Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics
Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogene...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 311; s. 114260 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.2024
|
| Predmet: | |
| ISSN: | 0034-4257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients.
•Spectral-temporal metrics from multi-spectral data distinguish land cover fractions.•Local models accurately map land cover fractions in all biomes.•Spatially generalized models yielded accurate results across sites and biomes.•Weighted training data especially useful for global subpixel fraction maps. |
|---|---|
| AbstractList | Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients. Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely sensed data exceeds the size of small objects. For example, classifications based on 30-m Landsat data do not capture urban or other heterogeneous environments well. This limitation may be overcome by quantifying the subpixel fractions of different land cover types. However, the selection process and transferability of models designed for subpixel land cover mapping across biomes is yet challenging. We asked to what extent (a) locally trained models can be used for sub-pixel land cover fraction estimates in other biomes, and (b) training data from different regions can be combined into spatially generalized models to quantify fractions across global biomes. We applied machine learning regression-based fraction mapping to quantify land cover fractions of 18 regions in five biomes using Landsat data from 2022. We used spectral-temporal metrics to incorporate intra-annual temporal information and compared the performance of local, spatially transferred, and spatially generalized models. Local models performed best when applied to their respective sites (average mean absolute error, MAE, 9–18%), and also well when transferred to other sites within the same biome, but not consistently so for out-of-biome sites. However, spatially generalized models that combined input data from many sites worked very well when analyzing sites in many different biomes, and their MAE values were only slightly higher than those of the respective local models. A weighted training data selection approach, preferring training data with a lower spectral distance to the image data to be predicted, further enhanced the performance of generalized models. Our results suggest that spatially generalized regression-based fraction models can support multi-class sub-pixel fraction estimates based on medium-resolution satellite images globally. Such products would have great value for environmental monitoring in heterogeneous environments and where land cover varies along spatial or temporal gradients. •Spectral-temporal metrics from multi-spectral data distinguish land cover fractions.•Local models accurately map land cover fractions in all biomes.•Spatially generalized models yielded accurate results across sites and biomes.•Weighted training data especially useful for global subpixel fraction maps. |
| ArticleNumber | 114260 |
| Author | Frantz, David Pfoch, Kira A. Pham, Vu-Dong van der Linden, Sebastian Okujeni, Akpona Schug, Franz Radeloff, Volker C. |
| Author_xml | – sequence: 1 givenname: Franz surname: Schug fullname: Schug, Franz email: fschug@wisc.edu organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA – sequence: 2 givenname: Kira A. surname: Pfoch fullname: Pfoch, Kira A. email: pfoch@wisc.edu organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA – sequence: 3 givenname: Vu-Dong surname: Pham fullname: Pham, Vu-Dong email: vudong.pham@uni-greifswald.de organization: Earth Observation and Geoinformation Science Lab, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 16, 17489 Greifswald, Germany – sequence: 4 givenname: Sebastian surname: van der Linden fullname: van der Linden, Sebastian email: sebastian.linden@uni-greifswald.de organization: Earth Observation and Geoinformation Science Lab, Institute of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 16, 17489 Greifswald, Germany – sequence: 5 givenname: Akpona surname: Okujeni fullname: Okujeni, Akpona email: akpona.okujeni@geo.hu-berlin.de organization: Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 6 givenname: David surname: Frantz fullname: Frantz, David email: david.frantz@uni-trier.de organization: Geoinformatics – Spatial Data Science, Trier University, 54286 Trier, Germany – sequence: 7 givenname: Volker C. surname: Radeloff fullname: Radeloff, Volker C. email: radeloff@wisc.edu organization: SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706, USA |
| BookMark | eNp9kD1vFDEQhl0kUj7ID0jnkoI9xvtxeysqFBFAOokGamtsz1588q4XjxMU_gH_Gm-OiiKVR_L7vKN5rsTZHGcS4lbBRoHavj9uEtOmhrrdKNXWWzgTlwBNW7V111-IK-YjgOp2vboUf_Y4O2njEyU5JrTZx1lOuCx-Pki0KTLLQ4gGgzQ-TsTyl88PcqUYs3SY8Z3kBbPHEJ7lgWZKGPxvcjLRIRHzS2F0FFiuq3ghm0ukyjQtsQxyopy85TfifMTAdPPvvRY_7j99v_tS7b99_nr3cV_ZpoFc4TB0Bo3q3YgjEEHdY2dRmZ0zuy0M1G2xbYzDbii_Ru1oAOiHkZq2c71RzbV4e-pdUvz5SJz15NlSCDhTfGTd1FA6a-jXaH-KvnhINGrrM66KygU-aAV6Fa6PugjXq3B9El5I9R-5JD9hen6V-XBiiip68pQ0W0-zJedTcaZd9K_QfwFZ0KDb |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2025_05_011 crossref_primary_10_1007_s10113_025_02360_6 crossref_primary_10_1016_j_rse_2024_114594 crossref_primary_10_1080_01431161_2025_2549532 crossref_primary_10_4467_20833113PG_25_001_21630 crossref_primary_10_1016_j_rse_2025_114736 crossref_primary_10_1038_s41597_025_04430_0 crossref_primary_10_3390_rs17162789 crossref_primary_10_1016_j_rse_2025_114740 crossref_primary_10_1016_j_jag_2025_104432 crossref_primary_10_1080_20964471_2025_2540703 |
| Cites_doi | 10.1016/j.rse.2023.113823 10.1080/1747423X.2015.1086905 10.1029/2018GL079679 10.1016/S0034-4257(98)00037-6 10.1016/j.landurbplan.2020.103857 10.1016/j.rse.2019.02.015 10.3390/rs13183718 10.14358/PERS.74.10.1213 10.1016/j.rse.2017.04.013 10.3389/frsen.2022.894571 10.1016/j.cj.2016.01.008 10.1016/j.jhydrol.2020.125154 10.1111/2041-210X.13650 10.1016/S0034-4257(01)00259-0 10.3390/rs14041031 10.1109/JSTARS.2013.2271445 10.1016/j.rse.2017.01.033 10.1016/S0034-4257(00)00100-0 10.3390/rs12030426 10.1109/72.97934 10.1029/JB091iB08p08098 10.2134/agronj1984.00021962007600020029x 10.1016/j.rse.2004.02.013 10.1080/01431169508954549 10.1016/j.scitotenv.2016.07.078 10.1016/j.rse.2013.06.007 10.1109/TGRS.2016.2530856 10.3390/s17081826 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1016/j.rse.2022.113228 10.1016/j.rse.2014.11.027 10.1016/0034-4257(90)90074-V 10.5194/acp-16-9563-2016 10.3390/rs12071156 10.1016/j.rse.2021.112781 10.3389/fenvs.2019.00093 10.1175/EI134.1 10.1016/j.rse.2004.12.015 10.1016/j.rse.2014.11.009 10.1126/science.1244693 10.1016/S0034-4257(03)00039-7 10.1016/j.ecoser.2016.11.010 10.1016/j.isprsjprs.2018.02.010 10.1016/j.rse.2020.111856 10.1093/biosci/bix014 10.3390/rs11091124 10.3390/rs9060565 10.1016/j.rse.2014.12.014 10.1016/j.rse.2009.08.016 10.3390/rs14225748 10.1080/01431160110114998 10.1109/JSTARS.2014.2314960 10.1016/j.rse.2005.10.023 10.1016/j.rse.2018.10.004 10.1016/j.rse.2020.111810 10.1007/s10113-020-01655-0 10.1016/j.rse.2024.114206 10.3390/rs11172063 10.1016/j.rse.2018.07.011 10.1016/j.rse.2020.111691 10.1016/j.rse.2018.03.022 10.1016/j.isprsjprs.2017.01.001 10.1016/j.rse.2021.112409 10.1016/j.rse.2011.11.002 10.1002/2016GB005546 10.1016/j.rse.2022.113239 10.1016/0034-4257(79)90013-0 10.1038/s41586-023-06320-0 10.1016/j.rse.2004.06.007 10.1002/rse2.277 10.3390/land7030091 10.1016/j.jag.2022.102937 10.1016/j.rse.2022.113277 10.1016/j.rse.2020.111937 10.1073/pnas.1718850115 10.1016/j.rse.2013.05.024 10.1016/j.isprsjprs.2013.09.010 10.1038/514434c |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rse.2024.114260 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| ExternalDocumentID | 10_1016_j_rse_2024_114260 S0034425724002785 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADVLN AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP VOH WUQ XOL ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c330t-a995bab17dfaf0ee027a5ca1b8db8609e56a43bda590eeb18e90079fe345d7b13 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Thu Oct 02 22:51:08 EDT 2025 Sat Nov 29 06:00:37 EST 2025 Tue Nov 18 22:44:27 EST 2025 Sat Oct 05 15:37:18 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Synthetic training data Model transfer Neural network regression Weighted training data |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-a995bab17dfaf0ee027a5ca1b8db8609e56a43bda590eeb18e90079fe345d7b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3200272071 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3200272071 crossref_citationtrail_10_1016_j_rse_2024_114260 crossref_primary_10_1016_j_rse_2024_114260 elsevier_sciencedirect_doi_10_1016_j_rse_2024_114260 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Mukherjee, Bebermeier, Schütt (bb0225) 2018; 7 Borges, Higginbottom, Cain, Gadiye, Kisingo, Jones, Symeonakis (bb0030) 2022; 8 Woodcock, Macomber, Pax-Lenney, Cohen (bb0470) 2001; 78 Santoro, Kirches, Wevers, Böttcher, Brockmann, Lemarche (bb0310) 2017 Meyer, Pebesma (bb0220) 2021; 12 Radeloff, Helmers, Kramer, Mockrin, Alexandre, Bar-Massada (bb0285) 2018; 115 Small, Sousa (bb0360) 2022; 14 Kauth, Thomas (bb0180) 1976 Lewińska, Buchner, Bleyhl, Hostert, Yin, Kuemmerle, Radeloff (bb0200) 2021; 4 Stanimirova, Graesser, Olofsson, Friedl (bb0405) 2022; 282 Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina (bb0140) 2013; 342 Okujeni, Canters, Cooper, Degerickx, Heiden, Hostert (bb0250) 2018; 216 DOI Houghton, Nassikas (bb0160) 2017; 31 Potapov, Hansen, Kommareddy, Kommareddy, Turubanova, Pickens (bb0280) 2020; 12 Small, Milesi (bb0350) 2013; 136 . Elmore, Mustard, Manning, Lobell (bb0075) 2000; 73 Leberger, Geijzendorffer, Gaget, Gwelmami, Galewski, Pereira, Guerra (bb0195) 2020; 20 Rioux, Cimon-Morin, Pellerin, Alard, Poulin (bb0295) 2019; 7 Viana-Soto, Okujeni, Pflugmacher, García, Aguado, Hostert (bb0445) 2022; 281 Higginbottom, Symeonakis, Meyer, van der Linden (bb0150) 2018; 139 Iordache, Tits, Bioucas-Dias, Plaza, Somers (bb0165) 2014; 7 Potapov, Turubanova, Tyukavina, Krylov, McCarty, Radeloff, Hansen (bb0275) 2015; 159 Smith, Adams, Sabol (bb0370) 1994 Sousa, Small (bb0390) 2017; 192 Frantz (bb0095) 2019; 11 Jilge, Heiden, Habermeyer, Mende, Juergens (bb0170) 2017; 17 Friedl, Woodcock, Olofsson, Zhu, Loveland, Stanimirova (bb0115) 2022; 3 GLANCE project (bb0120) 2019 Jun, Ban, Li (bb0175) 2014; 514 Abrams, Crippen, Fujisada (bb0005) 2020; 12 Cooper, Okujeni, Jänicke, Clark, van der Linden, Hostert (bb0050) 2020; 246 Wellmann, Schug, Haase, Pflugmacher, van der Linden (bb0460) 2020; 202 Zhu, Wang, Woodcock (bb0485) 2015; 159 Shao, Zhao, Kao, Cuo, Rankin, Gao (bb0335) 2020; 589 Zanaga, van de Kerchove, Keersmaecker, Souverijns, Brockmann, Quast (bb0480) 2021 Tran, Pla, Latorre-Carmona, Myint, Caetano, Kieu (bb0425) 2017; 124 Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bib491) 2019; 225 Frantz, Rufin, Janz, Ernst, Pflugmacher, Schug, Hostert (bb0105) 2023; 298 Schug, Frantz, Okujeni, van der Linden, Hostert (bb0320) 2020; 246 Esau, Miles, Davy, Miles, Kurchatova (bb0085) 2016; 16 Neyns, Canters (bb0230) 2022; 14 EROS (Ed.) (bb0080) 2017 Gullì, Pal (bb0130) 2017 Wetherley, Roberts, McFadden (bb0465) 2017; 195 Okujeni, van der Linden, Tits, Somers, Hostert (bb0240) 2013; 137 Brown de Colstoun, Huang, Wang, Tilton, Tan, Phillips (bb0035) 2017 Thompson, Basilio, Brosnan, Cawse-Nicholson, Chadwick, Guild (bb0415) 2022 Deng, Wu (bb0060) 2013; 86 Small, Lu (bb0345) 2006; 100 Song, Deng (bb0380) 2017; 576 UNEP (bb0435) 2015 Schug, Okujeni, Hauer, Hostert, Nielsen, van der Linden (bb0315) 2018; 210 Walton (bb0450) 2008; 74 Bailey, McCleery, Binford, Zweig (bb0025) 2016; 11 Pesaresi, Huadong, Blaes, Ehrlich, Ferri, Gueguen (bb0265) 2013; 6 Tucker (bb0430) 1979; 8 Asner, Knapp, Cooper, Bustamante, Olander (bb0015) 2005; 9 Herold, Roberts, Gardner, Dennison (bb0145) 2004; 91 Friedl, Sulla-Menashe, Tan, Schneider, Ramankutty, Sibley, Huang (bb0110) 2010; 114 Phinn, Stanford, Scarth, Murray, Shyy (bb0270) 2002; 23 EEA (Ed.) (bb0070) 2019 Verrelst, Muñoz, Alonso, Delegido, Riveira, Camps-Valls, Moreno (bb0440) 2012; 118 Nill, Grünberg, Ullmann, Gessner, Boike, Hostert (bb0235) 2022; 281 Wang, Zhou, Zhu, Dong, Guo (bb0455) 2016; 4 Rufin, Bey, Picoli, Meyfroidt (bb0305) 2022; 112 Spoto, Sy, Laberinti, Martimort, Fernandez, Colin (bb0400) 2012 Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood (bb0255) 2001; 51 Liao, Liu, Li, Luo, Wang, Wang (bb0205) 2018; 45 Foody, Boyd, Cutler (bb0090) 2003; 85 Schug, Bar-Massada, Carlson, Cox, Hawbaker, Helmers (bb0325) 2023 Roberts, Gardner, Church, Ustin, Scheer, Green (bb0300) 1998; 65 Tolessa, Senbeta, Kidane (bb0420) 2017; 23 Adams, Smith, Johnson (bb0010) 1986; 91 Okujeni, van der Linden, Hostert (bb0245) 2015; 158 Smith, Ustin, Adams, Gillespie (bb0365) 1990; 31 Buchhorn, Smets, Bertels, Roo, Lesiv, Tsendbazar (bb0040) 2020 Hively, Lamb, Daughtry, Serbin, Dennison, Kokaly (bb0155) 2021; 13 Specht (bb0395) 1991; 2 Guzha, Rufino, Okoth, Jacobs, Nóbrega (bb0135) 2018; 15 Marconcini, Metz-Marconcini, Üreyen, Palacios-Lopez, Hanke, Bachofer (bb0210) 2019 Small, Sousa (bb0355) 2019; 11 Guanter, Segl, Foerster, Chabrillat, Fischer, Gentz (bb0125) 2018 Masiliūnas, Tsendbazar, Herold, Lesiv, Buchhorn, Verbesselt (bb0215) 2021; 259 Small (bb0340) 2004; 93 Frantz, Röder, Stellmes, Hill (bb0100) 2016; 54 Pham, Thiel, Frantz, Okujeni, Schug, van der Linden (bib487) 2024; 308 Suess, van der Linden, Okujeni, Griffiths, Leitão, Schwieder, Hostert (bb0410) 2018; 219 Olthof, Butson, Fraser (bb0260) 2005; 95 Degerickx, Okujeni, Iordache, Hermy, van der Linden, Somers (bb0055) 2017; 9 Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization. Ridd (bb0290) 1995; 16 Dinerstein, Olson, Joshi, Vynne, Burgess, Wikramanayake (bb0065) 2017; 67 Kowalski, Okujeni, Brell, Hostert (bb0190) 2022; 268 Senf, Laštovička, Okujeni, Heurich, van der Linden (bb0330) 2020; 240 Asrar, Fuchs, Kanemasu, Hatfield (bb0020) 1984; 76 Sousa, Davis (bb0385) 2020; 247 Adams (10.1016/j.rse.2024.114260_bb0010) 1986; 91 Tucker (10.1016/j.rse.2024.114260_bb0430) 1979; 8 Friedl (10.1016/j.rse.2024.114260_bb0110) 2010; 114 Leberger (10.1016/j.rse.2024.114260_bb0195) 2020; 20 Wellmann (10.1016/j.rse.2024.114260_bb0460) 2020; 202 Zanaga (10.1016/j.rse.2024.114260_bb0480) 2021 Radeloff (10.1016/j.rse.2024.114260_bb0285) 2018; 115 Tolessa (10.1016/j.rse.2024.114260_bb0420) 2017; 23 Schug (10.1016/j.rse.2024.114260_bb0325) 2023 Rufin (10.1016/j.rse.2024.114260_bb0305) 2022; 112 Guzha (10.1016/j.rse.2024.114260_bb0135) 2018; 15 Houghton (10.1016/j.rse.2024.114260_bb0160) 2017; 31 Meyer (10.1016/j.rse.2024.114260_bb0220) 2021; 12 Wetherley (10.1016/j.rse.2024.114260_bb0465) 2017; 195 Marconcini (10.1016/j.rse.2024.114260_bb0210) Frantz (10.1016/j.rse.2024.114260_bb0095) 2019; 11 Smith (10.1016/j.rse.2024.114260_bb0365) 1990; 31 Cooper (10.1016/j.rse.2024.114260_bb0050) 2020; 246 Potapov (10.1016/j.rse.2024.114260_bb0275) 2015; 159 Masiliūnas (10.1016/j.rse.2024.114260_bb0215) 2021; 259 Abrams (10.1016/j.rse.2024.114260_bb0005) 2020; 12 Small (10.1016/j.rse.2024.114260_bb0340) 2004; 93 Gullì (10.1016/j.rse.2024.114260_bb0130) 2017 Verrelst (10.1016/j.rse.2024.114260_bb0440) 2012; 118 Small (10.1016/j.rse.2024.114260_bb0355) 2019; 11 Friedl (10.1016/j.rse.2024.114260_bb0115) 2022; 3 Schug (10.1016/j.rse.2024.114260_bb0320) 2020; 246 Okujeni (10.1016/j.rse.2024.114260_bb0245) 2015; 158 Hively (10.1016/j.rse.2024.114260_bb0155) 2021; 13 Schug (10.1016/j.rse.2024.114260_bb0315) 2018; 210 Tran (10.1016/j.rse.2024.114260_bb0425) 2017; 124 Foody (10.1016/j.rse.2024.114260_bb0090) 2003; 85 Thompson (10.1016/j.rse.2024.114260_bb0415) 2022 Degerickx (10.1016/j.rse.2024.114260_bb0055) 2017; 9 Buchhorn (10.1016/j.rse.2024.114260_bb0040) 2020 Dinerstein (10.1016/j.rse.2024.114260_bb0065) 2017; 67 Pesaresi (10.1016/j.rse.2024.114260_bb0265) 2013; 6 Phinn (10.1016/j.rse.2024.114260_bb0270) 2002; 23 Small (10.1016/j.rse.2024.114260_bb0345) 2006; 100 Neyns (10.1016/j.rse.2024.114260_bb0230) 2022; 14 Rioux (10.1016/j.rse.2024.114260_bb0295) 2019; 7 Deng (10.1016/j.rse.2024.114260_bb0060) 2013; 86 10.1016/j.rse.2024.114260_bb0185 Pham (10.1016/j.rse.2024.114260_bib487) 2024; 308 Wulder (10.1016/j.rse.2024.114260_bib491) 2019; 225 Frantz (10.1016/j.rse.2024.114260_bb0105) 2023; 298 Woodcock (10.1016/j.rse.2024.114260_bb0470) 2001; 78 Walton (10.1016/j.rse.2024.114260_bb0450) 2008; 74 Frantz (10.1016/j.rse.2024.114260_bb0100) 2016; 54 Small (10.1016/j.rse.2024.114260_bb0360) 2022; 14 Potapov (10.1016/j.rse.2024.114260_bb0280) 2020; 12 Suess (10.1016/j.rse.2024.114260_bb0410) 2018; 219 Asrar (10.1016/j.rse.2024.114260_bb0020) 1984; 76 Lewińska (10.1016/j.rse.2024.114260_bb0200) 2021; 4 Small (10.1016/j.rse.2024.114260_bb0350) 2013; 136 Hansen (10.1016/j.rse.2024.114260_bb0140) 2013; 342 Borges (10.1016/j.rse.2024.114260_bb0030) 2022; 8 Guanter (10.1016/j.rse.2024.114260_bb0125) 2018 Roberts (10.1016/j.rse.2024.114260_bb0300) 1998; 65 Shao (10.1016/j.rse.2024.114260_bb0335) 2020; 589 Olson (10.1016/j.rse.2024.114260_bb0255) 2001; 51 Higginbottom (10.1016/j.rse.2024.114260_bb0150) 2018; 139 Okujeni (10.1016/j.rse.2024.114260_bb0240) 2013; 137 Santoro (10.1016/j.rse.2024.114260_bb0310) 2017 Stanimirova (10.1016/j.rse.2024.114260_bb0405) 2022; 282 Kowalski (10.1016/j.rse.2024.114260_bb0190) 2022; 268 Sousa (10.1016/j.rse.2024.114260_bb0390) 2017; 192 UNEP (10.1016/j.rse.2024.114260_bb0435) 2015 Ridd (10.1016/j.rse.2024.114260_bb0290) 1995; 16 Jun (10.1016/j.rse.2024.114260_bb0175) 2014; 514 GLANCE project (10.1016/j.rse.2024.114260_bb0120) Brown de Colstoun (10.1016/j.rse.2024.114260_bb0035) 2017 EROS (Ed.) (10.1016/j.rse.2024.114260_bb0080) 2017 Sousa (10.1016/j.rse.2024.114260_bb0385) 2020; 247 Song (10.1016/j.rse.2024.114260_bb0380) 2017; 576 EEA (Ed.) (10.1016/j.rse.2024.114260_bb0070) Kauth (10.1016/j.rse.2024.114260_bb0180) 1976 Spoto (10.1016/j.rse.2024.114260_bb0400) 2012 Asner (10.1016/j.rse.2024.114260_bb0015) 2005; 9 Olthof (10.1016/j.rse.2024.114260_bb0260) 2005; 95 Smith (10.1016/j.rse.2024.114260_bb0370) 1994 Okujeni (10.1016/j.rse.2024.114260_bb0250) 2018; 216 Liao (10.1016/j.rse.2024.114260_bb0205) 2018; 45 Viana-Soto (10.1016/j.rse.2024.114260_bb0445) 2022; 281 Bailey (10.1016/j.rse.2024.114260_bb0025) 2016; 11 Nill (10.1016/j.rse.2024.114260_bb0235) 2022; 281 Wang (10.1016/j.rse.2024.114260_bb0455) 2016; 4 Zhu (10.1016/j.rse.2024.114260_bb0485) 2015; 159 Esau (10.1016/j.rse.2024.114260_bb0085) 2016; 16 Senf (10.1016/j.rse.2024.114260_bb0330) 2020; 240 Mukherjee (10.1016/j.rse.2024.114260_bb0225) 2018; 7 Herold (10.1016/j.rse.2024.114260_bb0145) 2004; 91 Jilge (10.1016/j.rse.2024.114260_bb0170) 2017; 17 Elmore (10.1016/j.rse.2024.114260_bb0075) 2000; 73 Iordache (10.1016/j.rse.2024.114260_bb0165) 2014; 7 Specht (10.1016/j.rse.2024.114260_bb0395) 1991; 2 |
| References_xml | – volume: 23 start-page: 4131 year: 2002 end-page: 4153 ident: bb0270 article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques publication-title: Int. J. Remote Sens. – year: 2020 ident: bb0040 article-title: Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe – volume: 86 start-page: 100 year: 2013 end-page: 110 ident: bb0060 article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 159 start-page: 28 year: 2015 end-page: 43 ident: bb0275 article-title: Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive publication-title: Remote Sens. Environ. – volume: 100 start-page: 441 year: 2006 end-page: 456 ident: bb0345 article-title: Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis publication-title: Remote Sens. Environ. – volume: 73 start-page: 87 year: 2000 end-page: 102 ident: bb0075 article-title: Quantifying vegetation change in semiarid environments publication-title: Remote Sens. Environ. – volume: 576 start-page: 705 year: 2017 end-page: 719 ident: bb0380 article-title: Land-use/land-cover change and ecosystem service provision in China publication-title: Sci. Total Environ. – volume: 195 start-page: 170 year: 2017 end-page: 183 ident: bb0465 article-title: Mapping spectrally similar urban materials at sub-pixel scales publication-title: Remote Sens. Environ. – volume: 281 year: 2022 ident: bb0445 article-title: Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing publication-title: Remote Sens. Environ. – volume: 14 start-page: 5748 year: 2022 ident: bb0360 article-title: The sentinel 2 MSI spectral mixing space publication-title: Remote Sens. – volume: 54 start-page: 3928 year: 2016 end-page: 3943 ident: bb0100 article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications publication-title: IEEE Trans. Geosci. Remote Sens. – year: 1994 ident: bb0370 article-title: Spectral mixture analysis - new strategies for the analysis of multispectral data publication-title: Imaging spectrometry - a tool for environmental observations – year: 2017 ident: bb0130 article-title: Deep Learning with Keras. Implement Neural Networks with Keras on Theano and TensorFlow – volume: 7 year: 2019 ident: bb0295 article-title: How land cover spatial resolution affects mapping of urban ecosystem service flows publication-title: Front. Environ. Sci. – volume: 589 year: 2020 ident: bb0335 article-title: Quantifying the effects of urbanization on floods in a changing environment to promote water security — a case study of two adjacent basins in Texas publication-title: J. Hydrol. – volume: 12 start-page: 1620 year: 2021 end-page: 1633 ident: bb0220 article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models publication-title: Methods Ecol. Evol. – volume: 16 start-page: 9563 year: 2016 end-page: 9577 ident: bb0085 article-title: Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia publication-title: Atmos. Chem. Phys. – year: 2019 ident: bb0120 article-title: Global LANdcover mapping and Estimation (GLANCE): GLANCE project – volume: 246 year: 2020 ident: bb0320 article-title: Mapping urban-rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data publication-title: Remote Sens. Environ. – volume: 11 start-page: 2063 year: 2019 ident: bb0355 article-title: Spatiotemporal characterization of mangrove phenology and disturbance response: the Bangladesh Sundarban publication-title: Remote Sens. – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: bb0395 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – volume: 12 start-page: 426 year: 2020 ident: bb0280 article-title: Landsat analysis ready data for global land cover and land cover change mapping publication-title: Remote Sens. – volume: 282 year: 2022 ident: bb0405 article-title: Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay publication-title: Remote Sens. Environ. – volume: 4 year: 2021 ident: bb0200 article-title: Changes in the grasslands of the Caucasus based on cumulative endmember fractions from the full 1987–2019 Landsat record publication-title: Sci. Remote Sens. – volume: 210 start-page: 217 year: 2018 end-page: 228 ident: bb0315 article-title: Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series publication-title: Remote Sens. Environ. – volume: 20 year: 2020 ident: bb0195 article-title: Mediterranean wetland conservation in the context of climate and land cover change publication-title: Reg. Environ. Chang. – volume: 115 start-page: 3314 year: 2018 end-page: 3319 ident: bb0285 article-title: Rapid growth of the US wildland-urban interface raises wildfire risk publication-title: Proc. Natl. Acad. Sci. USA – start-page: 1707 year: 2012 end-page: 1710 ident: bb0400 article-title: Overview of Sentinel-2 publication-title: 2012 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2012–2012 IEEE International Geoscience and Remote Sensing Symposium – volume: 136 start-page: 442 year: 2013 end-page: 454 ident: bb0350 article-title: Multi-scale standardized spectral mixture models publication-title: Remote Sens. Environ. – volume: 219 start-page: 353 year: 2018 end-page: 364 ident: bb0410 article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling publication-title: Remote Sens. Environ. – year: 2015 ident: bb0435 article-title: Policy Coherence of the Sustainable Development Goals: A Natural Resource Perspective – volume: 11 start-page: 1124 year: 2019 ident: bb0095 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. – volume: 158 start-page: 69 year: 2015 end-page: 80 ident: bb0245 article-title: Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning publication-title: Remote Sens. Environ. – volume: 247 year: 2020 ident: bb0385 article-title: Scalable mapping and monitoring of Mediterranean-climate oak landscapes with temporal mixture models publication-title: Remote Sens. Environ. – volume: 17 year: 2017 ident: bb0170 article-title: Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis publication-title: Sensors – volume: 7 start-page: 91 year: 2018 ident: bb0225 article-title: An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata publication-title: Land – volume: 23 start-page: 47 year: 2017 end-page: 54 ident: bb0420 article-title: The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia publication-title: Ecosyst. Serv. – volume: 514 start-page: 434 year: 2014 ident: bb0175 article-title: China: open access to earth land-cover map publication-title: Nature – volume: 45 year: 2018 ident: bb0205 article-title: Stronger contributions of urbanization to heat wave trends in wet climates publication-title: Geophys. Res. Lett. – volume: 7 start-page: 2016 year: 2014 end-page: 2034 ident: bb0165 article-title: A dynamic Unmixing framework for plant production system monitoring publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 216 start-page: 482 year: 2018 end-page: 496 ident: bb0250 article-title: Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities publication-title: Remote Sens. Environ. – volume: 95 start-page: 290 year: 2005 end-page: 302 ident: bb0260 article-title: Signature extension through space for northern landcover classification: a comparison of radiometric correction methods publication-title: Remote Sens. Environ. – volume: 11 start-page: 154 year: 2016 end-page: 176 ident: bb0025 article-title: Land-cover change within and around protected areas in a biodiversity hotspot publication-title: J. Land Use Sci. – volume: 259 year: 2021 ident: bb0215 article-title: Global land characterisation using land cover fractions at 100 m resolution publication-title: Remote Sens. Environ. – volume: 93 start-page: 1 year: 2004 end-page: 17 ident: bb0340 article-title: The Landsat ETM+ spectral mixing space publication-title: Remote Sens. Environ. – volume: 268 year: 2022 ident: bb0190 article-title: Quantifying drought effects in central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series publication-title: Remote Sens. Environ. – volume: 14 start-page: 1031 year: 2022 ident: bb0230 article-title: Mapping of urban vegetation with high-resolution remote sensing: a review publication-title: Remote Sens. – volume: 298 year: 2023 ident: bb0105 article-title: Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – a quantitative evaluation publication-title: Remote Sens. Environ. – year: 2017 ident: bb0080 article-title: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global – volume: 13 start-page: 3718 year: 2021 ident: bb0155 article-title: Evaluation of SWIR crop residue bands for the Landsat next Mission publication-title: Remote Sens. – volume: 139 start-page: 88 year: 2018 end-page: 102 ident: bb0150 article-title: Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 49 year: 2018 end-page: 67 ident: bb0135 article-title: Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa publication-title: J. Hydrol.: Regional Stud. – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: bb0485 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. – volume: 91 start-page: 304 year: 2004 end-page: 319 ident: bb0145 article-title: Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm publication-title: Remote Sens. Environ. – year: 2019 ident: bb0070 article-title: CORINE Land Cover 2018 – volume: 91 start-page: 8098 year: 1986 ident: bb0010 article-title: Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site publication-title: J. Geophys. Res. Atmos. – year: 2021 ident: bb0480 article-title: ESA WorldCover 10 m 2020 v100 – year: 2017 ident: bb0310 article-title: Land Cover CCI. Product User Guide Version 2.0. Edited by European Space Agency – volume: 78 start-page: 194 year: 2001 end-page: 203 ident: bb0470 article-title: Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors publication-title: Remote Sens. Environ. – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: bib491 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – volume: 12 start-page: 1156 year: 2020 ident: bb0005 article-title: ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD) publication-title: Remote Sens. – reference: Kingma, D. P.; Ba, J.: Adam: A Method for Stochastic Optimization. – volume: 9 start-page: 565 year: 2017 ident: bb0055 article-title: A novel spectral library pruning technique for spectral Unmixing of urban land cover publication-title: Remote Sens. – volume: 6 start-page: 2102 year: 2013 end-page: 2131 ident: bb0265 article-title: A global human settlement layer from optical HR/VHR RS data. Concept and first results publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. – start-page: 168 year: 2018 end-page: 170 ident: bb0125 article-title: The Enmap German imaging spectroscopy mission: status and summary of preparatory activities publication-title: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, 22/07/2018–27/07/2018 – volume: 308 year: 2024 ident: bib487 article-title: Learning the variations in annual spectral-temporal metrics to enhance the transferability of regression models for land cover fraction monitoring publication-title: Remote Sens. Environ. – volume: 65 start-page: 267 year: 1998 end-page: 279 ident: bb0300 article-title: Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models publication-title: Remote Sens. Environ. – volume: 112 year: 2022 ident: bb0305 article-title: Large-area mapping of active cropland and short-term fallows in smallholder landscapes using PlanetScope data publication-title: Int. J. Appl. Earth Observ. Geoinform.: ITC J. – volume: 240 year: 2020 ident: bb0330 article-title: A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data publication-title: Remote Sens. Environ. – volume: 76 start-page: 300 year: 1984 ident: bb0020 article-title: Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat publication-title: Agron. J. – volume: 67 start-page: 534 year: 2017 end-page: 545 ident: bb0065 article-title: An ecoregion-based approach to protecting half the terrestrial realm publication-title: BioScience – year: 2019 ident: bb0210 article-title: Outlining where humans live -- The World Settlement Footprint 2015 – volume: 137 start-page: 184 year: 2013 end-page: 197 ident: bb0240 article-title: Support vector regression and synthetically mixed training data for quantifying urban land cover publication-title: Remote Sens. Environ. – volume: 4 start-page: 212 year: 2016 end-page: 219 ident: bb0455 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. – start-page: 4B31 year: 1976 end-page: 4B51 ident: bb0180 article-title: The Tasseled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat publication-title: Proceedings of the Symposium on Machine Processing of Remotely Sensed Data – volume: 124 start-page: 119 year: 2017 end-page: 132 ident: bb0425 article-title: Characterizing the relationship between land use land cover change and land surface temperature publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 31 start-page: 1 year: 1990 end-page: 26 ident: bb0365 article-title: Vegetation in deserts: I. A regional measure of abundance from multispectral images publication-title: Remote Sens. Environ. – start-page: 5007 year: 2022 end-page: 5010 ident: bb0415 article-title: Ongoing Progress Toward NASA’s Surface Biology and Geology Mission publication-title: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia, 16-Jul-22 - 21-Jul-22 – volume: 31 start-page: 456 year: 2017 end-page: 472 ident: bb0160 article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015 publication-title: Glob. Biogeochem. Cycles – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bb0430 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 3 year: 2022 ident: bb0115 article-title: Medium spatial resolution mapping of global land cover and land cover change across multiple decades from Landsat publication-title: Front. Remote Sens. – volume: 202 year: 2020 ident: bb0460 article-title: Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series publication-title: Landsc. Urban Plan. – volume: 9 start-page: 1 year: 2005 end-page: 31 ident: bb0015 article-title: Ecosystem structure throughout the Brazilian Amazon from Landsat observations and automated spectral Unmixing publication-title: Earth Interact. – volume: 51 start-page: 933 year: 2001 ident: bb0255 article-title: Terrestrial ecoregions of the world. A new map of life on earth publication-title: BioScience – reference: . DOI: – volume: 8 start-page: 808 year: 2022 end-page: 826 ident: bb0030 article-title: Landsat time series reveal forest loss and woody encroachment in the Ngorongoro conservation area, Tanzania publication-title: Remote Sens. Ecol. Conserv. – volume: 246 year: 2020 ident: bb0050 article-title: Disentangling fractional vegetation cover: regression-based unmixing of simulated spaceborne imaging spectroscopy data publication-title: Remote Sens. Environ. – volume: 74 start-page: 1213 year: 2008 end-page: 1222 ident: bb0450 article-title: Subpixel urban land cover estimation. Comparing cubist, random forests, and support vector regression publication-title: Photogramm. Eng. Remote. Sens. – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: bb0140 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science – year: 2023 ident: bb0325 article-title: The global wildland–urban interface publication-title: Nature – volume: 85 start-page: 463 year: 2003 end-page: 474 ident: bb0090 article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions publication-title: Remote Sens. Environ. – year: 2017 ident: bb0035 article-title: Global Man-Made Impervious Surface (GMIS) Dataset from Landsat. Edited by NASA Socioeconomic Data and Applications Center (SEDAC) – volume: 16 start-page: 2165 year: 1995 end-page: 2185 ident: bb0290 article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing. Comparative anatomy for cities publication-title: Int. J. Remote Sens. – reference: . – volume: 192 start-page: 139 year: 2017 end-page: 149 ident: bb0390 article-title: Global cross-calibration of Landsat spectral mixture models publication-title: Remote Sens. Environ. – volume: 281 year: 2022 ident: bb0235 article-title: Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic publication-title: Remote Sens. Environ. – volume: 118 start-page: 127 year: 2012 end-page: 139 ident: bb0440 article-title: Machine learning regression algorithms for biophysical parameter retrieval. Opportunities for Sentinel-2 and -3 publication-title: Remote Sens. Environ. – volume: 114 start-page: 168 year: 2010 end-page: 182 ident: bb0110 article-title: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. – volume: 298 year: 2023 ident: 10.1016/j.rse.2024.114260_bb0105 article-title: Understanding the robustness of spectral-temporal metrics across the global Landsat archive from 1984 to 2019 – a quantitative evaluation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113823 – ident: 10.1016/j.rse.2024.114260_bb0210 – ident: 10.1016/j.rse.2024.114260_bb0070 – volume: 11 start-page: 154 issue: 2 year: 2016 ident: 10.1016/j.rse.2024.114260_bb0025 article-title: Land-cover change within and around protected areas in a biodiversity hotspot publication-title: J. Land Use Sci. doi: 10.1080/1747423X.2015.1086905 – volume: 45 issue: 20 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0205 article-title: Stronger contributions of urbanization to heat wave trends in wet climates publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL079679 – volume: 65 start-page: 267 issue: 3 year: 1998 ident: 10.1016/j.rse.2024.114260_bb0300 article-title: Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00037-6 – volume: 202 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0460 article-title: Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2020.103857 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.rse.2024.114260_bib491 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 13 start-page: 3718 issue: 18 year: 2021 ident: 10.1016/j.rse.2024.114260_bb0155 article-title: Evaluation of SWIR crop residue bands for the Landsat next Mission publication-title: Remote Sens. doi: 10.3390/rs13183718 – volume: 74 start-page: 1213 issue: 10 year: 2008 ident: 10.1016/j.rse.2024.114260_bb0450 article-title: Subpixel urban land cover estimation. Comparing cubist, random forests, and support vector regression publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.74.10.1213 – volume: 195 start-page: 170 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0465 article-title: Mapping spectrally similar urban materials at sub-pixel scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.013 – volume: 3 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0115 article-title: Medium spatial resolution mapping of global land cover and land cover change across multiple decades from Landsat publication-title: Front. Remote Sens. doi: 10.3389/frsen.2022.894571 – volume: 4 start-page: 212 issue: 3 year: 2016 ident: 10.1016/j.rse.2024.114260_bb0455 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. doi: 10.1016/j.cj.2016.01.008 – start-page: 4B31 year: 1976 ident: 10.1016/j.rse.2024.114260_bb0180 article-title: The Tasseled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat – volume: 589 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0335 article-title: Quantifying the effects of urbanization on floods in a changing environment to promote water security — a case study of two adjacent basins in Texas publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125154 – year: 2017 ident: 10.1016/j.rse.2024.114260_bb0130 – volume: 12 start-page: 1620 issue: 9 year: 2021 ident: 10.1016/j.rse.2024.114260_bb0220 article-title: Predicting into unknown space? Estimating the area of applicability of spatial prediction models publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13650 – volume: 78 start-page: 194 issue: 1–2 year: 2001 ident: 10.1016/j.rse.2024.114260_bb0470 article-title: Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00259-0 – volume: 14 start-page: 1031 issue: 4 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0230 article-title: Mapping of urban vegetation with high-resolution remote sensing: a review publication-title: Remote Sens. doi: 10.3390/rs14041031 – volume: 6 start-page: 2102 issue: 5 year: 2013 ident: 10.1016/j.rse.2024.114260_bb0265 article-title: A global human settlement layer from optical HR/VHR RS data. Concept and first results publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2271445 – volume: 192 start-page: 139 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0390 article-title: Global cross-calibration of Landsat spectral mixture models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.033 – volume: 73 start-page: 87 issue: 1 year: 2000 ident: 10.1016/j.rse.2024.114260_bb0075 article-title: Quantifying vegetation change in semiarid environments publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00100-0 – volume: 12 start-page: 426 issue: 3 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0280 article-title: Landsat analysis ready data for global land cover and land cover change mapping publication-title: Remote Sens. doi: 10.3390/rs12030426 – volume: 4 year: 2021 ident: 10.1016/j.rse.2024.114260_bb0200 article-title: Changes in the grasslands of the Caucasus based on cumulative endmember fractions from the full 1987–2019 Landsat record publication-title: Sci. Remote Sens. – volume: 2 start-page: 568 issue: 6 year: 1991 ident: 10.1016/j.rse.2024.114260_bb0395 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 91 start-page: 8098 issue: B8 year: 1986 ident: 10.1016/j.rse.2024.114260_bb0010 article-title: Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site publication-title: J. Geophys. Res. Atmos. doi: 10.1029/JB091iB08p08098 – volume: 76 start-page: 300 issue: 2 year: 1984 ident: 10.1016/j.rse.2024.114260_bb0020 article-title: Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat publication-title: Agron. J. doi: 10.2134/agronj1984.00021962007600020029x – volume: 91 start-page: 304 issue: 3–4 year: 2004 ident: 10.1016/j.rse.2024.114260_bb0145 article-title: Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.02.013 – volume: 16 start-page: 2165 issue: 12 year: 1995 ident: 10.1016/j.rse.2024.114260_bb0290 article-title: Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing. Comparative anatomy for cities publication-title: Int. J. Remote Sens. doi: 10.1080/01431169508954549 – volume: 576 start-page: 705 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0380 article-title: Land-use/land-cover change and ecosystem service provision in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.078 – volume: 137 start-page: 184 year: 2013 ident: 10.1016/j.rse.2024.114260_bb0240 article-title: Support vector regression and synthetically mixed training data for quantifying urban land cover publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.06.007 – year: 2020 ident: 10.1016/j.rse.2024.114260_bb0040 – year: 2017 ident: 10.1016/j.rse.2024.114260_bb0080 – volume: 54 start-page: 3928 issue: 7 year: 2016 ident: 10.1016/j.rse.2024.114260_bb0100 article-title: An operational radiometric Landsat preprocessing framework for large-area time series applications publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2530856 – volume: 17 issue: 8 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0170 article-title: Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis publication-title: Sensors doi: 10.3390/s17081826 – volume: 51 start-page: 933 issue: 11 year: 2001 ident: 10.1016/j.rse.2024.114260_bb0255 article-title: Terrestrial ecoregions of the world. A new map of life on earth publication-title: BioScience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 281 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0235 article-title: Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113228 – volume: 159 start-page: 28 year: 2015 ident: 10.1016/j.rse.2024.114260_bb0275 article-title: Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.027 – volume: 31 start-page: 1 issue: 1 year: 1990 ident: 10.1016/j.rse.2024.114260_bb0365 article-title: Vegetation in deserts: I. A regional measure of abundance from multispectral images publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90074-V – volume: 16 start-page: 9563 issue: 15 year: 2016 ident: 10.1016/j.rse.2024.114260_bb0085 article-title: Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-9563-2016 – volume: 12 start-page: 1156 issue: 7 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0005 article-title: ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD) publication-title: Remote Sens. doi: 10.3390/rs12071156 – ident: 10.1016/j.rse.2024.114260_bb0120 – volume: 268 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0190 article-title: Quantifying drought effects in central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112781 – volume: 15 start-page: 49 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0135 article-title: Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa publication-title: J. Hydrol.: Regional Stud. – year: 1994 ident: 10.1016/j.rse.2024.114260_bb0370 article-title: Spectral mixture analysis - new strategies for the analysis of multispectral data – volume: 7 year: 2019 ident: 10.1016/j.rse.2024.114260_bb0295 article-title: How land cover spatial resolution affects mapping of urban ecosystem service flows publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2019.00093 – volume: 9 start-page: 1 issue: 7 year: 2005 ident: 10.1016/j.rse.2024.114260_bb0015 article-title: Ecosystem structure throughout the Brazilian Amazon from Landsat observations and automated spectral Unmixing publication-title: Earth Interact. doi: 10.1175/EI134.1 – volume: 95 start-page: 290 issue: 3 year: 2005 ident: 10.1016/j.rse.2024.114260_bb0260 article-title: Signature extension through space for northern landcover classification: a comparison of radiometric correction methods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.015 – volume: 158 start-page: 69 year: 2015 ident: 10.1016/j.rse.2024.114260_bb0245 article-title: Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.009 – volume: 342 start-page: 850 issue: 6160 year: 2013 ident: 10.1016/j.rse.2024.114260_bb0140 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 85 start-page: 463 issue: 4 year: 2003 ident: 10.1016/j.rse.2024.114260_bb0090 article-title: Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00039-7 – start-page: 168 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0125 article-title: The Enmap German imaging spectroscopy mission: status and summary of preparatory activities – volume: 23 start-page: 47 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0420 article-title: The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2016.11.010 – volume: 139 start-page: 88 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0150 article-title: Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.010 – volume: 246 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0050 article-title: Disentangling fractional vegetation cover: regression-based unmixing of simulated spaceborne imaging spectroscopy data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111856 – volume: 67 start-page: 534 issue: 6 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0065 article-title: An ecoregion-based approach to protecting half the terrestrial realm publication-title: BioScience doi: 10.1093/biosci/bix014 – volume: 11 start-page: 1124 issue: 9 year: 2019 ident: 10.1016/j.rse.2024.114260_bb0095 article-title: FORCE—Landsat + Sentinel-2 analysis ready data and beyond publication-title: Remote Sens. doi: 10.3390/rs11091124 – volume: 9 start-page: 565 issue: 6 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0055 article-title: A novel spectral library pruning technique for spectral Unmixing of urban land cover publication-title: Remote Sens. doi: 10.3390/rs9060565 – year: 2015 ident: 10.1016/j.rse.2024.114260_bb0435 – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.rse.2024.114260_bb0485 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – year: 2017 ident: 10.1016/j.rse.2024.114260_bb0035 – volume: 114 start-page: 168 issue: 1 year: 2010 ident: 10.1016/j.rse.2024.114260_bb0110 article-title: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.016 – volume: 14 start-page: 5748 issue: 22 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0360 article-title: The sentinel 2 MSI spectral mixing space publication-title: Remote Sens. doi: 10.3390/rs14225748 – ident: 10.1016/j.rse.2024.114260_bb0185 – volume: 23 start-page: 4131 issue: 20 year: 2002 ident: 10.1016/j.rse.2024.114260_bb0270 article-title: Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110114998 – volume: 7 start-page: 2016 issue: 6 year: 2014 ident: 10.1016/j.rse.2024.114260_bb0165 article-title: A dynamic Unmixing framework for plant production system monitoring publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2314960 – volume: 100 start-page: 441 issue: 4 year: 2006 ident: 10.1016/j.rse.2024.114260_bb0345 article-title: Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.023 – start-page: 1707 year: 2012 ident: 10.1016/j.rse.2024.114260_bb0400 article-title: Overview of Sentinel-2 – volume: 219 start-page: 353 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0410 article-title: Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.004 – volume: 246 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0320 article-title: Mapping urban-rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111810 – volume: 20 issue: 2 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0195 article-title: Mediterranean wetland conservation in the context of climate and land cover change publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-020-01655-0 – volume: 308 year: 2024 ident: 10.1016/j.rse.2024.114260_bib487 article-title: Learning the variations in annual spectral-temporal metrics to enhance the transferability of regression models for land cover fraction monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114206 – volume: 11 start-page: 2063 issue: 17 year: 2019 ident: 10.1016/j.rse.2024.114260_bb0355 article-title: Spatiotemporal characterization of mangrove phenology and disturbance response: the Bangladesh Sundarban publication-title: Remote Sens. doi: 10.3390/rs11172063 – volume: 216 start-page: 482 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0250 article-title: Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.011 – year: 2017 ident: 10.1016/j.rse.2024.114260_bb0310 – volume: 240 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0330 article-title: A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111691 – volume: 210 start-page: 217 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0315 article-title: Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.022 – volume: 124 start-page: 119 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0425 article-title: Characterizing the relationship between land use land cover change and land surface temperature publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.001 – volume: 259 year: 2021 ident: 10.1016/j.rse.2024.114260_bb0215 article-title: Global land characterisation using land cover fractions at 100 m resolution publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112409 – volume: 118 start-page: 127 year: 2012 ident: 10.1016/j.rse.2024.114260_bb0440 article-title: Machine learning regression algorithms for biophysical parameter retrieval. Opportunities for Sentinel-2 and -3 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.002 – volume: 31 start-page: 456 issue: 3 year: 2017 ident: 10.1016/j.rse.2024.114260_bb0160 article-title: Global and regional fluxes of carbon from land use and land cover change 1850-2015 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2016GB005546 – volume: 281 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0445 article-title: Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113239 – volume: 8 start-page: 127 issue: 2 year: 1979 ident: 10.1016/j.rse.2024.114260_bb0430 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – year: 2023 ident: 10.1016/j.rse.2024.114260_bb0325 article-title: The global wildland–urban interface publication-title: Nature doi: 10.1038/s41586-023-06320-0 – volume: 93 start-page: 1 issue: 1–2 year: 2004 ident: 10.1016/j.rse.2024.114260_bb0340 article-title: The Landsat ETM+ spectral mixing space publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.06.007 – volume: 8 start-page: 808 issue: 6 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0030 article-title: Landsat time series reveal forest loss and woody encroachment in the Ngorongoro conservation area, Tanzania publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.277 – volume: 7 start-page: 91 issue: 3 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0225 article-title: An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata publication-title: Land doi: 10.3390/land7030091 – volume: 112 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0305 article-title: Large-area mapping of active cropland and short-term fallows in smallholder landscapes using PlanetScope data publication-title: Int. J. Appl. Earth Observ. Geoinform.: ITC J. doi: 10.1016/j.jag.2022.102937 – volume: 282 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0405 article-title: Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113277 – volume: 247 year: 2020 ident: 10.1016/j.rse.2024.114260_bb0385 article-title: Scalable mapping and monitoring of Mediterranean-climate oak landscapes with temporal mixture models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111937 – start-page: 5007 year: 2022 ident: 10.1016/j.rse.2024.114260_bb0415 article-title: Ongoing Progress Toward NASA’s Surface Biology and Geology Mission – volume: 115 start-page: 3314 issue: 13 year: 2018 ident: 10.1016/j.rse.2024.114260_bb0285 article-title: Rapid growth of the US wildland-urban interface raises wildfire risk publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1718850115 – volume: 136 start-page: 442 year: 2013 ident: 10.1016/j.rse.2024.114260_bb0350 article-title: Multi-scale standardized spectral mixture models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.024 – volume: 86 start-page: 100 year: 2013 ident: 10.1016/j.rse.2024.114260_bb0060 article-title: The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.010 – volume: 514 start-page: 434 issue: 7523 year: 2014 ident: 10.1016/j.rse.2024.114260_bb0175 article-title: China: open access to earth land-cover map publication-title: Nature doi: 10.1038/514434c – year: 2021 ident: 10.1016/j.rse.2024.114260_bb0480 |
| SSID | ssj0015871 |
| Score | 2.523833 |
| Snippet | Mapping land cover in highly heterogeneous landscapes is challenging, and classifications have inherent limitations where the spatial resolution of remotely... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114260 |
| SubjectTerms | ecosystems environment land cover Landsat Model transfer Neural network regression remote sensing Synthetic training data Weighted training data |
| Title | Land cover fraction mapping across global biomes with Landsat data, spatially generalized regression models and spectral-temporal metrics |
| URI | https://dx.doi.org/10.1016/j.rse.2024.114260 https://www.proquest.com/docview/3200272071 |
| Volume | 311 |
| WOSCitedRecordID | wos001252045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0015871 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdKB2IvCAoTY4CMxBMlVZo4dfxYQRn_NCEYqG-RnThbp5JWSTpt-wZ8IT4fd7GTlE6b2AMvUZXYjtX75e5s3--OkJfSZzoNxMjxE8kdhjQZhViO0ZvXsCKK07AqNsEPDsLpVHzpdH7XXJjTOc-y8OxMLP-rqOEeCBupszcQdzMo3IDfIHS4gtjh-k-C_2yYajDvfprbSuA_5bLiRcnKKNZZQCrqvaW3Ya9Cln2MGMW_vcBIazmfn2ONZdy3ml1oJLocmbjZzJTQMQmeK7YmNHFsnivko2Di_2Ld8_2qARS6X2DAvAm0XuPYtcdBx6uj2p--aNR2ujAFqz7NctkfD9qTDIPmHyvn7cJaYMvIwgwZuN1glOo3Dca6rD8Eu8fhsSaIq9HbPnNQu6zrbd9qaaN5kRNsKhNcMgpmf-JkkBeYF9Vjg7bt3wm4NwxjE65YR8KdRDBEhENEZohbZMvjgQi7ZGv8YTL92JxfBSE3tRrtvOvz9CqycGMeV3lEG75B5fAc3if37EqFjg3CHpCOznpkZ9IKDR5ay1D0yN19bZOf98id_apc9PlD8gthRSsw0hqM1IKRGjBSA0ZqwEgRjNSCkSIYX9MGinQNirSFIjVQpPiqS1CkFoqPyPd3k8M37x1b_MOJfd8tHSlEoKQa8iSVqau163EZxHKowkSFI1foYCSZrxIZCHiqhqEW4O6KVPssSLga-jukmy0y_ZhQWHO4mnHwtAX6bEqkIUtH2k1Folyl3V3i1gKIYpsZHwu0zKMrBb9LXjVdliYtzHWNWS3VyPq1xl-NAKHXdXtRIyACnY8HeTLTi1UR-RhZxT1YHTy5yTz2yHb7cT0l3TJf6Wfkdnxazor8uYXwH2r11T0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+cover+fraction+mapping+across+global+biomes+with+Landsat+data%2C+spatially+generalized+regression+models+and+spectral-temporal+metrics&rft.jtitle=Remote+sensing+of+environment&rft.au=Schug%2C+Franz&rft.au=Pfoch%2C+Kira+A.&rft.au=Pham%2C+Vu-Dong&rft.au=van+der+Linden%2C+Sebastian&rft.date=2024-09-01&rft.issn=0034-4257&rft.volume=311&rft.spage=114260&rft_id=info:doi/10.1016%2Fj.rse.2024.114260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2024_114260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |