Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system

In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system d x ( t ) = diag ( x 1 ( t ) , … , x n ( t ) ) [ f ( x t ) d t + g ( x t ) d w ( t ) ] . Under the traditionally diagonally dominant condition, we study exis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 364; číslo 1; s. 104 - 118
Hlavní autoři: Wu, Fuke, Hu, Shigeng, Liu, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.04.2010
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system d x ( t ) = diag ( x 1 ( t ) , … , x n ( t ) ) [ f ( x t ) d t + g ( x t ) d w ( t ) ] . Under the traditionally diagonally dominant condition, we study existence and uniqueness of the global positive solution of this stochastic system, and its asymptotic bound properties and moment average boundedness in time. These properties are natural requirements from the biological point of view. As the special cases, we also discuss some stochastic Lotka–Volterra systems.
AbstractList In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system d x ( t ) = diag ( x 1 ( t ) , … , x n ( t ) ) [ f ( x t ) d t + g ( x t ) d w ( t ) ] . Under the traditionally diagonally dominant condition, we study existence and uniqueness of the global positive solution of this stochastic system, and its asymptotic bound properties and moment average boundedness in time. These properties are natural requirements from the biological point of view. As the special cases, we also discuss some stochastic Lotka–Volterra systems.
Author Wu, Fuke
Hu, Shigeng
Liu, Yue
Author_xml – sequence: 1
  givenname: Fuke
  surname: Wu
  fullname: Wu, Fuke
  email: wufuke@mail.hust.edu.cn
– sequence: 2
  givenname: Shigeng
  surname: Hu
  fullname: Hu, Shigeng
  email: husgn@163.com
– sequence: 3
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22581249$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AURQepYKv-AVfZuEx8M206E3AjxS8s6ELBlcPLy8ROSTJlZlrovzehunHR1YPLOxfumbBR5zrD2BWHjAOf36yzdYuYCYCiDzKQ4oSNORTzFBSfjtgYQIhUzOTnGZuEsAbgPJd8zL7eXLDR7kwSXLON1nUJdlViY0gw7NtNdNFSUpoV7qzb-sTVSYiOVhiGvN52NDDYJC-uad23826Xxv2mr9uHaNoLdlpjE8zl7z1nHw_374undPn6-Ly4W6Y0nUJMEapSGE5zWYuaYE6V6RMUiEbWBiTxkkqpoJQmz6molCIp8yqvUKlCQT49Z9eH3g0Gwqb22JENeuNti36vhcgVF7Oi_1OHP_IuBG9qTTbiMCF6tI3moAefeq0Hn3rwOWS9zx4V_9C_9qPQ7QEy_fidNV4HsqYjU1lvKOrK2WP4D7RClJ4
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_amc_2011_05_104
crossref_primary_10_1186_1029_242X_2012_171
crossref_primary_10_1007_s00521_014_1784_9
crossref_primary_10_1016_j_matcom_2022_12_016
crossref_primary_10_1186_1687_1847_2014_37
crossref_primary_10_1186_s13662_017_1411_z
crossref_primary_10_1515_ijnsns_2019_0142
crossref_primary_10_1016_j_cam_2018_10_029
crossref_primary_10_1016_j_cam_2017_04_015
crossref_primary_10_3390_axioms13020100
crossref_primary_10_1007_s10440_020_00316_y
crossref_primary_10_3389_fphy_2024_1338799
crossref_primary_10_1016_j_jmaa_2012_07_017
crossref_primary_10_1016_j_amc_2014_03_121
crossref_primary_10_1016_j_amc_2014_03_010
crossref_primary_10_1007_s11063_018_9896_3
crossref_primary_10_1155_2013_543947
crossref_primary_10_1016_j_nahs_2011_11_002
crossref_primary_10_1016_j_neucom_2015_04_038
crossref_primary_10_3390_axioms12060574
crossref_primary_10_1016_S0252_9602_13_60021_1
Cites_doi 10.1142/S021949370500133X
10.1016/S0304-4149(01)00126-0
10.1006/jmaa.1996.0030
10.1016/j.jmaa.2008.06.038
10.1016/j.chaos.2006.04.026
10.1016/j.jmaa.2003.12.004
10.1016/j.jde.2007.12.005
10.1016/S0362-546X(99)00149-2
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2009.10.072
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 118
ExternalDocumentID 22581249
10_1016_j_jmaa_2009_10_072
S0022247X09009263
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-a0db2e1c67f2fc06cde0dba2aae7fe07c1bcb780b7e55c9d88c775d5da8898053
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282354000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Mon Jul 21 09:14:48 EDT 2025
Tue Nov 18 21:09:14 EST 2025
Sat Nov 29 02:55:55 EST 2025
Fri Feb 23 02:23:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stochastically ultimate boundedness
Kolmogorov-type system
Stochastic functional differential equations
Moment average in time
Lotka–Volterra system
Existence condition
Asymptotic behavior
Lotka-Volterra system
Global solution
Stochastic system
Functional
Mathematical analysis
Positive solution
Asymptotic solution
Application
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-a0db2e1c67f2fc06cde0dba2aae7fe07c1bcb780b7e55c9d88c775d5da8898053
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2009.10.072
PageCount 15
ParticipantIDs pascalfrancis_primary_22581249
crossref_citationtrail_10_1016_j_jmaa_2009_10_072
crossref_primary_10_1016_j_jmaa_2009_10_072
elsevier_sciencedirect_doi_10_1016_j_jmaa_2009_10_072
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mao (bib008) 1997
Murray (bib011) 2002
Mao (bib010) 2005; 5
Mao (bib007) 1994
Pang, Deng, Mao (bib012) 2008; 15
Mao, Marion, Renshaw (bib009) 2002; 97
Han, Teng, Xiao (bib005) 2006; 30
Bahar, Mao (bib002) 2004; 11
Teng (bib014) 2000; 42
Bahar, Mao (bib001) 2004; 292
B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004
Kuang (bib006) 1993
Faria, Oliveira (bib003) 2008; 244
Tang, Kuang (bib013) 1996; 197
Wu, Hu (bib015) 2008; 347
Han (10.1016/j.jmaa.2009.10.072_bib005) 2006; 30
Mao (10.1016/j.jmaa.2009.10.072_bib008) 1997
Mao (10.1016/j.jmaa.2009.10.072_bib007) 1994
Tang (10.1016/j.jmaa.2009.10.072_bib013) 1996; 197
Teng (10.1016/j.jmaa.2009.10.072_bib014) 2000; 42
Murray (10.1016/j.jmaa.2009.10.072_bib011) 2002
Wu (10.1016/j.jmaa.2009.10.072_bib015) 2008; 347
Pang (10.1016/j.jmaa.2009.10.072_bib012) 2008; 15
Bahar (10.1016/j.jmaa.2009.10.072_bib001) 2004; 292
10.1016/j.jmaa.2009.10.072_bib004
Kuang (10.1016/j.jmaa.2009.10.072_bib006) 1993
Faria (10.1016/j.jmaa.2009.10.072_bib003) 2008; 244
Bahar (10.1016/j.jmaa.2009.10.072_bib002) 2004; 11
Mao (10.1016/j.jmaa.2009.10.072_bib009) 2002; 97
Mao (10.1016/j.jmaa.2009.10.072_bib010) 2005; 5
References_xml – year: 1993
  ident: bib006
  article-title: Delay Differential Equations with Applications in Population Dynamics
– volume: 15
  start-page: 603
  year: 2008
  end-page: 620
  ident: bib012
  article-title: Asymptotic properties of stochastic population dynamics
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A
– volume: 5
  start-page: 149
  year: 2005
  end-page: 162
  ident: bib010
  article-title: Delay population dynamics and environmental noise
  publication-title: Stoch. Dyn.
– volume: 347
  start-page: 534
  year: 2008
  end-page: 549
  ident: bib015
  article-title: Stochastic functional Kolmogorov-type population dynamics
  publication-title: J. Math. Anal. Appl.
– volume: 11
  start-page: 377
  year: 2004
  end-page: 400
  ident: bib002
  article-title: Stochastic delay population dynamics
  publication-title: Int. J. Pure Appl. Math.
– reference: B.M. Gary, A functional equation characterizing monomial functions used in permanence theory for ecological differential equation, in: Universitatis Iagellonicae Acta Mathematica, Fasciculus XLII, 2004
– year: 1994
  ident: bib007
  article-title: Exponential Stability of Stochastic Differential Equations
– volume: 97
  start-page: 95
  year: 2002
  end-page: 110
  ident: bib009
  article-title: Environmental noise suppresses explosion in population dynamics
  publication-title: Stochastic Process. Appl.
– year: 2002
  ident: bib011
  article-title: Mathematical Biology, I. An Introduction
– volume: 30
  start-page: 748
  year: 2006
  end-page: 758
  ident: bib005
  article-title: Persistence and average persistence of a nonautonomous Kolmogorov system
  publication-title: Chaos Solitons Fractals
– year: 1997
  ident: bib008
  article-title: Stochastic Differential Equations and Applications
– volume: 197
  start-page: 427
  year: 1996
  end-page: 447
  ident: bib013
  article-title: Permanence in Kolmogorov-type systems of nonautonomous functional differential equations
  publication-title: J. Math. Anal. Appl.
– volume: 292
  start-page: 364
  year: 2004
  end-page: 380
  ident: bib001
  article-title: Stochastic delay Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
– volume: 244
  start-page: 1049
  year: 2008
  end-page: 1079
  ident: bib003
  article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks
  publication-title: J. Differential Equations
– volume: 42
  start-page: 1221
  year: 2000
  end-page: 1230
  ident: bib014
  article-title: The almost periodic Kolmogorov competitive systems
  publication-title: Nonlinear Anal.
– volume: 5
  start-page: 149
  year: 2005
  ident: 10.1016/j.jmaa.2009.10.072_bib010
  article-title: Delay population dynamics and environmental noise
  publication-title: Stoch. Dyn.
  doi: 10.1142/S021949370500133X
– volume: 97
  start-page: 95
  year: 2002
  ident: 10.1016/j.jmaa.2009.10.072_bib009
  article-title: Environmental noise suppresses explosion in population dynamics
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/S0304-4149(01)00126-0
– volume: 197
  start-page: 427
  year: 1996
  ident: 10.1016/j.jmaa.2009.10.072_bib013
  article-title: Permanence in Kolmogorov-type systems of nonautonomous functional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0030
– ident: 10.1016/j.jmaa.2009.10.072_bib004
– volume: 347
  start-page: 534
  year: 2008
  ident: 10.1016/j.jmaa.2009.10.072_bib015
  article-title: Stochastic functional Kolmogorov-type population dynamics
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.06.038
– year: 1993
  ident: 10.1016/j.jmaa.2009.10.072_bib006
– volume: 11
  start-page: 377
  year: 2004
  ident: 10.1016/j.jmaa.2009.10.072_bib002
  article-title: Stochastic delay population dynamics
  publication-title: Int. J. Pure Appl. Math.
– volume: 30
  start-page: 748
  year: 2006
  ident: 10.1016/j.jmaa.2009.10.072_bib005
  article-title: Persistence and average persistence of a nonautonomous Kolmogorov system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.026
– year: 2002
  ident: 10.1016/j.jmaa.2009.10.072_bib011
– volume: 292
  start-page: 364
  year: 2004
  ident: 10.1016/j.jmaa.2009.10.072_bib001
  article-title: Stochastic delay Lotka–Volterra model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.12.004
– year: 1994
  ident: 10.1016/j.jmaa.2009.10.072_bib007
– volume: 244
  start-page: 1049
  year: 2008
  ident: 10.1016/j.jmaa.2009.10.072_bib003
  article-title: Local and global stability for Lotka–Volterra systems with distributed delays and instantaneous negative feedbacks
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.12.005
– year: 1997
  ident: 10.1016/j.jmaa.2009.10.072_bib008
– volume: 42
  start-page: 1221
  year: 2000
  ident: 10.1016/j.jmaa.2009.10.072_bib014
  article-title: The almost periodic Kolmogorov competitive systems
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(99)00149-2
– volume: 15
  start-page: 603
  year: 2008
  ident: 10.1016/j.jmaa.2009.10.072_bib012
  article-title: Asymptotic properties of stochastic population dynamics
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. A
SSID ssj0011571
Score 2.0818994
Snippet In general, population systems are often subject to environmental noise. This paper considers the stochastic functional Kolmogorov-type system d x ( t ) = diag...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Exact sciences and technology
Kolmogorov-type system
Lotka–Volterra system
Mathematical analysis
Mathematics
Moment average in time
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Sciences and techniques of general use
Stochastic functional differential equations
Stochastically ultimate boundedness
Title Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system
URI https://dx.doi.org/10.1016/j.jmaa.2009.10.072
Volume 364
WOSCitedRecordID wos000282354000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMIIZ5ieax84FYF5VHHznGFFvEQqz0sUrkQOY69u6VNqrapll_A32b8iJMWdcUeuESR1Thpvs-eiWf8DUJvVZRISrIoAFMZBuOUw5hLSxIUHOyBolKEqTLFJujpKZtMsrPB4He7F2Yzo1XFrq-zxX-FGtoAbL119hZw-06hAc4BdDgC7HD8J-DPTBrWRo7a2_j4AF_9mi_WtZZodbvzGxMjAP9PXHIt2DzSZs6tDn6pZ_P6ol7Wm8Cs01rN5z3O7NyrvxrtASd0YoRgexFybwEa4zM3P3usMsuwl1ob9MInCV2Z1u-N7K9N6LC6T2np9grEYzrpz7eJlS3fIpadPV0lYmeIIzsx_zXH2-WG6bvpnHMrOKrT82wBoG1B7R1D59MP28y2aa770JU4M2jIoY876CAG6rIhOjj-dDL57ANSEaFRKzyv_5Dbf2VTBXefZJ-P82DBVwCDsiVTen7M-SP00GGGjy1xHqOBrJ6g-189fqun6EdLIdxSCAOSGCiEOwphTyFcK9xRCHcUwjsUwpZCz9C3Dyfn7z8Grg5HIJIkXAc8LItYRiKlKlYweEUpoYXHnEuqZEhFVIiCsrCgkhCRlYwJSklJSs5YxmCWf46GVV3JFwhTBQ66EOOxSuFTmadM8SihRMRhqT-l1SGK2jeXCydSr2ulzPL9mB2ikb9mYSVabvw1aQHJnZNpnccc-HXjdUdb6PlbgUHUTnL28laP8Qrd6wbMazRcLxv5Bt0Vm_XVannk2PcHwRGu3Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+solution+and+its+asymptotic+behaviour+of+stochastic+functional+Kolmogorov-type+system&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Wu%2C+Fuke&rft.au=Hu%2C+Shigeng&rft.au=Liu%2C+Yue&rft.date=2010-04-01&rft.issn=0022-247X&rft.volume=364&rft.issue=1&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jmaa.2009.10.072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmaa_2009_10_072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon