Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system
In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system d x ( t ) = diag ( x 1 ( t ) , … , x n ( t ) ) [ f ( x t ) d t + g ( x t ) d w ( t ) ] . Under the traditionally diagonally dominant condition, we study exis...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 364; číslo 1; s. 104 - 118 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.04.2010
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system
d
x
(
t
)
=
diag
(
x
1
(
t
)
,
…
,
x
n
(
t
)
)
[
f
(
x
t
)
d
t
+
g
(
x
t
)
d
w
(
t
)
]
.
Under the traditionally diagonally dominant condition, we study existence and uniqueness of the global positive solution of this stochastic system, and its asymptotic bound properties and moment average boundedness in time. These properties are natural requirements from the biological point of view. As the special cases, we also discuss some stochastic Lotka–Volterra systems. |
|---|---|
| AbstractList | In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system
d
x
(
t
)
=
diag
(
x
1
(
t
)
,
…
,
x
n
(
t
)
)
[
f
(
x
t
)
d
t
+
g
(
x
t
)
d
w
(
t
)
]
.
Under the traditionally diagonally dominant condition, we study existence and uniqueness of the global positive solution of this stochastic system, and its asymptotic bound properties and moment average boundedness in time. These properties are natural requirements from the biological point of view. As the special cases, we also discuss some stochastic Lotka–Volterra systems. |
| Author | Wu, Fuke Hu, Shigeng Liu, Yue |
| Author_xml | – sequence: 1 givenname: Fuke surname: Wu fullname: Wu, Fuke email: wufuke@mail.hust.edu.cn – sequence: 2 givenname: Shigeng surname: Hu fullname: Hu, Shigeng email: husgn@163.com – sequence: 3 givenname: Yue surname: Liu fullname: Liu, Yue |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22581249$$DView record in Pascal Francis |
| BookMark | eNp9kE1Lw0AURQepYKv-AVfZuEx8M206E3AjxS8s6ELBlcPLy8ROSTJlZlrovzehunHR1YPLOxfumbBR5zrD2BWHjAOf36yzdYuYCYCiDzKQ4oSNORTzFBSfjtgYQIhUzOTnGZuEsAbgPJd8zL7eXLDR7kwSXLON1nUJdlViY0gw7NtNdNFSUpoV7qzb-sTVSYiOVhiGvN52NDDYJC-uad23826Xxv2mr9uHaNoLdlpjE8zl7z1nHw_374undPn6-Ly4W6Y0nUJMEapSGE5zWYuaYE6V6RMUiEbWBiTxkkqpoJQmz6molCIp8yqvUKlCQT49Z9eH3g0Gwqb22JENeuNti36vhcgVF7Oi_1OHP_IuBG9qTTbiMCF6tI3moAefeq0Hn3rwOWS9zx4V_9C_9qPQ7QEy_fidNV4HsqYjU1lvKOrK2WP4D7RClJ4 |
| CODEN | JMANAK |
| CitedBy_id | crossref_primary_10_1016_j_amc_2011_05_104 crossref_primary_10_1186_1029_242X_2012_171 crossref_primary_10_1007_s00521_014_1784_9 crossref_primary_10_1016_j_matcom_2022_12_016 crossref_primary_10_1186_1687_1847_2014_37 crossref_primary_10_1186_s13662_017_1411_z crossref_primary_10_1515_ijnsns_2019_0142 crossref_primary_10_1016_j_cam_2018_10_029 crossref_primary_10_1016_j_cam_2017_04_015 crossref_primary_10_3390_axioms13020100 crossref_primary_10_1007_s10440_020_00316_y crossref_primary_10_3389_fphy_2024_1338799 crossref_primary_10_1016_j_jmaa_2012_07_017 crossref_primary_10_1016_j_amc_2014_03_121 crossref_primary_10_1016_j_amc_2014_03_010 crossref_primary_10_1007_s11063_018_9896_3 crossref_primary_10_1155_2013_543947 crossref_primary_10_1016_j_nahs_2011_11_002 crossref_primary_10_1016_j_neucom_2015_04_038 crossref_primary_10_3390_axioms12060574 crossref_primary_10_1016_S0252_9602_13_60021_1 |
| Cites_doi | 10.1142/S021949370500133X 10.1016/S0304-4149(01)00126-0 10.1006/jmaa.1996.0030 10.1016/j.jmaa.2008.06.038 10.1016/j.chaos.2006.04.026 10.1016/j.jmaa.2003.12.004 10.1016/j.jde.2007.12.005 10.1016/S0362-546X(99)00149-2 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.jmaa.2009.10.072 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-0813 |
| EndPage | 118 |
| ExternalDocumentID | 22581249 10_1016_j_jmaa_2009_10_072 S0022247X09009263 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c330t-a0db2e1c67f2fc06cde0dba2aae7fe07c1bcb780b7e55c9d88c775d5da8898053 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282354000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Mon Jul 21 09:14:48 EDT 2025 Tue Nov 18 21:09:14 EST 2025 Sat Nov 29 02:55:55 EST 2025 Fri Feb 23 02:23:23 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stochastically ultimate boundedness Kolmogorov-type system Stochastic functional differential equations Moment average in time Lotka–Volterra system Existence condition Asymptotic behavior Lotka-Volterra system Global solution Stochastic system Functional Mathematical analysis Positive solution Asymptotic solution Application |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-a0db2e1c67f2fc06cde0dba2aae7fe07c1bcb780b7e55c9d88c775d5da8898053 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmaa.2009.10.072 |
| PageCount | 15 |
| ParticipantIDs | pascalfrancis_primary_22581249 crossref_citationtrail_10_1016_j_jmaa_2009_10_072 crossref_primary_10_1016_j_jmaa_2009_10_072 elsevier_sciencedirect_doi_10_1016_j_jmaa_2009_10_072 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-04-01 |
| PublicationDateYYYYMMDD | 2010-04-01 |
| PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Mao (bib008) 1997 Murray (bib011) 2002 Mao (bib010) 2005; 5 Mao (bib007) 1994 Pang, Deng, Mao (bib012) 2008; 15 Mao, Marion, Renshaw (bib009) 2002; 97 Han, Teng, Xiao (bib005) 2006; 30 Bahar, Mao (bib002) 2004; 11 Teng (bib014) 2000; 42 Bahar, Mao (bib001) 2004; 292 B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004 Kuang (bib006) 1993 Faria, Oliveira (bib003) 2008; 244 Tang, Kuang (bib013) 1996; 197 Wu, Hu (bib015) 2008; 347 Han (10.1016/j.jmaa.2009.10.072_bib005) 2006; 30 Mao (10.1016/j.jmaa.2009.10.072_bib008) 1997 Mao (10.1016/j.jmaa.2009.10.072_bib007) 1994 Tang (10.1016/j.jmaa.2009.10.072_bib013) 1996; 197 Teng (10.1016/j.jmaa.2009.10.072_bib014) 2000; 42 Murray (10.1016/j.jmaa.2009.10.072_bib011) 2002 Wu (10.1016/j.jmaa.2009.10.072_bib015) 2008; 347 Pang (10.1016/j.jmaa.2009.10.072_bib012) 2008; 15 Bahar (10.1016/j.jmaa.2009.10.072_bib001) 2004; 292 10.1016/j.jmaa.2009.10.072_bib004 Kuang (10.1016/j.jmaa.2009.10.072_bib006) 1993 Faria (10.1016/j.jmaa.2009.10.072_bib003) 2008; 244 Bahar (10.1016/j.jmaa.2009.10.072_bib002) 2004; 11 Mao (10.1016/j.jmaa.2009.10.072_bib009) 2002; 97 Mao (10.1016/j.jmaa.2009.10.072_bib010) 2005; 5 |
| References_xml | – year: 1993 ident: bib006 article-title: Delay Differential Equations with Applications in Population Dynamics – volume: 15 start-page: 603 year: 2008 end-page: 620 ident: bib012 article-title: Asymptotic properties of stochastic population dynamics publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A – volume: 5 start-page: 149 year: 2005 end-page: 162 ident: bib010 article-title: Delay population dynamics and environmental noise publication-title: Stoch. Dyn. – volume: 347 start-page: 534 year: 2008 end-page: 549 ident: bib015 article-title: Stochastic functional Kolmogorov-type population dynamics publication-title: J. Math. Anal. Appl. – volume: 11 start-page: 377 year: 2004 end-page: 400 ident: bib002 article-title: Stochastic delay population dynamics publication-title: Int. J. Pure Appl. Math. – reference: B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004 – year: 1994 ident: bib007 article-title: Exponential Stability of Stochastic Differential Equations – volume: 97 start-page: 95 year: 2002 end-page: 110 ident: bib009 article-title: Environmental noise suppresses explosion in population dynamics publication-title: Stochastic Process. Appl. – year: 2002 ident: bib011 article-title: Mathematical Biology, I. An Introduction – volume: 30 start-page: 748 year: 2006 end-page: 758 ident: bib005 article-title: Persistence and average persistence of a nonautonomous Kolmogorov system publication-title: Chaos Solitons Fractals – year: 1997 ident: bib008 article-title: Stochastic Differential Equations and Applications – volume: 197 start-page: 427 year: 1996 end-page: 447 ident: bib013 article-title: Permanence in Kolmogorov-type systems of nonautonomous functional differential equations publication-title: J. Math. Anal. Appl. – volume: 292 start-page: 364 year: 2004 end-page: 380 ident: bib001 article-title: Stochastic delay Lotka–Volterra model publication-title: J. Math. Anal. Appl. – volume: 244 start-page: 1049 year: 2008 end-page: 1079 ident: bib003 article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks publication-title: J. Differential Equations – volume: 42 start-page: 1221 year: 2000 end-page: 1230 ident: bib014 article-title: The almost periodic Kolmogorov competitive systems publication-title: Nonlinear Anal. – volume: 5 start-page: 149 year: 2005 ident: 10.1016/j.jmaa.2009.10.072_bib010 article-title: Delay population dynamics and environmental noise publication-title: Stoch. Dyn. doi: 10.1142/S021949370500133X – volume: 97 start-page: 95 year: 2002 ident: 10.1016/j.jmaa.2009.10.072_bib009 article-title: Environmental noise suppresses explosion in population dynamics publication-title: Stochastic Process. Appl. doi: 10.1016/S0304-4149(01)00126-0 – volume: 197 start-page: 427 year: 1996 ident: 10.1016/j.jmaa.2009.10.072_bib013 article-title: Permanence in Kolmogorov-type systems of nonautonomous functional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1996.0030 – ident: 10.1016/j.jmaa.2009.10.072_bib004 – volume: 347 start-page: 534 year: 2008 ident: 10.1016/j.jmaa.2009.10.072_bib015 article-title: Stochastic functional Kolmogorov-type population dynamics publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.06.038 – year: 1993 ident: 10.1016/j.jmaa.2009.10.072_bib006 – volume: 11 start-page: 377 year: 2004 ident: 10.1016/j.jmaa.2009.10.072_bib002 article-title: Stochastic delay population dynamics publication-title: Int. J. Pure Appl. Math. – volume: 30 start-page: 748 year: 2006 ident: 10.1016/j.jmaa.2009.10.072_bib005 article-title: Persistence and average persistence of a nonautonomous Kolmogorov system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.026 – year: 2002 ident: 10.1016/j.jmaa.2009.10.072_bib011 – volume: 292 start-page: 364 year: 2004 ident: 10.1016/j.jmaa.2009.10.072_bib001 article-title: Stochastic delay Lotka–Volterra model publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2003.12.004 – year: 1994 ident: 10.1016/j.jmaa.2009.10.072_bib007 – volume: 244 start-page: 1049 year: 2008 ident: 10.1016/j.jmaa.2009.10.072_bib003 article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.12.005 – year: 1997 ident: 10.1016/j.jmaa.2009.10.072_bib008 – volume: 42 start-page: 1221 year: 2000 ident: 10.1016/j.jmaa.2009.10.072_bib014 article-title: The almost periodic Kolmogorov competitive systems publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(99)00149-2 – volume: 15 start-page: 603 year: 2008 ident: 10.1016/j.jmaa.2009.10.072_bib012 article-title: Asymptotic properties of stochastic population dynamics publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A |
| SSID | ssj0011571 |
| Score | 2.0818994 |
| Snippet | In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system
d
x
(
t
)
=
diag... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 104 |
| SubjectTerms | Exact sciences and technology Kolmogorov-type system Lotka–Volterra system Mathematical analysis Mathematics Moment average in time Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Sciences and techniques of general use Stochastic functional differential equations Stochastically ultimate boundedness |
| Title | Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system |
| URI | https://dx.doi.org/10.1016/j.jmaa.2009.10.072 |
| Volume | 364 |
| WOSCitedRecordID | wos000282354000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0813 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011571 issn: 0022-247X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMIIZ5ieax84FYF5VHHznGFFvEQqz0sUrkQOY69u6VNqrapll_A32b8iJMWdcUeuESR1Thpvs-eiWf8DUJvVZRISrIoAFMZBuOUw5hLSxIUHOyBolKEqTLFJujpKZtMsrPB4He7F2Yzo1XFrq-zxX-FGtoAbL119hZw-06hAc4BdDgC7HD8J-DPTBrWRo7a2_j4AF_9mi_WtZZodbvzGxMjAP9PXHIt2DzSZs6tDn6pZ_P6ol7Wm8Cs01rN5z3O7NyrvxrtASd0YoRgexFybwEa4zM3P3usMsuwl1ob9MInCV2Z1u-N7K9N6LC6T2np9grEYzrpz7eJlS3fIpadPV0lYmeIIzsx_zXH2-WG6bvpnHMrOKrT82wBoG1B7R1D59MP28y2aa770JU4M2jIoY876CAG6rIhOjj-dDL57ANSEaFRKzyv_5Dbf2VTBXefZJ-P82DBVwCDsiVTen7M-SP00GGGjy1xHqOBrJ6g-189fqun6EdLIdxSCAOSGCiEOwphTyFcK9xRCHcUwjsUwpZCz9C3Dyfn7z8Grg5HIJIkXAc8LItYRiKlKlYweEUpoYXHnEuqZEhFVIiCsrCgkhCRlYwJSklJSs5YxmCWf46GVV3JFwhTBQ66EOOxSuFTmadM8SihRMRhqT-l1SGK2jeXCydSr2ulzPL9mB2ikb9mYSVabvw1aQHJnZNpnccc-HXjdUdb6PlbgUHUTnL28laP8Qrd6wbMazRcLxv5Bt0Vm_XVannk2PcHwRGu3Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+solution+and+its+asymptotic+behaviour+of+stochastic+functional+Kolmogorov-type+system&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Wu%2C+Fuke&rft.au=Hu%2C+Shigeng&rft.au=Liu%2C+Yue&rft.date=2010-04-01&rft.issn=0022-247X&rft.volume=364&rft.issue=1&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jmaa.2009.10.072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmaa_2009_10_072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |