Deep Learning Approaches to Grasp Synthesis: A Review

Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed rapid progress in robotic object grasping. In this systematic review, we surveyed the publications over the last decade, with a particular intere...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on robotics Ročník 39; číslo 5; s. 1 - 22
Hlavní autori: Newbury, Rhys, Gu, Morris, Chumbley, Lachlan, Mousavian, Arsalan, Eppner, Clemens, Leitner, Jurgen, Bohg, Jeannette, Morales, Antonio, Asfour, Tamim, Kragic, Danica, Fox, Dieter, Cosgun, Akansel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1552-3098, 1941-0468, 1941-0468
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed rapid progress in robotic object grasping. In this systematic review, we surveyed the publications over the last decade, with a particular interest in grasping an object using all six degrees of freedom of the end-effector pose. Our review found four common methodologies for robotic grasping: sampling-based approaches, direct regression, reinforcement learning, and exemplar approaches In addition, we found two "supporting methods" around grasping that use deep learning to support the grasping process, shape approximation, and affordances. We have distilled the publications found in this systematic review (85 papers) into ten key takeaways we consider crucial for future robotic grasping and manipulation research.
AbstractList Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed rapid progress in robotic object grasping. In this systematic review, we surveyed the publications over the last decade, with a particular interest in grasping an object using all six degrees of freedom of the end-effector pose. Our review found four common methodologies for robotic grasping: sampling-based approaches, direct regression, reinforcement learning, and exemplar approaches In addition, we found two 'supporting methods' around grasping that use deep learning to support the grasping process, shape approximation, and affordances. We have distilled the publications found in this systematic review (85 papers) into ten key takeaways we consider crucial for future robotic grasping and manipulation research.
Author Morales, Antonio
Newbury, Rhys
Leitner, Jurgen
Fox, Dieter
Chumbley, Lachlan
Eppner, Clemens
Mousavian, Arsalan
Asfour, Tamim
Gu, Morris
Cosgun, Akansel
Bohg, Jeannette
Kragic, Danica
Author_xml – sequence: 1
  givenname: Rhys
  orcidid: 0000-0002-5791-6461
  surname: Newbury
  fullname: Newbury, Rhys
  organization: Monash University, Clayton, VIC, Australia
– sequence: 2
  givenname: Morris
  surname: Gu
  fullname: Gu, Morris
  organization: Monash University, Clayton, VIC, Australia
– sequence: 3
  givenname: Lachlan
  surname: Chumbley
  fullname: Chumbley, Lachlan
  organization: Monash University, Clayton, VIC, Australia
– sequence: 4
  givenname: Arsalan
  orcidid: 0000-0001-9356-9455
  surname: Mousavian
  fullname: Mousavian, Arsalan
  organization: NVIDIA Corporation, Seattle, WA, USA
– sequence: 5
  givenname: Clemens
  orcidid: 0000-0002-5398-4037
  surname: Eppner
  fullname: Eppner, Clemens
  organization: NVIDIA Corporation, Seattle, WA, USA
– sequence: 6
  givenname: Jurgen
  orcidid: 0000-0003-1319-5073
  surname: Leitner
  fullname: Leitner, Jurgen
  organization: Monash University, Clayton, VIC, Australia
– sequence: 7
  givenname: Jeannette
  orcidid: 0000-0002-4921-7193
  surname: Bohg
  fullname: Bohg, Jeannette
  organization: Stanford University, Stanford, CA, USA
– sequence: 8
  givenname: Antonio
  orcidid: 0000-0002-8478-0854
  surname: Morales
  fullname: Morales, Antonio
  organization: Jaume I University, Castellón de la Plana, Spain
– sequence: 9
  givenname: Tamim
  orcidid: 0000-0003-4879-7680
  surname: Asfour
  fullname: Asfour, Tamim
  organization: Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 10
  givenname: Danica
  orcidid: 0000-0003-2965-2953
  surname: Kragic
  fullname: Kragic, Danica
  organization: KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 11
  givenname: Dieter
  surname: Fox
  fullname: Fox, Dieter
  organization: NVIDIA Corporation, Seattle, WA, USA
– sequence: 12
  givenname: Akansel
  orcidid: 0000-0003-4203-6477
  surname: Cosgun
  fullname: Cosgun, Akansel
  organization: Deakin University, Burwood, VIC, Australia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-349565$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9UEtPwkAQ3hhMBPTuwUMTz8XZRx_rrQFFExISRK-bbbuFRezW3SLh37ukxBgPnmYy-R7zfQPUq02tELrGMMIY-N1yMR8RIHRESQoRT85QH3OGQ2Bx2vN7FJGQAk8v0MC5DQBhHGgfRROlmmCmpK11vQqyprFGFmvlgtYEUytdE7wc6tYftLsPsmChvrTaX6LzSm6dujrNIXp9fFiOn8LZfPo8zmZhQSm0oUwwJnFMWc5pWaU0yhkrmawiHOO0oBiXCc8hLYAyWsmkAih8hMKfWJkQmdAhCjtdt1fNLheN1R_SHoSRWkz0WyaMXYn3di0o41Ecefxth_cpPnfKtWJjdrb2LwqSJoTF3hk8CjpUYY1zVlU_uhjEsUzhyxTHMsWpTE-J_1AK3cpWm7q1Um__I950RK2U-uWDGU8Jpd93xoDT
CODEN ITREAE
CitedBy_id crossref_primary_10_1109_LRA_2025_3562005
crossref_primary_10_1109_TMECH_2024_3451228
crossref_primary_10_1109_TAI_2023_3341833
crossref_primary_10_3389_fnbot_2023_1293878
crossref_primary_10_1016_j_heliyon_2024_e28716
crossref_primary_10_1109_LRA_2024_3498776
crossref_primary_10_1109_TCYB_2024_3518975
crossref_primary_10_1109_LRA_2024_3444714
crossref_primary_10_1109_TASE_2025_3555206
crossref_primary_10_1109_TETCI_2024_3451709
crossref_primary_10_1109_TASE_2025_3585040
crossref_primary_10_3390_technologies13080357
crossref_primary_10_1088_1361_6501_ad1cc5
crossref_primary_10_1016_j_inffus_2023_102221
crossref_primary_10_1109_TASE_2025_3566461
crossref_primary_10_3390_s24010195
crossref_primary_10_1109_TRO_2023_3281153
crossref_primary_10_1007_s10462_025_11262_2
crossref_primary_10_1109_TEVC_2023_3338740
crossref_primary_10_1109_TRO_2024_3422054
crossref_primary_10_1002_widm_1554
crossref_primary_10_1109_TRO_2025_3567544
crossref_primary_10_1109_LRA_2024_3360810
crossref_primary_10_1109_LRA_2025_3601045
crossref_primary_10_3390_robotics14070096
crossref_primary_10_1186_s10033_025_01346_z
crossref_primary_10_1007_s10489_025_06292_w
crossref_primary_10_1109_TAI_2024_3420848
crossref_primary_10_1109_LRA_2024_3359553
crossref_primary_10_1109_LRA_2024_3388850
crossref_primary_10_1109_TIM_2025_3544720
crossref_primary_10_3390_electronics13173365
crossref_primary_10_1007_s10846_024_02092_5
crossref_primary_10_1016_j_future_2025_107723
crossref_primary_10_1109_LRA_2024_3364451
crossref_primary_10_3390_machines13030214
crossref_primary_10_1109_LRA_2025_3557753
crossref_primary_10_3390_biomimetics10030186
crossref_primary_10_1007_s11370_025_00630_0
crossref_primary_10_1016_j_aei_2024_102778
crossref_primary_10_1007_s00521_023_08957_4
crossref_primary_10_1007_s10845_025_02673_7
crossref_primary_10_1109_TEM_2023_3327069
crossref_primary_10_1002_aisy_202400576
crossref_primary_10_3390_mi16080902
crossref_primary_10_1007_s11633_025_1542_8
crossref_primary_10_1371_journal_pone_0311199
crossref_primary_10_1016_j_robot_2025_104921
crossref_primary_10_1108_IR_04_2024_0177
crossref_primary_10_1016_j_rcim_2025_103021
crossref_primary_10_1016_j_rcim_2024_102792
crossref_primary_10_1109_JSEN_2024_3487551
crossref_primary_10_1109_TRO_2024_3508194
crossref_primary_10_1109_TRO_2025_3588448
crossref_primary_10_1109_LRA_2024_3436336
crossref_primary_10_1007_s10514_025_10201_y
crossref_primary_10_1109_TRO_2025_3588720
crossref_primary_10_3390_machines13060451
crossref_primary_10_3390_s24092924
crossref_primary_10_1109_LRA_2024_3497714
crossref_primary_10_1109_TASE_2025_3530795
crossref_primary_10_1109_LRA_2023_3297061
crossref_primary_10_1109_TASE_2024_3512005
crossref_primary_10_1145_3717059
crossref_primary_10_1109_TMECH_2025_3538052
Cites_doi 10.1109/IROS.2017.8206484
10.1109/ICRA.2014.6907062
10.1109/RO-MAN47096.2020.9223541
10.1109/ICRA.2012.6225116
10.1023/A:1022676722315
10.1109/LRA.2020.2976295
10.1109/LRA.2020.2992195
10.1109/ICRA48506.2021.9561802
10.1109/LRA.2021.3060669
10.1109/CVPR.2016.90
10.1109/ICRA48506.2021.9561428
10.1109/5.726791
10.1109/JSEN.2018.2868340
10.1109/ICRA48506.2021.9561954
10.1109/LRA.2019.2933815
10.1109/ICRA48506.2021.9561877
10.1017/S0263574700015332
10.1007/978-3-030-95459-8_9
10.1109/IROS.2016.7759429
10.1109/ACCESS.2020.3027923
10.1109/IROS.2018.8593933
10.15607/RSS.2020.XVI.066
10.1109/ICRA.2015.7139361
10.1109/ICRA48506.2021.9561868
10.1109/ICRA.2017.7989545
10.1109/ICAR.2015.7251504
10.1109/IROS51168.2021.9636012
10.1109/IROS.2015.7354004
10.1177/17298806221095974
10.1109/ICRA48506.2021.9561473
10.15607/RSS.2018.XIV.021
10.1109/ICRA40945.2020.9196916
10.1109/CW.2005.39
10.1109/LRA.2020.2975706
10.1109/ICRA48506.2021.9562046
10.1109/MRA.2020.2976322
10.1109/ROBOT.2003.1241860
10.1126/scirobotics.aau4984
10.1109/IROS.2017.8206060
10.1109/ICRA48506.2021.9560844
10.1109/IROS51168.2021.9636876
10.1016/j.robot.2022.104313
10.1109/ICRA40945.2020.9196740
10.1109/IROS.2017.8202237
10.1177/0278364914549607
10.1109/ICRA40945.2020.9196677
10.1109/TRO.2020.3033696
10.15607/RSS.2020.XVI.033
10.1038/nature14236
10.1109/IROS.2013.6696808
10.1109/IROS40897.2019.8967816
10.1007/s00138-020-01127-9
10.1109/ICRA48506.2021.9561228
10.1109/CCDC52312.2021.9601770
10.1109/ICRA40945.2020.9197413
10.1109/RoboSoft51838.2021.9479225
10.3389/frobt.2020.00120
10.1109/ICRA.2015.7139793
10.1109/ICRA.2018.8460609
10.1109/LRA.2020.3004787
10.1109/ICRA.2019.8793733
10.1109/ICRA.2018.8461039
10.1109/HORA52670.2021.9461271
10.1109/CRV55824.2022.00021
10.1109/ICRA.2014.6906903
10.1109/LRA.2020.2969946
10.1109/ICRA.2019.8794435
10.1109/IROS40897.2019.8968115
10.1109/LRA.2017.2651945
10.1109/TASE.2021.3128639
10.1109/IROS.2014.6942539
10.1109/LRA.2018.2799743
10.1109/ICRA.2018.8460902
10.1109/IROS.2006.282367
10.1109/LRA.2018.2810544
10.1109/SMI.2004.1314504
10.1109/ROMAN.2014.6926343
10.1109/ACCESS.2020.3028740
10.1177/0278364919868017
10.1007/s43154-020-00021-6
10.1109/LRA.2021.3096239
10.1109/ICRA40945.2020.9197185
10.1109/CVPR.2017.243
10.1109/ICRA40945.2020.9196678
10.1016/S0003-6870(84)90121-2
10.1007/s10514-020-09907-y
10.1177/0278364919865338
10.1109/ICRA.2016.7487342
10.1109/ROBOT.2000.844081
10.1109/ROBOT.1994.351378
10.1177/0278364907087172
10.1177/0278364914559753
10.1007/s10514-013-9365-9
10.1109/ICCV48922.2021.01566
10.1109/ICRA.2018.8460887
10.1109/ROBOT.1999.770385
10.1109/AIM43001.2020.9158850
10.1177/0278364919887447
10.1109/ICRA48506.2021.9560901
10.1109/ICRA40945.2020.9197134
10.1109/IROS.2016.7759114
10.1109/MRA.2021.3064754
10.1016/j.smhl.2018.03.002
10.1109/ICRA.2018.8460875
10.1109/ICRA48506.2021.9561828
10.1080/01691864.2021.1897674
10.1007/978-3-319-24574-4_28
10.1109/ICRA.2018.8463204
10.1016/j.compag.2020.105694
10.1109/LRA.2018.2852779
10.1109/TRO.2013.2289018
10.1016/j.robot.2019.103274
10.1109/TPAMI.2016.2577031
10.1109/LRA.2019.2895878
10.1109/ICRA46639.2022.9811568
10.1109/ACIT49673.2020.9208918
10.1109/IROS.2015.7354264
10.1109/CRC52766.2021.9620132
10.15607/RSS.2012.VIII.023
10.1177/0278364915592961
10.1561/2200000056
10.1109/CVPR.2016.91
10.1109/COASE.2018.8560417
10.1109/LRA.2021.3063074
10.1109/CVPR.2017.16
10.1109/CVPR42600.2020.01146
10.1109/ICRA40945.2020.9197320
10.1109/Humanoids43949.2019.9035002
10.1109/ROBOT.1987.1088014
10.1007/978-3-540-77457-0_4
10.1109/ROBOT.1996.506534
10.1109/ICRA40945.2020.9197318
10.1007/978-3-319-46484-8_10
10.1109/TRO.2011.2132870
10.1109/ICRA48506.2021.9561920
10.1177/0278364917735594
10.1177/0278364909105606
10.1109/IROS40897.2019.8968263
10.1177/0278364917710318
10.1109/ICCV.2019.00299
10.1109/IROS.2007.4399052
10.1007/978-3-319-32552-1_38
10.1109/MRA.2004.1371616
10.1109/IROS.2015.7353481
10.1088/1748-3190/abe345
10.1109/70.246063
10.1142/S0219843622500116
10.1016/j.compag.2022.106716
10.1109/CVPR.2019.00891
10.1109/IROS47612.2022.9981955
10.1109/LRA.2018.2852777
10.1109/ROBOT.1992.219918
10.1109/COASE.2019.8843059
10.1007/978-3-030-58548-8_34
10.3389/fnbot.2021.658280
10.1109/ISIE.2006.296116
10.1109/ICRA.2012.6225101
10.1109/CVPR.2019.01291
10.15607/RSS.2021.XVII.024
10.15607/RSS.2017.XIII.058
10.1177/0278364912445831
10.1109/ICRA48506.2021.9561409
10.1109/IROS45743.2020.9340783
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
DOI 10.1109/TRO.2023.3280597
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 22
ExternalDocumentID oai_DiVA_org_kth_349565
10_1109_TRO_2023_3280597
10149823
Genre orig-research
GroupedDBID .DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
VJK
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c330t-a71126634b93df835b44d4af51618c311d79b08c0343fa7f00c202cb084d72a73
IEDL.DBID RIE
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001019463600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
1941-0468
IngestDate Tue Nov 04 16:38:58 EST 2025
Sun Nov 09 08:18:12 EST 2025
Sat Nov 29 01:47:31 EST 2025
Tue Nov 18 21:39:57 EST 2025
Wed Aug 27 02:14:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-a71126634b93df835b44d4af51618c311d79b08c0343fa7f00c202cb084d72a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2965-2953
0000-0002-5791-6461
0000-0002-4921-7193
0000-0002-8478-0854
0000-0003-4879-7680
0000-0001-9356-9455
0000-0003-1319-5073
0000-0002-5398-4037
0000-0003-4203-6477
PQID 2872465160
PQPubID 27625
PageCount 22
ParticipantIDs proquest_journals_2872465160
swepub_primary_oai_DiVA_org_kth_349565
crossref_primary_10_1109_TRO_2023_3280597
ieee_primary_10149823
crossref_citationtrail_10_1109_TRO_2023_3280597
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref59
ref205
gal (ref145) 0
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref54
ref202
lynch (ref12) 2022
krizhevsky (ref34) 2012; 25
ref210
kawakami (ref130) 2021
ref211
ref51
ref46
ref42
ref44
ref212
ref43
ref213
ref49
ref8
ref9
ref3
ref5
eppner (ref4) 0
ref100
agrawal (ref73) 0
murali (ref56) 0
ref101
ref35
vafaeikia (ref146) 2020
ref37
ref36
ref31
ref30
schulman (ref125) 0
ref39
ref38
brohan (ref11) 2022
ref24
sohn (ref113) 0
ref26
ref25
li (ref115) 2017
ref20
kalashnikov (ref118) 0
ref22
ref21
ardón (ref153) 2020
murray (ref23) 1994
ref28
ref27
kingma (ref77) 0
chang (ref162) 2015
ref200
wang (ref132) 0
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
lenz (ref109) 2013; 34
morales (ref33) 0
riedlinger (ref48) 0
jiang (ref29) 0
ref93
ref134
ref95
ref131
ref91
ref90
ref86
ref137
ref85
ref138
ref88
ref135
ref136
ref82
ref144
ref81
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref106
ref107
ref75
ref104
ref105
ref102
ref76
ref103
ref111
ref70
ref112
ref72
ref110
schulman (ref123) 2017
ref68
ref119
ref67
ref117
ref69
ref64
ref63
ref116
ref66
breyer (ref94) 0
ref60
ref122
ref62
ref61
ref121
ref168
ref169
kroemer (ref14) 2021; 22
ref170
avigal (ref147) 2020
wu (ref165) 0
ref177
ref175
ref176
ref173
ref174
ref171
ref172
vahrenkamp (ref74) 2013
khosla (ref185) 0
ref179
ref180
ref181
zhang (ref139) 0
ref188
ref189
ref186
ref187
ref184
ref182
ref183
ref148
ref149
carbines (ref209) 1999
gonçalves (ref47) 0
ref155
ref156
ref154
ref151
ref152
ref150
ref159
ref157
ref158
gualtieri (ref120) 0
simonyan (ref178) 0; 38
gandhi (ref208) 2020
bishop (ref78) 1994
munoz (ref65) 2021
ref166
ref167
ref164
ref163
ref160
ref161
ref13
ref15
ref10
wu (ref92) 0; 33
ref17
ref19
ref18
saxena (ref32) 0; 3
catalano (ref6) 2016
zhou (ref41) 0; 2
levine (ref7) 2016; 17
qi (ref114) 0
lillicrap (ref133) 2015
lu (ref45) 2019
ref2
ref191
ref192
ref190
ref199
ref197
ref198
ref195
asada (ref1) 1979
ref196
ref193
ref194
merwe (ref50) 0
qin (ref87) 0
gibson (ref16) 1977
ten pas (ref40) 2017; 36
pas (ref71) 2018; 1
jeng (ref89) 0
References_xml – ident: ref157
  doi: 10.1109/IROS.2017.8206484
– ident: ref196
  doi: 10.1109/ICRA.2014.6907062
– ident: ref154
  doi: 10.1109/RO-MAN47096.2020.9223541
– ident: ref163
  doi: 10.1109/ICRA.2012.6225116
– ident: ref128
  doi: 10.1023/A:1022676722315
– ident: ref172
  doi: 10.1109/LRA.2020.2976295
– ident: ref167
  doi: 10.1109/LRA.2020.2992195
– ident: ref126
  doi: 10.1109/ICRA48506.2021.9561802
– ident: ref143
  doi: 10.1109/LRA.2021.3060669
– ident: ref176
  doi: 10.1109/CVPR.2016.90
– start-page: 2263
  year: 0
  ident: ref139
  article-title: Learning to reconstruct shapes from unseen classes
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– ident: ref138
  doi: 10.1109/ICRA48506.2021.9561428
– ident: ref179
  doi: 10.1109/5.726791
– ident: ref204
  doi: 10.1109/JSEN.2018.2868340
– year: 2020
  ident: ref147
  article-title: 6-DoF grasp planning using fast 3D reconstruction and grasp quality CNN
– ident: ref102
  doi: 10.1109/ICRA48506.2021.9561954
– year: 1994
  ident: ref78
  article-title: Mixture density networks
– volume: 1
  start-page: 307
  year: 2018
  ident: ref71
  article-title: Using geometry to detect grasp poses in 3D point clouds
  publication-title: Robot Res
– ident: ref17
  doi: 10.1109/LRA.2019.2933815
– ident: ref99
  doi: 10.1109/ICRA48506.2021.9561877
– volume: 17
  start-page: 1334
  year: 2016
  ident: ref7
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J Mach Learn Res
– ident: ref211
  doi: 10.1017/S0263574700015332
– year: 2020
  ident: ref153
  article-title: Affordances in robotic tasks-A survey
– ident: ref158
  doi: 10.1007/978-3-030-95459-8_9
– ident: ref156
  doi: 10.1109/IROS.2016.7759429
– ident: ref116
  doi: 10.1109/ACCESS.2020.3027923
– year: 2015
  ident: ref162
  article-title: ShapeNet: An information-rich 3D model repository
– ident: ref183
  doi: 10.1109/IROS.2018.8593933
– ident: ref95
  doi: 10.15607/RSS.2020.XVI.066
– ident: ref108
  doi: 10.1109/ICRA.2015.7139361
– ident: ref103
  doi: 10.1109/ICRA48506.2021.9561868
– ident: ref189
  doi: 10.1109/ICRA.2017.7989545
– ident: ref159
  doi: 10.1109/ICAR.2015.7251504
– ident: ref104
  doi: 10.1109/IROS51168.2021.9636012
– ident: ref37
  doi: 10.1109/IROS.2015.7354004
– ident: ref199
  doi: 10.1177/17298806221095974
– ident: ref59
  doi: 10.1109/ICRA48506.2021.9561473
– year: 2015
  ident: ref133
  article-title: Continuous control with deep reinforcement learning
– ident: ref79
  doi: 10.15607/RSS.2018.XIV.021
– ident: ref207
  doi: 10.1109/ICRA40945.2020.9196916
– ident: ref26
  doi: 10.1109/CW.2005.39
– start-page: 1602
  year: 0
  ident: ref94
  article-title: Volumetric grasping network: Real-time 6 DoF grasp detection in clutter
  publication-title: Proc Conf Robot Learn
– start-page: 101
  year: 2016
  ident: ref6
  publication-title: From Soft to Adaptive Synergies The Pisa/IIT SoftHand
– ident: ref57
  doi: 10.1109/LRA.2020.2975706
– start-page: 18661
  year: 0
  ident: ref185
  article-title: Supervised contrastive learning
  publication-title: Proc 34th Int Conf Neural Inf Process Syst
– ident: ref88
  doi: 10.1109/ICRA48506.2021.9562046
– ident: ref54
  doi: 10.1109/MRA.2020.2976322
– year: 2017
  ident: ref115
  article-title: Deep reinforcement learning: An overview
– ident: ref151
  doi: 10.1109/ROBOT.2003.1241860
– ident: ref8
  doi: 10.1126/scirobotics.aau4984
– ident: ref137
  doi: 10.1109/IROS.2017.8206060
– ident: ref170
  doi: 10.1109/ICRA48506.2021.9560844
– year: 2022
  ident: ref12
  article-title: Interactive language: Talking to robots in real time
– ident: ref66
  doi: 10.1109/IROS51168.2021.9636876
– ident: ref63
  doi: 10.1016/j.robot.2022.104313
– ident: ref93
  doi: 10.1109/ICRA40945.2020.9196740
– year: 0
  ident: ref33
  article-title: Learning to predict grasp reliability for a multifinger robot hand by using visual features
  publication-title: Proc Int Conf AI Soft Comput
– ident: ref111
  doi: 10.1109/IROS.2017.8202237
– volume: 34
  start-page: 705
  year: 2013
  ident: ref109
  article-title: Deep learning for detecting robotic grasps
  publication-title: Int J Robot Res
  doi: 10.1177/0278364914549607
– ident: ref177
  doi: 10.1109/ICRA40945.2020.9196677
– ident: ref140
  doi: 10.1109/TRO.2020.3033696
– ident: ref173
  doi: 10.15607/RSS.2020.XVI.033
– ident: ref121
  doi: 10.1038/nature14236
– ident: ref149
  doi: 10.1109/IROS.2013.6696808
– ident: ref144
  doi: 10.1109/IROS40897.2019.8967816
– start-page: 1
  year: 0
  ident: ref47
  article-title: Grasp planning with incomplete knowledge about the object to be grasped
  publication-title: Proc IEEE Int Conf Auton Robot Syst Competitions
– start-page: 1889
  year: 0
  ident: ref125
  article-title: Trust region policy optimization
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref97
  doi: 10.1007/s00138-020-01127-9
– ident: ref58
  doi: 10.1109/ICRA48506.2021.9561228
– ident: ref67
  doi: 10.1109/CCDC52312.2021.9601770
– ident: ref52
  doi: 10.1109/ICRA40945.2020.9197413
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref34
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref171
  doi: 10.1109/RoboSoft51838.2021.9479225
– ident: ref136
  doi: 10.3389/frobt.2020.00120
– volume: 38
  start-page: 1943
  year: 0
  ident: ref178
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– start-page: 1912
  year: 0
  ident: ref165
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref38
  doi: 10.1109/ICRA.2015.7139793
– ident: ref42
  doi: 10.1109/ICRA.2018.8460609
– ident: ref127
  doi: 10.1109/LRA.2020.3004787
– ident: ref124
  doi: 10.1109/ICRA.2019.8793733
– start-page: 220
  year: 0
  ident: ref89
  article-title: GDN: A coarse-to-fine (C2F) representation for end-to-end 6-DoF grasp detection
  publication-title: Proc Conf Robot Learn
– start-page: 39.1
  year: 0
  ident: ref73
  article-title: Analysis of Thompson sampling for the multi-armed bandit problem
  publication-title: Proc 25th Ann Conf Learn Theory
– ident: ref119
  doi: 10.1109/ICRA.2018.8461039
– ident: ref80
  doi: 10.1109/HORA52670.2021.9461271
– ident: ref203
  doi: 10.1109/CRV55824.2022.00021
– start-page: 53
  year: 0
  ident: ref87
  article-title: S4G: A modal single-view single-shot SE (3) grasp detection in cluttered scenes
  publication-title: Proc Conf Robot Learn
– ident: ref160
  doi: 10.1109/ICRA.2014.6906903
– ident: ref96
  doi: 10.1109/LRA.2020.2969946
– start-page: 4831
  year: 0
  ident: ref4
  article-title: Lessons from the Amazon picking challenge: Four aspects of building robotic systems
  publication-title: Proc 26th Int Joint Conf Artif Intell
– ident: ref44
  doi: 10.1109/ICRA.2019.8794435
– ident: ref86
  doi: 10.1109/IROS40897.2019.8968115
– ident: ref83
  doi: 10.1109/LRA.2017.2651945
– start-page: 3483
  year: 0
  ident: ref113
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Proc Int Conf Neural Inf Process
– year: 2022
  ident: ref11
  article-title: RT-1: Robotics transformer for real-world control at scale
– ident: ref61
  doi: 10.1109/TASE.2021.3128639
– ident: ref195
  doi: 10.1109/IROS.2014.6942539
– ident: ref206
  doi: 10.1109/LRA.2018.2799743
– ident: ref155
  doi: 10.1109/ICRA.2018.8460902
– ident: ref18
  doi: 10.1109/IROS.2006.282367
– ident: ref85
  doi: 10.1109/LRA.2018.2810544
– year: 2021
  ident: ref65
  article-title: Grasping in 6DoF: An orthographic approach to generalized grasp affordance predictions
– start-page: 455
  year: 2019
  ident: ref45
  article-title: Planning multi-fingered grasps as probabilistic inference in a learned deep network
  publication-title: Robotics Research
– ident: ref164
  doi: 10.1109/SMI.2004.1314504
– start-page: 11516
  year: 0
  ident: ref50
  article-title: Learning continuous 3D reconstructions for geometrically aware grasping
  publication-title: Proc IEEE Int Conf Robot Autom
– volume: 22
  start-page: 1395
  year: 2021
  ident: ref14
  article-title: A review of robot learning for manipulation: Challenges, representations, and algorithms
  publication-title: J Mach Learn Res
– ident: ref150
  doi: 10.1109/ROMAN.2014.6926343
– ident: ref200
  doi: 10.1109/ACCESS.2020.3028740
– year: 2020
  ident: ref146
  article-title: A brief review of deep multi-task learning and auxiliary task learning
– ident: ref10
  doi: 10.1177/0278364919868017
– ident: ref13
  doi: 10.1007/s43154-020-00021-6
– ident: ref60
  doi: 10.1109/LRA.2021.3096239
– ident: ref134
  doi: 10.1109/ICRA40945.2020.9197185
– year: 0
  ident: ref77
  article-title: Auto-encoding variational Bayes
  publication-title: Proc 2nd Int Conf Learn Represent
– ident: ref180
  doi: 10.1109/CVPR.2017.243
– ident: ref53
  doi: 10.1109/ICRA40945.2020.9196678
– start-page: 3304
  year: 0
  ident: ref29
  article-title: Efficient grasping from RGBD images: Learning using a new rectangle representation
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref210
  doi: 10.1016/S0003-6870(84)90121-2
– ident: ref112
  doi: 10.1007/s10514-020-09907-y
– ident: ref76
  doi: 10.1177/0278364919865338
– ident: ref36
  doi: 10.1109/ICRA.2016.7487342
– ident: ref2
  doi: 10.1109/ROBOT.2000.844081
– ident: ref20
  doi: 10.1109/ROBOT.1994.351378
– ident: ref31
  doi: 10.1177/0278364907087172
– ident: ref191
  doi: 10.1177/0278364914559753
– ident: ref193
  doi: 10.1007/s10514-013-9365-9
– ident: ref98
  doi: 10.1109/ICCV48922.2021.01566
– ident: ref69
  doi: 10.1109/ICRA.2018.8460887
– start-page: 1
  year: 0
  ident: ref48
  article-title: Model-free grasp learning framework based on physical simulation
  publication-title: Proc Int Symp Robot
– ident: ref72
  doi: 10.1109/ROBOT.1999.770385
– ident: ref90
  doi: 10.1109/AIM43001.2020.9158850
– ident: ref9
  doi: 10.1177/0278364919887447
– ident: ref129
  doi: 10.1109/ICRA48506.2021.9560901
– volume: 3
  start-page: 1491
  year: 0
  ident: ref32
  article-title: Learning grasp strategies with partial shape information
  publication-title: Proc Nat Conf Artif Intell
– year: 2017
  ident: ref123
  article-title: Proximal policy optimization algorithms
– ident: ref198
  doi: 10.1109/ICRA40945.2020.9197134
– ident: ref39
  doi: 10.1109/IROS.2016.7759114
– ident: ref187
  doi: 10.1109/MRA.2021.3064754
– ident: ref213
  doi: 10.1016/j.smhl.2018.03.002
– ident: ref168
  doi: 10.1109/ICRA.2018.8460875
– year: 1999
  ident: ref209
  article-title: Welding robot
– ident: ref131
  doi: 10.1109/ICRA48506.2021.9561828
– ident: ref64
  doi: 10.1080/01691864.2021.1897674
– ident: ref181
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 1540
  year: 0
  ident: ref56
  article-title: Same object, different grasps: Data and semantic knowledge for task-oriented grasping
  publication-title: Proc Conf Robot Learn
– ident: ref84
  doi: 10.1109/ICRA.2018.8463204
– ident: ref186
  doi: 10.1016/j.compag.2020.105694
– ident: ref202
  doi: 10.1109/LRA.2018.2852779
– ident: ref3
  doi: 10.1109/TRO.2013.2289018
– ident: ref190
  doi: 10.1016/j.robot.2019.103274
– start-page: 477
  year: 0
  ident: ref120
  article-title: Learning 6-DoF grasping and pick-place using attention focus
  publication-title: Proc Conf Robot Learn
– ident: ref107
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 70
  year: 0
  ident: ref132
  article-title: Goal-auxiliary actor-critic for 6D robotic grasping with point clouds
  publication-title: Proc 5th Annu Conf Robot Learn
– ident: ref81
  doi: 10.1109/LRA.2019.2895878
– ident: ref68
  doi: 10.1109/ICRA46639.2022.9811568
– year: 2021
  ident: ref130
  article-title: Learning 6DoF grasping using reward-consistent demonstration
– start-page: 5105
  year: 0
  ident: ref114
  article-title: PointNet: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– year: 2020
  ident: ref208
  article-title: Swoosh! Rattle! Thump!-Actions that sound
  publication-title: Robotics
– ident: ref55
  doi: 10.1109/ACIT49673.2020.9208918
– ident: ref197
  doi: 10.1109/IROS.2015.7354264
– ident: ref105
  doi: 10.1109/CRC52766.2021.9620132
– start-page: 585
  year: 2013
  ident: ref74
  publication-title: Simox A Robotics Toolbox for Simulation Motion and Grasp Planning
– ident: ref192
  doi: 10.15607/RSS.2012.VIII.023
– ident: ref5
  doi: 10.1177/0278364915592961
– ident: ref141
  doi: 10.1561/2200000056
– ident: ref106
  doi: 10.1109/CVPR.2016.91
– ident: ref152
  doi: 10.1109/COASE.2018.8560417
– ident: ref205
  doi: 10.1109/LRA.2021.3063074
– ident: ref175
  doi: 10.1109/CVPR.2017.16
– year: 1979
  ident: ref1
  article-title: Studies on prehension and handling by robot hands with elastic fingers
– ident: ref91
  doi: 10.1109/CVPR42600.2020.01146
– ident: ref51
  doi: 10.1109/ICRA40945.2020.9197320
– volume: 33
  start-page: 13174
  year: 0
  ident: ref92
  article-title: Grasp proposal networks: An end-to-end solution for visual learning of robotic grasps
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref46
  doi: 10.1109/Humanoids43949.2019.9035002
– ident: ref19
  doi: 10.1109/ROBOT.1987.1088014
– ident: ref30
  doi: 10.1007/978-3-540-77457-0_4
– ident: ref28
  doi: 10.1109/ROBOT.1996.506534
– ident: ref49
  doi: 10.1109/ICRA40945.2020.9197318
– ident: ref166
  doi: 10.1007/978-3-319-46484-8_10
– ident: ref201
  doi: 10.1109/TRO.2011.2132870
– ident: ref100
  doi: 10.1109/ICRA48506.2021.9561920
– volume: 36
  start-page: 1455
  year: 2017
  ident: ref40
  article-title: Grasp pose detection in point clouds
  publication-title: Int J Robot Res
  doi: 10.1177/0278364917735594
– ident: ref75
  doi: 10.1177/0278364909105606
– start-page: 1050
  year: 0
  ident: ref145
  article-title: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref122
  doi: 10.1109/IROS40897.2019.8968263
– ident: ref117
  doi: 10.1177/0278364917710318
– ident: ref43
  doi: 10.1109/ICCV.2019.00299
– ident: ref25
  doi: 10.1109/IROS.2007.4399052
– ident: ref22
  doi: 10.1007/978-3-319-32552-1_38
– ident: ref24
  doi: 10.1109/MRA.2004.1371616
– ident: ref182
  doi: 10.1109/IROS.2015.7353481
– ident: ref212
  doi: 10.1088/1748-3190/abe345
– ident: ref21
  doi: 10.1109/70.246063
– ident: ref35
  doi: 10.1142/S0219843622500116
– volume: 2
  start-page: 6
  year: 0
  ident: ref41
  article-title: 6DoF grasp planning by optimizing a deep learning scoring function
  publication-title: Proc Robot Sci Syst Workshop Revisiting Contact-Turning Probl Solution
– ident: ref188
  doi: 10.1016/j.compag.2022.106716
– ident: ref135
  doi: 10.1109/CVPR.2019.00891
– ident: ref142
  doi: 10.1109/IROS47612.2022.9981955
– ident: ref110
  doi: 10.1109/LRA.2018.2852777
– ident: ref82
  doi: 10.1109/ROBOT.1992.219918
– ident: ref169
  doi: 10.1109/COASE.2019.8843059
– ident: ref174
  doi: 10.1007/978-3-030-58548-8_34
– ident: ref15
  doi: 10.3389/fnbot.2021.658280
– start-page: 67
  year: 1977
  ident: ref16
  article-title: The theory of affordances
  publication-title: Perceiving Acting and Knowing Toward and Ecological Psychology
– year: 1994
  ident: ref23
  publication-title: A Mathematical Introduction to Robotic Manipulation
– ident: ref27
  doi: 10.1109/ISIE.2006.296116
– ident: ref194
  doi: 10.1109/ICRA.2012.6225101
– ident: ref184
  doi: 10.1109/CVPR.2019.01291
– ident: ref62
  doi: 10.15607/RSS.2021.XVII.024
– year: 0
  ident: ref118
  article-title: QT-Opt: Scalable deep reinforcement learning for vision-based robotic manipulation
  publication-title: Proc Conf Robot Learn
– ident: ref148
  doi: 10.15607/RSS.2017.XIII.058
– ident: ref161
  doi: 10.1177/0278364912445831
– ident: ref101
  doi: 10.1109/ICRA48506.2021.9561409
– ident: ref70
  doi: 10.1109/IROS45743.2020.9340783
SSID ssj0024903
Score 2.698252
Snippet Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Deep learning
deep learning in robotics and automation
Dexterous manipulation
End effectors
Force
Grasping
Grasping (robotics)
Grippers
perception for grasping and manipulation
Shape
Systematics
Task analysis
Title Deep Learning Approaches to Grasp Synthesis: A Review
URI https://ieeexplore.ieee.org/document/10149823
https://www.proquest.com/docview/2872465160
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-349565
Volume 39
WOSCitedRecordID wos001019463600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1941-0468
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4R4kEP_sSIounBmHgYdLSjqzciogeDRtFwa7a2U6IBwoaJ_71tNxAOmnjasrRL871u77Wv7_sAzmLmy8DmDIOWZh41vz8v8qXyfKrDJCImRKWuUPiO9XrhYMAfimJ1VwujtXaHz3Td3rpcvhrLmd0qa1hdWR42SQlKjLG8WOuHWI87GWRLKeYRzMN5ThLzRv_xvm5lwuukGZpwgq34ICeqshpfLnOGOj_T3f7nCHdgqwgoUTufAbuwpkd7sLlEM7gPQUfrCSqYVF9Ru6AR1ynKxuhmGqUT9PQ1MpFgOkwvURvl-YIKPHev-1e3XiGX4ElCcOZFzJYDtQiNOVGJiaxiShWNksBy4kvi-4rxGIcSE0qSiCUYSwOKNI-oYs2IkQMoj8YjfQiIcYlpHHLjyxUNaBTz0FxxoFRs3D1JqtCYAyhkwSVuJS0-hFtTYC4M5MJCLgrIq3Cx6DHJeTT-aFuxyC61y0GtQm1uJFF8aakwK76m1XNv4Sqc54ZbdLTU2Z3hS1sYG4n37E0QuxwMjn55_zFs2GHkR_VqUM6mM30C6_IzG6bTUzfbvgE8UM5W
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XB68R5zYMIPnRLm3RpfBvecU7RKb6FNkl1KNtYq-C_N0k7nQ8KPrWUJITvpD0nPTnfB7CXMF-GNmcYNjTzqPn8ebEvledTHaUxMSEqdYXCLdZuR4-P_KYsVne1MFprd_hM1-yty-Wrvnyzv8rqVleWRwGZhGkzfuAX5Vrf1HrcCSFbUjGPYB6NspKY1zu31zUrFF4jQWQCCvbDCzlZlZ8R5jhrqPM0p4v_nOMSLJQhJWoWa2AZJnRvBebHiAZXITzWeoBKLtUn1CyJxHWG8j46G8bZAN199EwsmHWzQ9RERcagAvenJ52jc68UTPAkITj3YmYLghqEJpyo1MRWCaWKxmloWfEl8X3FeIIjiQklacxSjKUBRZpHVLEgZmQNpnr9nl4HxLjENIm48eaKhjROeGSuOFQqMQ6fpFWojwAUsmQTt6IWr8LtKjAXBnJhIRcl5FU4-OoxKJg0_mhbsciOtStArcLWyEiifNcyYfZ8gVV0b-Aq7BeG--poybOPuw9NYWwkXvJnQeyGMNz4ZfxdmD3vXLVE66J9uQlzdkrFwb0tmMqHb3obZuR73s2GO27lfQIk_dGd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+to+Grasp+Synthesis%3A+A+Review&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Newbury%2C+Rhys&rft.au=Gu%2C+Morris&rft.au=Chumbley%2C+Lachlan&rft.au=Mousavian%2C+Arsalan&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=1552-3098&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1109%2FTRO.2023.3280597&rft.externalDocID=10149823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon