeloff, Volker C.
  email: radeloff@wisc.edu
  organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA
BookMark eNp9kD1vFDEQhl0kUj7ID0jnkoI9xvtxeysqFBFAOokGamtsz1588q4XjxMU_gH_Gm-OiiKVR_L7vKN5rsTZHGcS4lbBRoHavj9uEtOmhrrdKNXWWzgTlwBNW7V111-IK-YjgOp2vboUf_Y4O2njEyU5JrTZx1lOuCx-Pki0KTLLQ4gGgzQ-TsTyl88PcqUYs3SY8Z3kBbPHEJ7lgWZKGPxvcjLRIRHzS2F0FFiuq3ghm0ukyjQtsQxyopy85TfifMTAdPPvvRY_7j99v_tS7b99_nr3cV_ZpoFc4TB0Bo3q3YgjEEHdY2dRmZ0zuy0M1G2xbYzDbii_Ru1oAOiHkZq2c71RzbV4e-pdUvz5SJz15NlSCDhTfGTd1FA6a-jXaH-KvnhINGrrM66KygU-aAV6Fa6PugjXq3B9El5I9R-5JD9hen6V-XBiiip68pQ0W0-zJedTcaZd9K_QfwFZ0KDb
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2025_05_011
crossref_primary_10_1007_s10113_025_02360_6
crossref_primary_10_1016_j_rse_2024_114594
crossref_primary_10_1080_01431161_2025_2549532
crossref_primary_10_4467_20833113PG_25_001_21630
crossref_primary_10_1016_j_rse_2025_114736
crossref_primary_10_1038_s41597_025_04430_0
crossref_primary_10_3390_rs17162789
crossref_primary_10_1016_j_rse_2025_114740
crossref_primary_10_1016_j_jag_2025_104432
crossref_primary_10_1080_20964471_2025_2540703
Cites_doi 10.1016/j.rse.2023.113823
10.1080/1747423X.2015.1086905
10.1029/2018GL079679
10.1016/S0034-4257(98)00037-6
10.1016/j.landurbplan.2020.103857
10.1016/j.rse.2019.02.015
10.3390/rs13183718
10.14358/PERS.74.10.1213
10.1016/j.rse.2017.04.013
10.3389/frsen.2022.894571
10.1016/j.cj.2016.01.008
10.1016/j.jhydrol.2020.125154
10.1111/2041-210X.13650
10.1016/S0034-4257(01)00259-0
10.3390/rs14041031
10.1109/JSTARS.2013.2271445
10.1016/j.rse.2017.01.033
10.1016/S0034-4257(00)00100-0
10.3390/rs12030426
10.1109/72.97934
10.1029/JB091iB08p08098
10.2134/agronj1984.00021962007600020029x
10.1016/j.rse.2004.02.013
10.1080/01431169508954549
10.1016/j.scitotenv.2016.07.078
10.1016/j.rse.2013.06.007
10.1109/TGRS.2016.2530856
10.3390/s17081826
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1016/j.rse.2022.113228
10.1016/j.rse.2014.11.027
10.1016/0034-4257(90)90074-V
10.5194/acp-16-9563-2016
10.3390/rs12071156
10.1016/j.rse.2021.112781
10.3389/fenvs.2019.00093
10.1175/EI134.1
10.1016/j.rse.2004.12.015
10.1016/j.rse.2014.11.009
10.1126/science.1244693
10.1016/S0034-4257(03)00039-7
10.1016/j.ecoser.2016.11.010
10.1016/j.isprsjprs.2018.02.010
10.1016/j.rse.2020.111856
10.1093/biosci/bix014
10.3390/rs11091124
10.3390/rs9060565
10.1016/j.rse.2014.12.014
10.1016/j.rse.2009.08.016
10.3390/rs14225748
10.1080/01431160110114998
10.1109/JSTARS.2014.2314960
10.1016/j.rse.2005.10.023
10.1016/j.rse.2018.10.004
10.1016/j.rse.2020.111810
10.1007/s10113-020-01655-0
10.1016/j.rse.2024.114206
10.3390/rs11172063
10.1016/j.rse.2018.07.011
10.1016/j.rse.2020.111691
10.1016/j.rse.2018.03.022
10.1016/j.isprsjprs.2017.01.001
10.1016/j.rse.2021.112409
10.1016/j.rse.2011.11.002
10.1002/2016GB005546
10.1016/j.rse.2022.113239
10.1016/0034-4257(79)90013-0
10.1038/s41586-023-06320-0
10.1016/j.rse.2004.06.007
10.1002/rse2.277
10.3390/land7030091
10.1016/j.jag.2022.102937
10.1016/j.rse.2022.113277
10.1016/j.rse.2020.111937
10.1073/pnas.1718850115
10.1016/j.rse.2013.05.024
10.1016/j.isprsjprs.2013.09.010
10.1038/514434c
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2024.114260
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
ExternalDocumentID 10_1016_j_rse_2024_114260
S0034425724002785
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADVLN
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
VOH
WUQ
XOL
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-a995bab17dfaf0ee027a5ca1b8db8609e56a43bda590eeb18e90079fe345d7b13
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Thu Oct 02 22:51:08 EDT 2025
Sat Nov 29 06:00:37 EST 2025
Tue Nov 18 22:44:27 EST 2025
Sat Oct 05 15:37:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Synthetic training data
Model transfer
Neural network regression
Weighted training data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-a995bab17dfaf0ee027a5ca1b8db8609e56a43bda590eeb18e90079fe345d7b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3200272071
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200272071
crossref_citationtrail_10_1016_j_rse_2024_114260
crossref_primary_10_1016_j_rse_2024_114260
elsevier_sciencedirect_doi_10_1016_j_rse_2024_114260
PublicationCentury 2000
PublicationDate 2024-09-01
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mukherjee, Bebermeier, Schütt (bb0225) 2018; 7
Borges, Higginbottom, Cain, Gadiye, Kisingo, Jones, Symeonakis (bb0030) 2022; 8
Woodcock, Macomber, Pax-Lenney, Cohen (bb0470) 2001; 78
Santoro, Kirches, Wevers, Böttcher, Brockmann, Lemarche (bb0310) 2017
Meyer, Pebesma (bb0220) 2021; 12
Radeloff, Helmers, Kramer, Mockrin, Alexandre, Bar-Massada (bb0285) 2018; 115
Small, Sousa (bb0360) 2022; 14
Kauth, Thomas (bb0180) 1976
Lewińska, Buchner, Bleyhl, Hostert, Yin, Kuemmerle, Radeloff (bb0200) 2021; 4
Stanimirova, Graesser, Olofsson, Friedl (bb0405) 2022; 282
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina (bb0140) 2013; 342
Okujeni, Canters, Cooper, Degerickx, Heiden, Hostert (bb0250) 2018; 216
DOI
Houghton, Nassikas (bb0160) 2017; 31
Potapov, Hansen, Kommareddy, Kommareddy, Turubanova, Pickens (bb0280) 2020; 12
Small, Milesi (bb0350) 2013; 136
.
Elmore, Mustard, Manning, Lobell (bb0075) 2000; 73
Leberger, Geijzendorffer, Gaget, Gwelmami, Galewski, Pereira, Guerra (bb0195) 2020; 20
Rioux, Cimon-Morin, Pellerin, Alard, Poulin (bb0295) 2019; 7
Viana-Soto, Okujeni, Pflugmacher, García, Aguado, Hostert (bb0445) 2022; 281
Higginbottom, Symeonakis, Meyer, van der Linden (bb0150) 2018; 139
Iordache, Tits, Bioucas-Dias, Plaza, Somers (bb0165) 2014; 7
Potapov, Turubanova, Tyukavina, Krylov, McCarty, Radeloff, Hansen (bb0275) 2015; 159
Smith, Adams, Sabol (bb0370) 1994
Sousa, Small (bb0390) 2017; 192
Frantz (bb0095) 2019; 11
Jilge, Heiden, Habermeyer, Mende, Juergens (bb0170) 2017; 17
Friedl, Woodcock, Olofsson, Zhu, Loveland, Stanimirova (bb0115) 2022; 3
GLANCE project (bb0120) 2019
Jun, Ban, Li (bb0175) 2014; 514
Abrams, Crippen, Fujisada (bb0005) 2020; 12
Cooper, Okujeni, Jänicke, Clark, van der Linden, Hostert (bb0050) 2020; 246
Wellmann, Schug, Haase, Pflugmacher, van der Linden (bb0460) 2020; 202
Zhu, Wang, Woodcock (bb0485) 2015; 159
Shao, Zhao, Kao, Cuo, Rankin, Gao (bb0335) 2020; 589
Zanaga, van de Kerchove, Keersmaecker, Souverijns, Brockmann, Quast (bb0480) 2021
Tran, Pla, Latorre-Carmona, Myint, Caetano, Kieu (bb0425) 2017; 124
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bib491) 2019; 225
Frantz, Rufin, Janz, Ernst, Pflugmacher, Schug, Hostert (bb0105) 2023; 298
Schug, Frantz, Okujeni, van der Linden, Hostert (bb0320) 2020; 246
Esau, Miles, Davy, Miles, Kurchatova (bb0085) 2016; 16
Neyns, Canters (bb0230) 2022; 14
EROS (Ed.) (bb0080) 2017
Gullì, Pal (bb0130) 2017
Wetherley, Roberts, McFadden (bb0465) 2017; 195
Okujeni, van der Linden, Tits, Somers, Hostert (bb0240) 2013; 137
Brown de Colstoun, Huang, Wang, Tilton, Tan, Phillips (bb0035) 2017
Thompson, Basilio, Brosnan, Cawse-Nicholson, Chadwick, Guild (bb0415) 2022
Deng, Wu (bb0060) 2013; 86
Small, Lu (bb0345) 2006; 100
Song, Deng (bb0380) 2017; 576
UNEP (bb0435) 2015
Schug, Okujeni, Hauer, Hostert, Nielsen, van der Linden (bb0315) 2018; 210
Walton (bb0450) 2008; 74
Bailey, McCleery, Binford, Zweig (bb0025) 2016; 11
Pesaresi, Huadong, Blaes, Ehrlich, Ferri, Gueguen (bb0265) 2013; 6
Tucker (bb0430) 1979; 8
Asner, Knapp, Cooper, Bustamante, Olander (bb0015) 2005; 9
Herold, Roberts, Gardner, Dennison (bb0145) 2004; 91
Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (bb0110) 2010; 114
Phinn, Stanford, Scarth, Murray, Shyy (bb0270) 2002; 23
EEA (Ed.) (bb0070) 2019
Verrelst, Muñoz, Alonso, Delegido, Riveira, Camps-Valls, Moreno (bb0440) 2012; 118
Nill, Grünberg, Ullmann, Gessner, Boike, Hostert (bb0235) 2022; 281
Wang, Zhou, Zhu, Dong, Guo (bb0455) 2016; 4
Rufin, Bey, Picoli, Meyfroidt (bb0305) 2022; 112
Spoto, Sy, Laberinti, Martimort, Fernandez, Colin (bb0400) 2012
Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood (bb0255) 2001; 51
Liao, Liu, Li, Luo, Wang, Wang (bb0205) 2018; 45
Foody, Boyd, Cutler (bb0090) 2003; 85
Schug, Bar-Massada, Carlson, Cox, Hawbaker, Helmers (bb0325) 2023
Roberts, Gardner, Church, Ustin, Scheer, Green (bb0300) 1998; 65
Tolessa, Senbeta, Kidane (bb0420) 2017; 23
Adams, Smith, Johnson (bb0010) 1986; 91
Okujeni, van der Linden, Hostert (bb0245) 2015; 158
Smith, Ustin, Adams, Gillespie (bb0365) 1990; 31
Buchhorn, Smets, Bertels, Roo, Lesiv, Tsendbazar (bb0040) 2020
Hively, Lamb, Daughtry, Serbin, Dennison, Kokaly (bb0155) 2021; 13
Specht (bb0395) 1991; 2
Guzha, Rufino, Okoth, Jacobs, Nóbrega (bb0135) 2018; 15
Marconcini, Metz-Marconcini, Üreyen, Palacios-Lopez, Hanke, Bachofer (bb0210) 2019
Small, Sousa (bb0355) 2019; 11
Guanter, Segl, Foerster, Chabrillat, Fischer, Gentz (bb0125) 2018
Masiliūnas, Tsendbazar, Herold, Lesiv, Buchhorn, Verbesselt (bb0215) 2021; 259
Small (bb0340) 2004; 93
Frantz, Röder, Stellmes, Hill (bb0100) 2016; 54
Pham, Thiel, Frantz, Okujeni, Schug, van der Linden (bib487) 2024; 308
Suess, van der Linden, Okujeni, Griffiths, Leitão, Schwieder, Hostert (bb0410) 2018; 219
Olthof, Butson, Fraser (bb0260) 2005; 95
Degerickx, Okujeni, Iordache, Hermy, van der Linden, Somers (bb0055) 2017; 9
Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization.
Ridd (bb0290) 1995; 16
Dinerstein, Olson, Joshi, Vynne, Burgess, Wikramanayake (bb0065) 2017; 67
Kowalski, Okujeni, Brell, Hostert (bb0190) 2022; 268
Senf, Laštovička, Okujeni, Heurich, van der Linden (bb0330) 2020; 240
Asrar, Fuchs, Kanemasu, Hatfield (bb0020) 1984; 76
Sousa, Davis (bb0385) 2020; 247
Adams (10.1016/j.rse.2024.114260_bb0010) 1986; 91
Tucker (10.1016/j.rse.2024.114260_bb0430) 1979; 8
Friedl (10.1016/j.rse.2024.114260_bb0110) 2010; 114
Leberger (10.1016/j.rse.2024.114260_bb0195) 2020; 20
Wellmann (10.1016/j.rse.2024.114260_bb0460) 2020; 202
Zanaga (10.1016/j.rse.2024.114260_bb0480) 2021
Radeloff (10.1016/j.rse.2024.114260_bb0285) 2018; 115
Tolessa (10.1016/j.rse.2024.114260_bb0420) 2017; 23
Schug (10.1016/j.rse.2024.114260_bb0325) 2023
Rufin (10.1016/j.rse.2024.114260_bb0305) 2022; 112
Guzha (10.1016/j.rse.2024.114260_bb0135) 2018; 15
Houghton (10.1016/j.rse.2024.114260_bb0160) 2017; 31
Meyer (10.1016/j.rse.2024.114260_bb0220) 2021; 12
Wetherley (10.1016/j.rse.2024.114260_bb0465) 2017; 195
Marconcini (10.1016/j.rse.2024.114260_bb0210)
Frantz (10.1016/j.rse.2024.114260_bb0095) 2019; 11
Smith (10.1016/j.rse.2024.114260_bb0365) 1990; 31
Cooper (10.1016/j.rse.2024.114260_bb0050) 2020; 246
Potapov (10.1016/j.rse.2024.114260_bb0275) 2015; 159
Masiliūnas (10.1016/j.rse.2024.114260_bb0215) 2021; 259
Abrams (10.1016/j.rse.2024.114260_bb0005) 2020; 12
Small (10.1016/j.rse.2024.114260_bb0340) 2004; 93
Gullì (10.1016/j.rse.2024.114260_bb0130) 2017
Verrelst (10.1016/j.rse.2024.114260_bb0440) 2012; 118
Small (10.1016/j.rse.2024.114260_bb0355) 2019; 11
Friedl (10.1016/j.rse.2024.114260_bb0115) 2022; 3
Schug (10.1016/j.rse.2024.114260_bb0320) 2020; 246
Okujeni (10.1016/j.rse.2024.114260_bb0245) 2015; 158
Hively (10.1016/j.rse.2024.114260_bb0155) 2021; 13
Schug (10.1016/j.rse.2024.114260_bb0315) 2018; 210
Tran (10.1016/j.rse.2024.114260_bb0425) 2017; 124
Foody (10.1016/j.rse.2024.114260_bb0090) 2003; 85
Thompson (10.1016/j.rse.2024.114260_bb0415) 2022
Degerickx (10.1016/j.rse.2024.114260_bb0055) 2017; 9
Buchhorn (10.1016/j.rse.2024.114260_bb0040) 2020
Dinerstein (10.1016/j.rse.2024.114260_bb0065) 2017; 67
Pesaresi (10.1016/j.rse.2024.114260_bb0265) 2013; 6
Phinn (10.1016/j.rse.2024.114260_bb0270) 2002; 23
Small (10.1016/j.rse.2024.114260_bb0345) 2006; 100
Neyns (10.1016/j.rse.2024.114260_bb0230) 2022; 14
Rioux (10.1016/j.rse.2024.114260_bb0295) 2019; 7
Deng (10.1016/j.rse.2024.114260_bb0060) 2013; 86
10.1016/j.rse.2024.114260_bb0185
Pham (10.1016/j.rse.2024.114260_bib487) 2024; 308
Wulder (10.1016/j.rse.2024.114260_bib491) 2019; 225
Frantz (10.1016/j.rse.2024.114260_bb0105) 2023; 298
Woodcock (10.1016/j.rse.2024.114260_bb0470) 2001; 78
Walton (10.1016/j.rse.2024.114260_bb0450) 2008; 74
Frantz (10.1016/j.rse.2024.114260_bb0100) 2016; 54
Small (10.1016/j.rse.2024.114260_bb0360) 2022; 14
Potapov (10.1016/j.rse.2024.114260_bb0280) 2020; 12
Suess (10.1016/j.rse.2024.114260_bb0410) 2018; 219
Asrar (10.1016/j.rse.2024.114260_bb0020) 1984; 76
Lewińska (10.1016/j.rse.2024.114260_bb0200) 2021; 4
Small (10.1016/j.rse.2024.114260_bb0350) 2013; 136
Hansen (10.1016/j.rse.2024.114260_bb0140) 2013; 342
Borges (10.1016/j.rse.2024.114260_bb0030) 2022; 8
Guanter (10.1016/j.rse.2024.114260_bb0125) 2018
Roberts (10.1016/j.rse.2024.114260_bb0300) 1998; 65
Shao (10.1016/j.rse.2024.114260_bb0335) 2020; 589
Olson (10.1016/j.rse.2024.114260_bb0255) 2001; 51
Higginbottom (10.1016/j.rse.2024.114260_bb0150) 2018; 139
Okujeni (10.1016/j.rse.2024.114260_bb0240) 2013; 137
Santoro (10.1016/j.rse.2024.114260_bb0310) 2017
Stanimirova (10.1016/j.rse.2024.114260_bb0405) 2022; 282
Kowalski (10.1016/j.rse.2024.114260_bb0190) 2022; 268
Sousa (10.1016/j.rse.2024.114260_bb0390) 2017; 192
UNEP (10.1016/j.rse.2024.114260_bb0435) 2015
Ridd (10.1016/j.rse.2024.114260_bb0290) 1995; 16
Jun (10.1016/j.rse.2024.114260_bb0175) 2014; 514
GLANCE project (10.1016/j.rse.2024.114260_bb0120)
Brown de Colstoun (10.1016/j.rse.2024.114260_bb0035) 2017
EROS (Ed.) (10.1016/j.rse.2024.114260_bb0080) 2017
Sousa (10.1016/j.rse.2024.114260_bb0385) 2020; 247
Song (10.1016/j.rse.2024.114260_bb0380) 2017; 576
EEA (Ed.) (10.1016/j.rse.2024.114260_bb0070)
Kauth (10.1016/j.rse.2024.114260_bb0180) 1976
Spoto (10.1016/j.rse.2024.114260_bb0400) 2012
Asner (10.1016/j.rse.2024.114260_bb0015) 2005; 9
Olthof (10.1016/j.rse.2024.114260_bb0260) 2005; 95
Smith (10.1016/j.rse.2024.114260_bb0370) 1994
Okujeni (10.1016/j.rse.2024.114260_bb0250) 2018; 216
Liao (10.1016/j.rse.2024.114260_bb0205) 2018; 45
Viana-Soto (10.1016/j.rse.2024.114260_bb0445) 2022; 281
Bailey (10.1016/j.rse.2024.114260_bb0025) 2016; 11
Nill (10.1016/j.rse.2024.114260_bb0235) 2022; 281
Wang (10.1016/j.rse.2024.114260_bb0455) 2016; 4
Zhu (10.1016/j.rse.2024.114260_bb0485) 2015; 159
Esau (10.1016/j.rse.2024.114260_bb0085) 2016; 16
Senf (10.1016/j.rse.2024.114260_bb0330) 2020; 240
Mukherjee (10.1016/j.rse.2024.114260_bb0225) 2018; 7
Herold (10.1016/j.rse.2024.114260_bb0145) 2004; 91
Jilge (10.1016/j.rse.2024.114260_bb0170) 2017; 17
Elmore (10.1016/j.rse.2024.114260_bb0075) 2000; 73
Iordache (10.1016/j.rse.2024.114260_bb0165) 2014; 7
Specht (10.1016/j.rse.2024.114260_bb0395) 1991; 2
References_xml – volume: 23
  start-page: 4131
  year: 2002
  end-page: 4153
  ident: bb0270
  article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques
  publication-title: Int. J. Remote Sens.
– year: 2020
  ident: bb0040
  article-title: Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe
– volume: 86
  start-page: 100
  year: 2013
  end-page: 110
  ident: bb0060
  article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 159
  start-page: 28
  year: 2015
  end-page: 43
  ident: bb0275
  article-title: Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 441
  year: 2006
  end-page: 456
  ident: bb0345
  article-title: Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis
  publication-title: Remote Sens. Environ.
– volume: 73
  start-page: 87
  year: 2000
  end-page: 102
  ident: bb0075
  article-title: Quantifying vegetation change in semiarid environments
  publication-title: Remote Sens. Environ.
– volume: 576
  start-page: 705
  year: 2017
  end-page: 719
  ident: bb0380
  article-title: Land-use/land-cover change and ecosystem service provision in China
  publication-title: Sci. Total Environ.
– volume: 195
  start-page: 170
  year: 2017
  end-page: 183
  ident: bb0465
  article-title: Mapping spectrally similar urban materials at sub-pixel scales
  publication-title: Remote Sens. Environ.
– volume: 281
  year: 2022
  ident: bb0445
  article-title: Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 5748
  year: 2022
  ident: bb0360
  article-title: The sentinel 2 MSI spectral mixing space
  publication-title: Remote Sens.
– volume: 54
  start-page: 3928
  year: 2016
  end-page: 3943
  ident: bb0100
  article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 1994
  ident: bb0370
  article-title: Spectral mixture analysis - new strategies for the analysis of multispectral data
  publication-title: Imaging spectrometry - a tool for environmental observations
– year: 2017
  ident: bb0130
  article-title: Deep Learning with Keras. Implement Neural Networks with Keras on Theano and TensorFlow
– volume: 7
  year: 2019
  ident: bb0295
  article-title: How land cover spatial resolution affects mapping of urban ecosystem service flows
  publication-title: Front. Environ. Sci.
– volume: 589
  year: 2020
  ident: bb0335
  article-title: Quantifying the effects of urbanization on floods in a changing environment to promote water security — a case study of two adjacent basins in Texas
  publication-title: J. Hydrol.
– volume: 12
  start-page: 1620
  year: 2021
  end-page: 1633
  ident: bb0220
  article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models
  publication-title: Methods Ecol. Evol.
– volume: 16
  start-page: 9563
  year: 2016
  end-page: 9577
  ident: bb0085
  article-title: Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia
  publication-title: Atmos. Chem. Phys.
– year: 2019
  ident: bb0120
  article-title: Global LANdcover mapping and Estimation (GLANCE): GLANCE project
– volume: 246
  year: 2020
  ident: bb0320
  article-title: Mapping urban-rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 2063
  year: 2019
  ident: bb0355
  article-title: Spatiotemporal characterization of mangrove phenology and disturbance response: the Bangladesh Sundarban
  publication-title: Remote Sens.
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: bb0395
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– volume: 12
  start-page: 426
  year: 2020
  ident: bb0280
  article-title: Landsat analysis ready data for global land cover and land cover change mapping
  publication-title: Remote Sens.
– volume: 282
  year: 2022
  ident: bb0405
  article-title: Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay
  publication-title: Remote Sens. Environ.
– volume: 4
  year: 2021
  ident: bb0200
  article-title: Changes in the grasslands of the Caucasus based on cumulative endmember fractions from the full 1987–2019 Landsat record
  publication-title: Sci. Remote Sens.
– volume: 210
  start-page: 217
  year: 2018
  end-page: 228
  ident: bb0315
  article-title: Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 20
  year: 2020
  ident: bb0195
  article-title: Mediterranean wetland conservation in the context of climate and land cover change
  publication-title: Reg. Environ. Chang.
– volume: 115
  start-page: 3314
  year: 2018
  end-page: 3319
  ident: bb0285
  article-title: Rapid growth of the US wildland-urban interface raises wildfire risk
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 1707
  year: 2012
  end-page: 1710
  ident: bb0400
  article-title: Overview of Sentinel-2
  publication-title: 2012 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2012–2012 IEEE International Geoscience and Remote Sensing Symposium
– volume: 136
  start-page: 442
  year: 2013
  end-page: 454
  ident: bb0350
  article-title: Multi-scale standardized spectral mixture models
  publication-title: Remote Sens. Environ.
– volume: 219
  start-page: 353
  year: 2018
  end-page: 364
  ident: bb0410
  article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb0435
  article-title: Policy Coherence of the Sustainable Development Goals: A Natural Resource Perspective
– volume: 11
  start-page: 1124
  year: 2019
  ident: bb0095
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
– volume: 158
  start-page: 69
  year: 2015
  end-page: 80
  ident: bb0245
  article-title: Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning
  publication-title: Remote Sens. Environ.
– volume: 247
  year: 2020
  ident: bb0385
  article-title: Scalable mapping and monitoring of Mediterranean-climate oak landscapes with temporal mixture models
  publication-title: Remote Sens. Environ.
– volume: 17
  year: 2017
  ident: bb0170
  article-title: Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis
  publication-title: Sensors
– volume: 7
  start-page: 91
  year: 2018
  ident: bb0225
  article-title: An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata
  publication-title: Land
– volume: 23
  start-page: 47
  year: 2017
  end-page: 54
  ident: bb0420
  article-title: The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia
  publication-title: Ecosyst. Serv.
– volume: 514
  start-page: 434
  year: 2014
  ident: bb0175
  article-title: China: open access to earth land-cover map
  publication-title: Nature
– volume: 45
  year: 2018
  ident: bb0205
  article-title: Stronger contributions of urbanization to heat wave trends in wet climates
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 2016
  year: 2014
  end-page: 2034
  ident: bb0165
  article-title: A dynamic Unmixing framework for plant production system monitoring
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 216
  start-page: 482
  year: 2018
  end-page: 496
  ident: bb0250
  article-title: Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities
  publication-title: Remote Sens. Environ.
– volume: 95
  start-page: 290
  year: 2005
  end-page: 302
  ident: bb0260
  article-title: Signature extension through space for northern landcover classification: a comparison of radiometric correction methods
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 154
  year: 2016
  end-page: 176
  ident: bb0025
  article-title: Land-cover change within and around protected areas in a biodiversity hotspot
  publication-title: J. Land Use Sci.
– volume: 259
  year: 2021
  ident: bb0215
  article-title: Global land characterisation using land cover fractions at 100 m resolution
  publication-title: Remote Sens. Environ.
– volume: 93
  start-page: 1
  year: 2004
  end-page: 17
  ident: bb0340
  article-title: The Landsat ETM+ spectral mixing space
  publication-title: Remote Sens. Environ.
– volume: 268
  year: 2022
  ident: bb0190
  article-title: Quantifying drought effects in central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 1031
  year: 2022
  ident: bb0230
  article-title: Mapping of urban vegetation with high-resolution remote sensing: a review
  publication-title: Remote Sens.
– volume: 298
  year: 2023
  ident: bb0105
  article-title: Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – a quantitative evaluation
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0080
  article-title: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global
– volume: 13
  start-page: 3718
  year: 2021
  ident: bb0155
  article-title: Evaluation of SWIR crop residue bands for the Landsat next Mission
  publication-title: Remote Sens.
– volume: 139
  start-page: 88
  year: 2018
  end-page: 102
  ident: bb0150
  article-title: Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 15
  start-page: 49
  year: 2018
  end-page: 67
  ident: bb0135
  article-title: Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa
  publication-title: J. Hydrol.: Regional Stud.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: bb0485
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 91
  start-page: 304
  year: 2004
  end-page: 319
  ident: bb0145
  article-title: Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bb0070
  article-title: CORINE Land Cover 2018
– volume: 91
  start-page: 8098
  year: 1986
  ident: bb0010
  article-title: Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site
  publication-title: J. Geophys. Res. Atmos.
– year: 2021
  ident: bb0480
  article-title: ESA WorldCover 10 m 2020 v100
– year: 2017
  ident: bb0310
  article-title: Land Cover CCI. Product User Guide Version 2.0. Edited by European Space Agency
– volume: 78
  start-page: 194
  year: 2001
  end-page: 203
  ident: bb0470
  article-title: Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors
  publication-title: Remote Sens. Environ.
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: bib491
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1156
  year: 2020
  ident: bb0005
  article-title: ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD)
  publication-title: Remote Sens.
– reference: Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization.
– volume: 9
  start-page: 565
  year: 2017
  ident: bb0055
  article-title: A novel spectral library pruning technique for spectral Unmixing of urban land cover
  publication-title: Remote Sens.
– volume: 6
  start-page: 2102
  year: 2013
  end-page: 2131
  ident: bb0265
  article-title: A global human settlement layer from optical HR/VHR RS data. Concept and first results
  publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens.
– start-page: 168
  year: 2018
  end-page: 170
  ident: bb0125
  article-title: The Enmap German imaging spectroscopy mission: status and summary of preparatory activities
  publication-title: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, 22/07/2018–27/07/2018
– volume: 308
  year: 2024
  ident: bib487
  article-title: Learning the variations in annual spectral-temporal metrics to enhance the transferability of regression models for land cover fraction monitoring
  publication-title: Remote Sens. Environ.
– volume: 65
  start-page: 267
  year: 1998
  end-page: 279
  ident: bb0300
  article-title: Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models
  publication-title: Remote Sens. Environ.
– volume: 112
  year: 2022
  ident: bb0305
  article-title: Large-area mapping of active cropland and short-term fallows in smallholder landscapes using PlanetScope data
  publication-title: Int. J. Appl. Earth Observ. Geoinform.: ITC J.
– volume: 240
  year: 2020
  ident: bb0330
  article-title: A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data
  publication-title: Remote Sens. Environ.
– volume: 76
  start-page: 300
  year: 1984
  ident: bb0020
  article-title: Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat
  publication-title: Agron. J.
– volume: 67
  start-page: 534
  year: 2017
  end-page: 545
  ident: bb0065
  article-title: An ecoregion-based approach to protecting half the terrestrial realm
  publication-title: BioScience
– year: 2019
  ident: bb0210
  article-title: Outlining where humans live -- The World Settlement Footprint 2015
– volume: 137
  start-page: 184
  year: 2013
  end-page: 197
  ident: bb0240
  article-title: Support vector regression and synthetically mixed training data for quantifying urban land cover
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 212
  year: 2016
  end-page: 219
  ident: bb0455
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
– start-page: 4B31
  year: 1976
  end-page: 4B51
  ident: bb0180
  article-title: The Tasseled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat
  publication-title: Proceedings of the Symposium on Machine Processing of Remotely Sensed Data
– volume: 124
  start-page: 119
  year: 2017
  end-page: 132
  ident: bb0425
  article-title: Characterizing the relationship between land use land cover change and land surface temperature
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 31
  start-page: 1
  year: 1990
  end-page: 26
  ident: bb0365
  article-title: Vegetation in deserts: I. A regional measure of abundance from multispectral images
  publication-title: Remote Sens. Environ.
– start-page: 5007
  year: 2022
  end-page: 5010
  ident: bb0415
  article-title: Ongoing Progress Toward NASA’s Surface Biology and Geology Mission
  publication-title: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia, 16-Jul-22 - 21-Jul-22
– volume: 31
  start-page: 456
  year: 2017
  end-page: 472
  ident: bb0160
  article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015
  publication-title: Glob. Biogeochem. Cycles
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bb0430
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 3
  year: 2022
  ident: bb0115
  article-title: Medium spatial resolution mapping of global land cover and land cover change across multiple decades from Landsat
  publication-title: Front. Remote Sens.
– volume: 202
  year: 2020
  ident: bb0460
  article-title: Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series
  publication-title: Landsc. Urban Plan.
– volume: 9
  start-page: 1
  year: 2005
  end-page: 31
  ident: bb0015
  article-title: Ecosystem structure throughout the Brazilian Amazon from Landsat observations and automated spectral Unmixing
  publication-title: Earth Interact.
– volume: 51
  start-page: 933
  year: 2001
  ident: bb0255
  article-title: Terrestrial ecoregions of the world. A new map of life on earth
  publication-title: BioScience
– reference: . DOI:
– volume: 8
  start-page: 808
  year: 2022
  end-page: 826
  ident: bb0030
  article-title: Landsat time series reveal forest loss and woody encroachment in the Ngorongoro conservation area, Tanzania
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 246
  year: 2020
  ident: bb0050
  article-title: Disentangling fractional vegetation cover: regression-based unmixing of simulated spaceborne imaging spectroscopy data
  publication-title: Remote Sens. Environ.
– volume: 74
  start-page: 1213
  year: 2008
  end-page: 1222
  ident: bb0450
  article-title: Subpixel urban land cover estimation. Comparing cubist, random forests, and support vector regression
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: bb0140
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
– year: 2023
  ident: bb0325
  article-title: The global wildland–urban interface
  publication-title: Nature
– volume: 85
  start-page: 463
  year: 2003
  end-page: 474
  ident: bb0090
  article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb0035
  article-title: Global Man-Made Impervious Surface (GMIS) Dataset from Landsat. Edited by NASA Socioeconomic Data and Applications Center (SEDAC)
– volume: 16
  start-page: 2165
  year: 1995
  end-page: 2185
  ident: bb0290
  article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing. Comparative anatomy for cities
  publication-title: Int. J. Remote Sens.
– reference: .
– volume: 192
  start-page: 139
  year: 2017
  end-page: 149
  ident: bb0390
  article-title: Global cross-calibration of Landsat spectral mixture models
  publication-title: Remote Sens. Environ.
– volume: 281
  year: 2022
  ident: bb0235
  article-title: Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 127
  year: 2012
  end-page: 139
  ident: bb0440
  article-title: Machine learning regression algorithms for biophysical parameter retrieval. Opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 168
  year: 2010
  end-page: 182
  ident: bb0110
  article-title: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
– volume: 298
  year: 2023
  ident: 10.1016/j.rse.2024.114260_bb0105
  article-title: Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – a quantitative evaluation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113823
– ident: 10.1016/j.rse.2024.114260_bb0210
– ident: 10.1016/j.rse.2024.114260_bb0070
– volume: 11
  start-page: 154
  issue: 2
  year: 2016
  ident: 10.1016/j.rse.2024.114260_bb0025
  article-title: Land-cover change within and around protected areas in a biodiversity hotspot
  publication-title: J. Land Use Sci.
  doi: 10.1080/1747423X.2015.1086905
– volume: 45
  issue: 20
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0205
  article-title: Stronger contributions of urbanization to heat wave trends in wet climates
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL079679
– volume: 65
  start-page: 267
  issue: 3
  year: 1998
  ident: 10.1016/j.rse.2024.114260_bb0300
  article-title: Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00037-6
– volume: 202
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0460
  article-title: Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2020.103857
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.rse.2024.114260_bib491
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 13
  start-page: 3718
  issue: 18
  year: 2021
  ident: 10.1016/j.rse.2024.114260_bb0155
  article-title: Evaluation of SWIR crop residue bands for the Landsat next Mission
  publication-title: Remote Sens.
  doi: 10.3390/rs13183718
– volume: 74
  start-page: 1213
  issue: 10
  year: 2008
  ident: 10.1016/j.rse.2024.114260_bb0450
  article-title: Subpixel urban land cover estimation. Comparing cubist, random forests, and support vector regression
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.74.10.1213
– volume: 195
  start-page: 170
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0465
  article-title: Mapping spectrally similar urban materials at sub-pixel scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.013
– volume: 3
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0115
  article-title: Medium spatial resolution mapping of global land cover and land cover change across multiple decades from Landsat
  publication-title: Front. Remote Sens.
  doi: 10.3389/frsen.2022.894571
– volume: 4
  start-page: 212
  issue: 3
  year: 2016
  ident: 10.1016/j.rse.2024.114260_bb0455
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
  doi: 10.1016/j.cj.2016.01.008
– start-page: 4B31
  year: 1976
  ident: 10.1016/j.rse.2024.114260_bb0180
  article-title: The Tasseled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat
– volume: 589
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0335
  article-title: Quantifying the effects of urbanization on floods in a changing environment to promote water security — a case study of two adjacent basins in Texas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125154
– year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0130
– volume: 12
  start-page: 1620
  issue: 9
  year: 2021
  ident: 10.1016/j.rse.2024.114260_bb0220
  article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13650
– volume: 78
  start-page: 194
  issue: 1–2
  year: 2001
  ident: 10.1016/j.rse.2024.114260_bb0470
  article-title: Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00259-0
– volume: 14
  start-page: 1031
  issue: 4
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0230
  article-title: Mapping of urban vegetation with high-resolution remote sensing: a review
  publication-title: Remote Sens.
  doi: 10.3390/rs14041031
– volume: 6
  start-page: 2102
  issue: 5
  year: 2013
  ident: 10.1016/j.rse.2024.114260_bb0265
  article-title: A global human settlement layer from optical HR/VHR RS data. Concept and first results
  publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2271445
– volume: 192
  start-page: 139
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0390
  article-title: Global cross-calibration of Landsat spectral mixture models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.033
– volume: 73
  start-page: 87
  issue: 1
  year: 2000
  ident: 10.1016/j.rse.2024.114260_bb0075
  article-title: Quantifying vegetation change in semiarid environments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00100-0
– volume: 12
  start-page: 426
  issue: 3
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0280
  article-title: Landsat analysis ready data for global land cover and land cover change mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs12030426
– volume: 4
  year: 2021
  ident: 10.1016/j.rse.2024.114260_bb0200
  article-title: Changes in the grasslands of the Caucasus based on cumulative endmember fractions from the full 1987–2019 Landsat record
  publication-title: Sci. Remote Sens.
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 10.1016/j.rse.2024.114260_bb0395
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 91
  start-page: 8098
  issue: B8
  year: 1986
  ident: 10.1016/j.rse.2024.114260_bb0010
  article-title: Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/JB091iB08p08098
– volume: 76
  start-page: 300
  issue: 2
  year: 1984
  ident: 10.1016/j.rse.2024.114260_bb0020
  article-title: Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat
  publication-title: Agron. J.
  doi: 10.2134/agronj1984.00021962007600020029x
– volume: 91
  start-page: 304
  issue: 3–4
  year: 2004
  ident: 10.1016/j.rse.2024.114260_bb0145
  article-title: Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.02.013
– volume: 16
  start-page: 2165
  issue: 12
  year: 1995
  ident: 10.1016/j.rse.2024.114260_bb0290
  article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing. Comparative anatomy for cities
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169508954549
– volume: 576
  start-page: 705
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0380
  article-title: Land-use/land-cover change and ecosystem service provision in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.078
– volume: 137
  start-page: 184
  year: 2013
  ident: 10.1016/j.rse.2024.114260_bb0240
  article-title: Support vector regression and synthetically mixed training data for quantifying urban land cover
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.06.007
– year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0040
– year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0080
– volume: 54
  start-page: 3928
  issue: 7
  year: 2016
  ident: 10.1016/j.rse.2024.114260_bb0100
  article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2530856
– volume: 17
  issue: 8
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0170
  article-title: Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis
  publication-title: Sensors
  doi: 10.3390/s17081826
– volume: 51
  start-page: 933
  issue: 11
  year: 2001
  ident: 10.1016/j.rse.2024.114260_bb0255
  article-title: Terrestrial ecoregions of the world. A new map of life on earth
  publication-title: BioScience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 281
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0235
  article-title: Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113228
– volume: 159
  start-page: 28
  year: 2015
  ident: 10.1016/j.rse.2024.114260_bb0275
  article-title: Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.027
– volume: 31
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.rse.2024.114260_bb0365
  article-title: Vegetation in deserts: I. A regional measure of abundance from multispectral images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90074-V
– volume: 16
  start-page: 9563
  issue: 15
  year: 2016
  ident: 10.1016/j.rse.2024.114260_bb0085
  article-title: Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-9563-2016
– volume: 12
  start-page: 1156
  issue: 7
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0005
  article-title: ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD)
  publication-title: Remote Sens.
  doi: 10.3390/rs12071156
– ident: 10.1016/j.rse.2024.114260_bb0120
– volume: 268
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0190
  article-title: Quantifying drought effects in central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112781
– volume: 15
  start-page: 49
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0135
  article-title: Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa
  publication-title: J. Hydrol.: Regional Stud.
– year: 1994
  ident: 10.1016/j.rse.2024.114260_bb0370
  article-title: Spectral mixture analysis - new strategies for the analysis of multispectral data
– volume: 7
  year: 2019
  ident: 10.1016/j.rse.2024.114260_bb0295
  article-title: How land cover spatial resolution affects mapping of urban ecosystem service flows
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2019.00093
– volume: 9
  start-page: 1
  issue: 7
  year: 2005
  ident: 10.1016/j.rse.2024.114260_bb0015
  article-title: Ecosystem structure throughout the Brazilian Amazon from Landsat observations and automated spectral Unmixing
  publication-title: Earth Interact.
  doi: 10.1175/EI134.1
– volume: 95
  start-page: 290
  issue: 3
  year: 2005
  ident: 10.1016/j.rse.2024.114260_bb0260
  article-title: Signature extension through space for northern landcover classification: a comparison of radiometric correction methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.015
– volume: 158
  start-page: 69
  year: 2015
  ident: 10.1016/j.rse.2024.114260_bb0245
  article-title: Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.009
– volume: 342
  start-page: 850
  issue: 6160
  year: 2013
  ident: 10.1016/j.rse.2024.114260_bb0140
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 85
  start-page: 463
  issue: 4
  year: 2003
  ident: 10.1016/j.rse.2024.114260_bb0090
  article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00039-7
– start-page: 168
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0125
  article-title: The Enmap German imaging spectroscopy mission: status and summary of preparatory activities
– volume: 23
  start-page: 47
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0420
  article-title: The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2016.11.010
– volume: 139
  start-page: 88
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0150
  article-title: Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.010
– volume: 246
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0050
  article-title: Disentangling fractional vegetation cover: regression-based unmixing of simulated spaceborne imaging spectroscopy data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111856
– volume: 67
  start-page: 534
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0065
  article-title: An ecoregion-based approach to protecting half the terrestrial realm
  publication-title: BioScience
  doi: 10.1093/biosci/bix014
– volume: 11
  start-page: 1124
  issue: 9
  year: 2019
  ident: 10.1016/j.rse.2024.114260_bb0095
  article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond
  publication-title: Remote Sens.
  doi: 10.3390/rs11091124
– volume: 9
  start-page: 565
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0055
  article-title: A novel spectral library pruning technique for spectral Unmixing of urban land cover
  publication-title: Remote Sens.
  doi: 10.3390/rs9060565
– year: 2015
  ident: 10.1016/j.rse.2024.114260_bb0435
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.rse.2024.114260_bb0485
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0035
– volume: 114
  start-page: 168
  issue: 1
  year: 2010
  ident: 10.1016/j.rse.2024.114260_bb0110
  article-title: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.016
– volume: 14
  start-page: 5748
  issue: 22
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0360
  article-title: The sentinel 2 MSI spectral mixing space
  publication-title: Remote Sens.
  doi: 10.3390/rs14225748
– ident: 10.1016/j.rse.2024.114260_bb0185
– volume: 23
  start-page: 4131
  issue: 20
  year: 2002
  ident: 10.1016/j.rse.2024.114260_bb0270
  article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110114998
– volume: 7
  start-page: 2016
  issue: 6
  year: 2014
  ident: 10.1016/j.rse.2024.114260_bb0165
  article-title: A dynamic Unmixing framework for plant production system monitoring
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2314960
– volume: 100
  start-page: 441
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2024.114260_bb0345
  article-title: Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.023
– start-page: 1707
  year: 2012
  ident: 10.1016/j.rse.2024.114260_bb0400
  article-title: Overview of Sentinel-2
– volume: 219
  start-page: 353
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0410
  article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.004
– volume: 246
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0320
  article-title: Mapping urban-rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111810
– volume: 20
  issue: 2
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0195
  article-title: Mediterranean wetland conservation in the context of climate and land cover change
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-020-01655-0
– volume: 308
  year: 2024
  ident: 10.1016/j.rse.2024.114260_bib487
  article-title: Learning the variations in annual spectral-temporal metrics to enhance the transferability of regression models for land cover fraction monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114206
– volume: 11
  start-page: 2063
  issue: 17
  year: 2019
  ident: 10.1016/j.rse.2024.114260_bb0355
  article-title: Spatiotemporal characterization of mangrove phenology and disturbance response: the Bangladesh Sundarban
  publication-title: Remote Sens.
  doi: 10.3390/rs11172063
– volume: 216
  start-page: 482
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0250
  article-title: Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.011
– year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0310
– volume: 240
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0330
  article-title: A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111691
– volume: 210
  start-page: 217
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0315
  article-title: Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.022
– volume: 124
  start-page: 119
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0425
  article-title: Characterizing the relationship between land use land cover change and land surface temperature
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.01.001
– volume: 259
  year: 2021
  ident: 10.1016/j.rse.2024.114260_bb0215
  article-title: Global land characterisation using land cover fractions at 100 m resolution
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112409
– volume: 118
  start-page: 127
  year: 2012
  ident: 10.1016/j.rse.2024.114260_bb0440
  article-title: Machine learning regression algorithms for biophysical parameter retrieval. Opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.002
– volume: 31
  start-page: 456
  issue: 3
  year: 2017
  ident: 10.1016/j.rse.2024.114260_bb0160
  article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2016GB005546
– volume: 281
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0445
  article-title: Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113239
– volume: 8
  start-page: 127
  issue: 2
  year: 1979
  ident: 10.1016/j.rse.2024.114260_bb0430
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– year: 2023
  ident: 10.1016/j.rse.2024.114260_bb0325
  article-title: The global wildland–urban interface
  publication-title: Nature
  doi: 10.1038/s41586-023-06320-0
– volume: 93
  start-page: 1
  issue: 1–2
  year: 2004
  ident: 10.1016/j.rse.2024.114260_bb0340
  article-title: The Landsat ETM+ spectral mixing space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.06.007
– volume: 8
  start-page: 808
  issue: 6
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0030
  article-title: Landsat time series reveal forest loss and woody encroachment in the Ngorongoro conservation area, Tanzania
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.277
– volume: 7
  start-page: 91
  issue: 3
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0225
  article-title: An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata
  publication-title: Land
  doi: 10.3390/land7030091
– volume: 112
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0305
  article-title: Large-area mapping of active cropland and short-term fallows in smallholder landscapes using PlanetScope data
  publication-title: Int. J. Appl. Earth Observ. Geoinform.: ITC J.
  doi: 10.1016/j.jag.2022.102937
– volume: 282
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0405
  article-title: Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113277
– volume: 247
  year: 2020
  ident: 10.1016/j.rse.2024.114260_bb0385
  article-title: Scalable mapping and monitoring of Mediterranean-climate oak landscapes with temporal mixture models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111937
– start-page: 5007
  year: 2022
  ident: 10.1016/j.rse.2024.114260_bb0415
  article-title: Ongoing Progress Toward NASA’s Surface Biology and Geology Mission
– volume: 115
  start-page: 3314
  issue: 13
  year: 2018
  ident: 10.1016/j.rse.2024.114260_bb0285
  article-title: Rapid growth of the US wildland-urban interface raises wildfire risk
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1718850115
– volume: 136
  start-page: 442
  year: 2013
  ident: 10.1016/j.rse.2024.114260_bb0350
  article-title: Multi-scale standardized spectral mixture models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.024
– volume: 86
  start-page: 100
  year: 2013
  ident: 10.1016/j.rse.2024.114260_bb0060
  article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.09.010
– volume: 514
  start-page: 434
  issue: 7523
  year: 2014
  ident: 10.1016/j.rse.2024.114260_bb0175
  article-title: China: open access to earth land-cover map
  publication-title: Nature
  doi: 10.1038/514434c
– year: 2021
  ident: 10.1016/j.rse.2024.114260_bb0480
SSID ssj0015871
Score 2.523833
Snippet Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114260
SubjectTerms ecosystems
environment
land cover
Landsat
Model transfer
Neural network regression
remote sensing
Synthetic training data
Weighted training data
Title Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics
URI https://dx.doi.org/10.1016/j.rse.2024.114260
https://www.proquest.com/docview/3200272071
Volume 311
WOSCitedRecordID wos001252045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015871
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdKB2IvCAoTY4CMxBMlVZo4dfxYQRn_NCEYqG-RnThbp5JWSTpt-wZ8IT4fd7GTlE6b2AMvUZXYjtX75e5s3--OkJfSZzoNxMjxE8kdhjQZhViO0ZvXsCKK07AqNsEPDsLpVHzpdH7XXJjTOc-y8OxMLP-rqOEeCBupszcQdzMo3IDfIHS4gtjh-k-C_2yYajDvfprbSuA_5bLiRcnKKNZZQCrqvaW3Ya9Cln2MGMW_vcBIazmfn2ONZdy3ml1oJLocmbjZzJTQMQmeK7YmNHFsnivko2Di_2Ld8_2qARS6X2DAvAm0XuPYtcdBx6uj2p--aNR2ujAFqz7NctkfD9qTDIPmHyvn7cJaYMvIwgwZuN1glOo3Dca6rD8Eu8fhsSaIq9HbPnNQu6zrbd9qaaN5kRNsKhNcMgpmf-JkkBeYF9Vjg7bt3wm4NwxjE65YR8KdRDBEhENEZohbZMvjgQi7ZGv8YTL92JxfBSE3tRrtvOvz9CqycGMeV3lEG75B5fAc3if37EqFjg3CHpCOznpkZ9IKDR5ay1D0yN19bZOf98id_apc9PlD8gthRSsw0hqM1IKRGjBSA0ZqwEgRjNSCkSIYX9MGinQNirSFIjVQpPiqS1CkFoqPyPd3k8M37x1b_MOJfd8tHSlEoKQa8iSVqau163EZxHKowkSFI1foYCSZrxIZCHiqhqEW4O6KVPssSLga-jukmy0y_ZhQWHO4mnHwtAX6bEqkIUtH2k1Folyl3V3i1gKIYpsZHwu0zKMrBb9LXjVdliYtzHWNWS3VyPq1xl-NAKHXdXtRIyACnY8HeTLTi1UR-RhZxT1YHTy5yTz2yHb7cT0l3TJf6Wfkdnxazor8uYXwH2r11T0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+fraction+mapping+across+global+biomes+with+Landsat+data%2C+spatially+generalized+regression+models+and+spectral-temporal+metrics&rft.jtitle=Remote+sensing+of+environment&rft.au=Schug%2C+Franz&rft.au=Pfoch%2C+Kira+A.&rft.au=Pham%2C+Vu-Dong&rft.au=van+der+Linden%2C+Sebastian&rft.date=2024-09-01&rft.issn=0034-4257&rft.volume=311&rft.spage=114260&rft_id=info:doi/10.1016%2Fj.rse.2024.114260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2024_114260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon