A novel binary artificial bee colony algorithm based on genetic operators

This study proposes a novel binary version of the artificial bee colony algorithm based on genetic operators (GB-ABC) such as crossover and swap to solve binary optimization problems. Integrated to the neighbourhood searching mechanism of the basic ABC algorithm, the modification comprises four stag...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 297; pp. 154 - 170
Main Authors: Ozturk, Celal, Hancer, Emrah, Karaboga, Dervis
Format: Journal Article
Language:English
Published: Elsevier Inc 10.03.2015
Subjects:
ISSN:0020-0255
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study proposes a novel binary version of the artificial bee colony algorithm based on genetic operators (GB-ABC) such as crossover and swap to solve binary optimization problems. Integrated to the neighbourhood searching mechanism of the basic ABC algorithm, the modification comprises four stages: (1) In neighbourhood of a (current) food source, randomly select two food sources from population and generate a solution including zeros (Zero) outside the population; (2) apply two-point crossover operator between the current, two neighbourhood, global best and Zero food sources to create children food sources; (3) apply swap operator to the children food sources to generate grandchildren food sources; and (4) select the best food source as a neighbourhood food source of the current solution among the children and grandchildren food sources. In this way, the global–local search ability of the basic ABC algorithm is improved in binary domain. The effectiveness of the proposed algorithm GB-ABC is tested on two well-known binary optimization problems: dynamic image clustering and 0–1 knapsack problems. The obtained results clearly indicate that GB-ABC is the most suitable algorithm in binary optimization when compared with the other well-known existing binary optimization algorithms. In addition, the achievement of the proposed algorithm is supported by applying it to the CEC2005 benchmark numerical problems.
AbstractList This study proposes a novel binary version of the artificial bee colony algorithm based on genetic operators (GB-ABC) such as crossover and swap to solve binary optimization problems. Integrated to the neighbourhood searching mechanism of the basic ABC algorithm, the modification comprises four stages: (1) In neighbourhood of a (current) food source, randomly select two food sources from population and generate a solution including zeros (Zero) outside the population; (2) apply two-point crossover operator between the current, two neighbourhood, global best and Zero food sources to create children food sources; (3) apply swap operator to the children food sources to generate grandchildren food sources; and (4) select the best food source as a neighbourhood food source of the current solution among the children and grandchildren food sources. In this way, the global–local search ability of the basic ABC algorithm is improved in binary domain. The effectiveness of the proposed algorithm GB-ABC is tested on two well-known binary optimization problems: dynamic image clustering and 0–1 knapsack problems. The obtained results clearly indicate that GB-ABC is the most suitable algorithm in binary optimization when compared with the other well-known existing binary optimization algorithms. In addition, the achievement of the proposed algorithm is supported by applying it to the CEC2005 benchmark numerical problems.
Author Karaboga, Dervis
Ozturk, Celal
Hancer, Emrah
Author_xml – sequence: 1
  givenname: Celal
  surname: Ozturk
  fullname: Ozturk, Celal
  email: celal@erciyes.edu.tr
– sequence: 2
  givenname: Emrah
  surname: Hancer
  fullname: Hancer, Emrah
  email: emrahhancer@erciyes.edu.tr
– sequence: 3
  givenname: Dervis
  surname: Karaboga
  fullname: Karaboga, Dervis
  email: karaboga@erciyes.edu.tr
BookMark eNp9kD1vwjAQhj1QqUD7A7pl7EJ6jolD1AmhfklIXdrZci5nahRsahuk_vsa0akD0-levc9J90zYyHlHjN1xKDlw-bAtrYtlBXye9xIkjNgYoIIZVHV9zSYxbgFg3kg5Zm_LwvkjDUVnnQ4_hQ7JGotW54SoQD94l9Nh44NNX7ui05H6wrtiQ46SxcLvKejkQ7xhV0YPkW7_5pR9Pj99rF5n6_eXt9VyPUMhIM1aDQusDXTzXkokg4b3taz1QoNouOhbUzckjJF8gVp3dSOwarAVJFrDEToxZffnu_vgvw8Uk9rZiDQM2pE_RMWlBGjatqpztTlXMfgYAxmFNulkvUtB20FxUCdhaquyMHUSdoqysEzyf-Q-2F0WdJF5PDOUvz9aCiqiJYfU20CYVO_tBfoXLAOIbw
CitedBy_id crossref_primary_10_1016_j_ijleo_2016_09_085
crossref_primary_10_1109_ACCESS_2021_3124710
crossref_primary_10_1016_j_ins_2018_02_025
crossref_primary_10_1016_j_engappai_2025_110464
crossref_primary_10_1016_j_swevo_2016_06_004
crossref_primary_10_1007_s00500_023_08491_4
crossref_primary_10_1007_s10845_017_1313_7
crossref_primary_10_1016_j_knosys_2017_04_015
crossref_primary_10_1007_s00500_017_2485_y
crossref_primary_10_1016_j_future_2018_06_054
crossref_primary_10_1016_j_jksuci_2018_09_017
crossref_primary_10_3390_sym13030419
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_1007_s00500_017_2539_1
crossref_primary_10_1109_TFUZZ_2020_2973123
crossref_primary_10_1016_j_adhoc_2016_06_009
crossref_primary_10_1016_j_eswa_2019_03_039
crossref_primary_10_1016_j_jestch_2025_102057
crossref_primary_10_1016_j_ins_2019_10_029
crossref_primary_10_1016_j_asoc_2020_106799
crossref_primary_10_1016_j_asoc_2016_04_019
crossref_primary_10_1007_s13042_020_01165_9
crossref_primary_10_1155_2021_6648650
crossref_primary_10_1016_j_ins_2017_11_007
crossref_primary_10_1016_j_ins_2019_07_022
crossref_primary_10_3390_sym12081222
crossref_primary_10_1007_s10489_021_02611_z
crossref_primary_10_1016_j_asoc_2022_109590
crossref_primary_10_1051_matecconf_201817302002
crossref_primary_10_1016_j_asoc_2018_01_001
crossref_primary_10_3390_sym11070876
crossref_primary_10_1016_j_eswa_2020_113717
crossref_primary_10_1155_2017_6043109
crossref_primary_10_1007_s00357_018_9270_1
crossref_primary_10_1016_j_phycom_2017_06_003
crossref_primary_10_3390_a15010024
crossref_primary_10_1002_cpe_5218
crossref_primary_10_1080_0305215X_2019_1657113
crossref_primary_10_1016_j_swevo_2024_101567
crossref_primary_10_1177_09544062241288633
crossref_primary_10_4018_JITR_2019010107
crossref_primary_10_1007_s00371_021_02367_0
crossref_primary_10_1016_j_eswa_2021_114817
crossref_primary_10_1109_ACCESS_2019_2942340
crossref_primary_10_1007_s00500_017_2689_1
crossref_primary_10_1016_j_ins_2015_08_004
crossref_primary_10_1007_s10586_024_04351_4
crossref_primary_10_1016_j_ins_2016_05_037
crossref_primary_10_4018_IJSIR_352061
crossref_primary_10_1007_s10489_017_1025_x
crossref_primary_10_1016_j_epsr_2022_109094
crossref_primary_10_1016_j_ins_2016_03_023
crossref_primary_10_1016_j_future_2019_03_032
crossref_primary_10_1049_iet_gtd_2020_0729
crossref_primary_10_1007_s40747_020_00171_2
crossref_primary_10_1109_ACCESS_2021_3105796
crossref_primary_10_1016_j_asoc_2021_107351
crossref_primary_10_3233_JIFS_169079
crossref_primary_10_3233_ICA_200618
crossref_primary_10_1016_j_epsr_2019_105948
crossref_primary_10_1016_j_ins_2022_08_016
crossref_primary_10_1016_j_cie_2022_108605
crossref_primary_10_1016_j_swevo_2018_02_013
crossref_primary_10_1177_00368504211016205
crossref_primary_10_1098_rsos_221256
crossref_primary_10_1016_j_cie_2017_12_009
crossref_primary_10_1007_s00521_022_07969_w
crossref_primary_10_1016_j_future_2017_05_044
crossref_primary_10_1007_s12351_018_0427_9
crossref_primary_10_1016_j_energy_2021_120790
crossref_primary_10_1016_j_ins_2018_01_026
crossref_primary_10_1016_j_cie_2023_109080
crossref_primary_10_1016_j_matcom_2025_03_019
crossref_primary_10_1016_j_ins_2015_08_014
crossref_primary_10_1007_s10586_016_0683_5
crossref_primary_10_1016_j_ins_2020_03_064
crossref_primary_10_1016_j_eswa_2019_113097
crossref_primary_10_1016_j_asoc_2016_12_017
crossref_primary_10_1007_s11227_019_03083_2
crossref_primary_10_1080_01969722_2018_1541597
crossref_primary_10_1109_TSC_2016_2612663
crossref_primary_10_1186_s13638_016_0802_2
crossref_primary_10_1002_er_8192
crossref_primary_10_1109_ACCESS_2022_3218685
crossref_primary_10_1016_j_ins_2016_07_022
crossref_primary_10_1016_j_asoc_2019_105576
crossref_primary_10_1016_j_eswa_2018_09_050
crossref_primary_10_3390_sym12060922
crossref_primary_10_1049_iet_ipr_2020_0111
crossref_primary_10_1016_j_asoc_2018_09_007
crossref_primary_10_1155_2021_5525602
crossref_primary_10_2166_hydro_2017_145
crossref_primary_10_1016_j_asoc_2020_107054
crossref_primary_10_1016_j_swevo_2019_01_003
crossref_primary_10_1016_j_ins_2017_08_067
crossref_primary_10_1007_s11042_024_20121_1
crossref_primary_10_1007_s00521_023_08358_7
crossref_primary_10_1016_j_heliyon_2023_e20867
crossref_primary_10_1155_2018_3407646
crossref_primary_10_1007_s00521_016_2348_y
crossref_primary_10_1049_rsn2_70028
crossref_primary_10_1371_journal_pone_0274625
crossref_primary_10_1007_s00521_022_07058_y
crossref_primary_10_1016_j_neucom_2016_12_037
crossref_primary_10_3390_math9182250
crossref_primary_10_1007_s00500_019_03785_y
crossref_primary_10_1016_j_eswa_2023_120377
crossref_primary_10_1016_j_asoc_2021_107462
crossref_primary_10_1016_j_ins_2021_10_025
Cites_doi 10.1007/s11276-012-0438-z
10.4249/scholarpedia.1462
10.1016/j.asoc.2011.08.038
10.1109/SIS.2013.6615186
10.1080/01969727408546059
10.1007/978-3-642-16527-6_14
10.1109/TPAMI.1979.4766909
10.4249/scholarpedia.6915
10.1109/34.85677
10.1016/j.asoc.2007.12.008
10.1109/SIS.2011.5952562
10.3906/elk-1203-104
10.1109/91.227387
10.1016/j.ins.2010.07.015
10.1007/s10589-012-9521-8
10.1016/j.amc.2010.08.049
10.1016/j.ins.2012.01.021
10.1080/01969727308546047
10.1007/s10898-007-9149-x
10.1109/ELECO.2013.6713896
10.1109/TCYB.2014.2298916
10.1007/s10044-005-0015-5
10.1109/SIS.2005.1501641
10.3390/s110606056
10.1007/978-3-540-28646-2_8
10.1109/TPWRS.2010.2059716
10.1109/TEVC.2009.2012163
10.1016/S0167-8655(99)00056-2
10.1109/MHS.1995.494215
10.1007/s10044-014-0365-y
10.15388/Informatica.2014.25
10.1006/cviu.2001.0951
10.1007/s10044-004-0218-1
10.1016/j.asoc.2013.07.009
10.1007/s10462-009-9127-4
10.1109/TSMCA.2007.909595
10.1109/ICDM.2001.989517
10.1016/j.asoc.2011.05.039
10.1145/331499.331504
10.1016/j.asoc.2009.12.025
10.1007/s10462-012-9328-0
10.1007/s11269-005-9001-3
10.1016/j.swevo.2011.11.003
10.1109/MCI.2010.936309
10.1016/j.asoc.2007.05.007
10.1109/CEC.2012.6252919
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2014.10.060
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EndPage 170
ExternalDocumentID 10_1016_j_ins_2014_10_060
S0020025514010536
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
ADVLN
AFFNX
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-9a08c5f0b4d66cefcf1d565a8a03713d9f57e3ff618caab573c27c93e39f1c0b3
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347862200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sun Sep 28 04:28:55 EDT 2025
Sat Nov 29 07:58:11 EST 2025
Tue Nov 18 21:54:59 EST 2025
Fri Jul 18 18:51:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Artificial bee colony
Dynamic clustering
Binary optimization
Genetic algorithm
Knapsack problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-9a08c5f0b4d66cefcf1d565a8a03713d9f57e3ff618caab573c27c93e39f1c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660079925
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1660079925
crossref_citationtrail_10_1016_j_ins_2014_10_060
crossref_primary_10_1016_j_ins_2014_10_060
elsevier_sciencedirect_doi_10_1016_j_ins_2014_10_060
PublicationCentury 2000
PublicationDate 2015-03-10
PublicationDateYYYYMMDD 2015-03-10
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-10
  day: 10
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, Liang, Guo, Fan, Yin (b0220) 2011; 11
Bezdek (b0015) 1974; 3
L. Anne, X. Descombes, J. Zerubia, Fully unsupervised fuzzy clustering with entropy criterion, in: D. Xavier, Z. Josiane (Eds.), 15th International Conference on Pattern Recognition (ICPR’00), 2000, pp. 3998–3998.
Omran, Salman, Engelbrecht (b0255) 2006; 8
Yew-Soon, Meng-Hiot, Xianshun (b0355) 2010; 5
Akay, Karaboga (b0005) 2012; 192
Bezdek (b0020) 1974
Kuo, Syu, Chen, Tien (b0210) 2012; 195
Haddad, Afshar, Mariño (b0110) 2006; 20
M. Omran, Particle Swarm Optimization Methods for Pattern Recognition and Image Processing, Ph.D. Thesis, University of Pretoria, Environment and Information Technology, 2004.
Karaboga, Ozturk (b0175) 2011; 11
Raziuddin, Sattar, Lakshmi, Parvez (b0300) 2011
Magalhaes-Mendes (b0230) 2013; 12
Karaboga (b0140) 2010
Das, Biswas, Panigrahi, Kundu, Basu (b0070) 2014; 44
E. Zitzler, M. Laumanns, Test problems and test data for multiobjective optimizers, in: Systems Optimization, Test Problem Suite, ETH, Zurich, 2014.
Das, Biswas, Kundu (b0065) 2013; 13
Karaboga, Okdem, Ozturk (b0165) 2012; 18
Wu, Fan (b0330) 2011
Karaboga, Basturk (b0150) 2007; 39
P. Lucic, D. Teodorovic, Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence, in: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, 2001, pp. 441–445.
Kellerer, Pferschy, Pisinger (b0190) 2004
Chou, Su, Lai (b0045) 2004; 7
Kashan, Nahavandi, Kashan (b0185) 2012; 12
Dawkins (b0085) 1976
S. Gordon, Unsupervised Image Clustering using Probabilistic Continuous Models and Information Theoretic Principles, Tel-Aviv University, Tel-Aviv 69978, Israel, 2006.
Jain, Murty, Flynn (b0130) 1999; 31
.
M. Dorigo, Optimization Learning and Natural Algorithms, Ph.D. Thesis, Politecnico Di Milano, Italy, 1992.
Das, Abraham, Konar (b0055) 2008; 38
M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: IEEE International Conference on Data Mining (ICDM 2001), San Jose, California, USA, 2001, pp. 187–194.
Pham, Ghanbarzadeh, Koc, Otri, Rahim, Zaidi (b0285) 2005
Karaboga, Akay (b0145) 2009; 31
H. Wedde, M. Farooq, Y. Zhang, BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior, 2004, pp. 83–94.
Millonas (b0235) 1994
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: 5th Berkeley Symp. Math. Stat. Probability, 1967, pp. 281–297.
Neri, Cotta (b0245) 2012; 2
Ozturk, Hancer, Karaboga (b0265) 2014; 25
Pham (b0290) 2001; 84
E. Hancer, C. Ozturk, D. Karaboga, Extraction of brain tumors from MRI images with artificial bee colony based segmentation methodology, in: ELECO’2013, Bursa, Turkiye, 2013.
Z. Yan, Z. Chun-Guang, W. Sheng-Sheng, H. Lan, A dynamic clustering based on genetic algorithm, in: International Conference on Machine Learning and Cybernetics, vol. 221, 2003, pp. 222–224.
Ozturk, Karaboga, Gorkemli (b0270) 2011; 11
R.H. Turi, Clustering-Based Colour Image Segmentation, Ph.D. Thesis, Monash University, Australia, 2001.
Kohonen (b0200) 1995
Krishnapuram, Keller (b0205) 1993; 1
Calinski, Harabasz (b0040) 1974; 3
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: 6th International Symposium on Micro Machine and Human Science, 1995.
H. Wedde, M. Farooq, The wisdom of the hive applied to mobile ad-hoc networks, in: Swarm Intelligence Symposium SIS 2005, 2005, pp. 341–348.
Chung, Han, Kit-Po (b0050) 2011; 26
C. Wallace, D. Dowe, Intrinsic classification by MML – the snob program, in: Seventh Australian Joint Conference on Artificial Intelligence, UNE, Armidale, NSW, Australia, 1994, pp. 37–44.
Yang (b0350) 2005
E. Hancer, C. Ozturk, D. Karaboga, Artificial bee colony based image clustering method, in: IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, 2012, pp. 1–5.
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Nanyang Technological University, Singapore, IIT Kanpur, India, 2005.
Karaboga, Ozturk (b0170) 2009; 19
Mukhopadhyay, Maulik, Bandyopadhyay (b0240) 2009; 13
Xu, Lei (b0340) 2010
Zhu, Kwong (b0360) 2010
Das, Konar (b0075) 2009; 9
Davies, Bouldin (b0080) 1979; 1
Karaboga, Gorkemli, Ozturk, Karaboga (b0160) 2014; 42
Birattari (b0025) 2007; 2
Kashan, Kashan, Nahavandi (b0180) 2013; 55
Kiran, Gunduz (b0195) 2013; 21
Ozturk, Hancer, Karaboga (b0260) 2014
Dunn (b0095) 1974; 4
S. Biswas, S. Kundu, D. Bose, S. Das, P.N. Suganthan, B.K. Panigrahi, Migrating forager population in a multi-population artificial bee colony algorithm with modified perturbation schemes, in: IEEE Symposium on Swarm Intelligence (SIS), 2013, pp. 248–255.
D. Teodorovic, M. Dell’orco, Bee colony optimization – a cooperative learning approach to complex transportation problems, in: 16th mini-EURO Conference on Advanced OR and AI Methods in Transportation, 2005, pp. 51–60.
Biswas, Das, Kundu, Patra (b0030) 2013; 18
D. Karaboga, An Idea based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
G. Pampara, A.P. Engelbrecht, Binary artificial bee colony optimization, in: IEEE Symposium on Swarm Intelligence (SIS), 2011, pp. 1–8.
Karaboga, Basturk (b0155) 2008; 8
J. Puzicha, T. Hofmann, J.M. Buhmann, Histogram Clustering for Unsupervised Image Segmentation, in: CVPR’99, 1999.
Xie, Beni (b0335) 1991; 3
Das, Abraham, Konar (b0060) 2009
Wu (10.1016/j.ins.2014.10.060_b0330) 2011
Magalhaes-Mendes (10.1016/j.ins.2014.10.060_b0230) 2013; 12
Karaboga (10.1016/j.ins.2014.10.060_b0170) 2009; 19
10.1016/j.ins.2014.10.060_b0115
Dunn (10.1016/j.ins.2014.10.060_b0095) 1974; 4
Karaboga (10.1016/j.ins.2014.10.060_b0150) 2007; 39
Karaboga (10.1016/j.ins.2014.10.060_b0155) 2008; 8
Pham (10.1016/j.ins.2014.10.060_b0285) 2005
10.1016/j.ins.2014.10.060_b0315
Kashan (10.1016/j.ins.2014.10.060_b0185) 2012; 12
Kuo (10.1016/j.ins.2014.10.060_b0210) 2012; 195
Das (10.1016/j.ins.2014.10.060_b0075) 2009; 9
Das (10.1016/j.ins.2014.10.060_b0070) 2014; 44
Neri (10.1016/j.ins.2014.10.060_b0245) 2012; 2
10.1016/j.ins.2014.10.060_b0035
Calinski (10.1016/j.ins.2014.10.060_b0040) 1974; 3
10.1016/j.ins.2014.10.060_b0310
Pham (10.1016/j.ins.2014.10.060_b0290) 2001; 84
10.1016/j.ins.2014.10.060_b0275
Krishnapuram (10.1016/j.ins.2014.10.060_b0205) 1993; 1
10.1016/j.ins.2014.10.060_b0225
10.1016/j.ins.2014.10.060_b0105
Kashan (10.1016/j.ins.2014.10.060_b0180) 2013; 55
Dawkins (10.1016/j.ins.2014.10.060_b0085) 1976
10.1016/j.ins.2014.10.060_b0305
Karaboga (10.1016/j.ins.2014.10.060_b0175) 2011; 11
Karaboga (10.1016/j.ins.2014.10.060_b0165) 2012; 18
Kohonen (10.1016/j.ins.2014.10.060_b0200) 1995
Xie (10.1016/j.ins.2014.10.060_b0335) 1991; 3
Ozturk (10.1016/j.ins.2014.10.060_b0260) 2014
Chung (10.1016/j.ins.2014.10.060_b0050) 2011; 26
Akay (10.1016/j.ins.2014.10.060_b0005) 2012; 192
10.1016/j.ins.2014.10.060_b0100
Raziuddin (10.1016/j.ins.2014.10.060_b0300) 2011
Das (10.1016/j.ins.2014.10.060_b0055) 2008; 38
Haddad (10.1016/j.ins.2014.10.060_b0110) 2006; 20
10.1016/j.ins.2014.10.060_b0345
Yew-Soon (10.1016/j.ins.2014.10.060_b0355) 2010; 5
Jain (10.1016/j.ins.2014.10.060_b0130) 1999; 31
Kiran (10.1016/j.ins.2014.10.060_b0195) 2013; 21
Ma (10.1016/j.ins.2014.10.060_b0220) 2011; 11
Das (10.1016/j.ins.2014.10.060_b0065) 2013; 13
Birattari (10.1016/j.ins.2014.10.060_b0025) 2007; 2
10.1016/j.ins.2014.10.060_b0215
Kellerer (10.1016/j.ins.2014.10.060_b0190) 2004
Ozturk (10.1016/j.ins.2014.10.060_b0270) 2011; 11
Yang (10.1016/j.ins.2014.10.060_b0350) 2005
Biswas (10.1016/j.ins.2014.10.060_b0030) 2013; 18
Ozturk (10.1016/j.ins.2014.10.060_b0265) 2014; 25
10.1016/j.ins.2014.10.060_b0090
Millonas (10.1016/j.ins.2014.10.060_b0235) 1994
10.1016/j.ins.2014.10.060_b0135
Zhu (10.1016/j.ins.2014.10.060_b0360) 2010
Davies (10.1016/j.ins.2014.10.060_b0080) 1979; 1
10.1016/j.ins.2014.10.060_b0250
10.1016/j.ins.2014.10.060_b0295
10.1016/j.ins.2014.10.060_b0010
Xu (10.1016/j.ins.2014.10.060_b0340) 2010
Chou (10.1016/j.ins.2014.10.060_b0045) 2004; 7
10.1016/j.ins.2014.10.060_b0325
Karaboga (10.1016/j.ins.2014.10.060_b0140) 2010
10.1016/j.ins.2014.10.060_b0280
Karaboga (10.1016/j.ins.2014.10.060_b0160) 2014; 42
10.1016/j.ins.2014.10.060_b0320
Bezdek (10.1016/j.ins.2014.10.060_b0020) 1974
Mukhopadhyay (10.1016/j.ins.2014.10.060_b0240) 2009; 13
Omran (10.1016/j.ins.2014.10.060_b0255) 2006; 8
10.1016/j.ins.2014.10.060_b0365
10.1016/j.ins.2014.10.060_b0125
Karaboga (10.1016/j.ins.2014.10.060_b0145) 2009; 31
Bezdek (10.1016/j.ins.2014.10.060_b0015) 1974; 3
10.1016/j.ins.2014.10.060_b0120
Das (10.1016/j.ins.2014.10.060_b0060) 2009
References_xml – volume: 13
  start-page: 4676
  year: 2013
  end-page: 4694
  ident: b0065
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 847
  year: 2012
  end-page: 860
  ident: b0165
  article-title: Cluster based wireless sensor network routing using artificial bee colony algorithm
  publication-title: Wireless Networks
– volume: 9
  start-page: 226
  year: 2009
  end-page: 236
  ident: b0075
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 342
  year: 2012
  end-page: 352
  ident: b0185
  article-title: DisABC: a new artificial bee colony algorithm for binary optimization
  publication-title: Appl. Soft Comput.
– year: 2004
  ident: b0190
  article-title: Knapsack Problems
– volume: 195
  start-page: 124
  year: 2012
  end-page: 140
  ident: b0210
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inform. Sci.
– year: 2010
  ident: b0360
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– reference: S. Biswas, S. Kundu, D. Bose, S. Das, P.N. Suganthan, B.K. Panigrahi, Migrating forager population in a multi-population artificial bee colony algorithm with modified perturbation schemes, in: IEEE Symposium on Swarm Intelligence (SIS), 2013, pp. 248–255.
– year: 1976
  ident: b0085
  article-title: The Selfish Gene
– reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: 6th International Symposium on Micro Machine and Human Science, 1995.
– reference: M. Omran, Particle Swarm Optimization Methods for Pattern Recognition and Image Processing, Ph.D. Thesis, University of Pretoria, Environment and Information Technology, 2004.
– volume: 84
  start-page: 285
  year: 2001
  end-page: 297
  ident: b0290
  article-title: Spatial models for fuzzy clustering
  publication-title: Comput. Vis. Image Underst.
– volume: 31
  start-page: 61
  year: 2009
  end-page: 85
  ident: b0145
  article-title: A survey: algorithms simulating bee swarm intelligence
  publication-title: Artif. Intell. Rev.
– year: 2005
  ident: b0350
  article-title: Engineering optimizations via nature-inspired virtual bee algorithms
  publication-title: Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach
– volume: 38
  start-page: 218
  year: 2008
  end-page: 237
  ident: b0055
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Trans. Syst., Man Cybernet., Part A: Syst. Hum.
– start-page: 51
  year: 2011
  end-page: 56
  ident: b0330
  article-title: Improved artificial bee colony algorithm with chaos
  publication-title: Computer science for Environmental Engineering and Ecoinformatics
– volume: 44
  start-page: 1884
  year: 2014
  end-page: 1897
  ident: b0070
  article-title: A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization
  publication-title: IEEE Trans. Cybernet.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b0130
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– year: 1994
  ident: b0235
  article-title: Swarms, Phase Transitions and Collective Intelligence
– reference: M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning of a data set, in: IEEE International Conference on Data Mining (ICDM 2001), San Jose, California, USA, 2001, pp. 187–194.
– reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Nanyang Technological University, Singapore, IIT Kanpur, India, 2005.
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: b0005
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inform. Sci.
– reference: S. Gordon, Unsupervised Image Clustering using Probabilistic Continuous Models and Information Theoretic Principles, Tel-Aviv University, Tel-Aviv 69978, Israel, 2006.
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0150
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– start-page: 157
  year: 1974
  end-page: 171
  ident: b0020
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: J. Math. Biol.
– reference: H. Wedde, M. Farooq, The wisdom of the hive applied to mobile ad-hoc networks, in: Swarm Intelligence Symposium SIS 2005, 2005, pp. 341–348.
– volume: 12
  start-page: 164
  year: 2013
  end-page: 173
  ident: b0230
  article-title: A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem
  publication-title: WSEAS Trans. Comput.
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: b0080
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: E. Hancer, C. Ozturk, D. Karaboga, Extraction of brain tumors from MRI images with artificial bee colony based segmentation methodology, in: ELECO’2013, Bursa, Turkiye, 2013.
– reference: E. Hancer, C. Ozturk, D. Karaboga, Artificial bee colony based image clustering method, in: IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, 2012, pp. 1–5.
– start-page: 59
  year: 2011
  end-page: 69
  ident: b0300
  article-title: Differential artificial bee colony for dynamic environment
  publication-title: Advances in Computer Science and Information Technology
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0245
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol. Comput.
– reference: R.H. Turi, Clustering-Based Colour Image Segmentation, Ph.D. Thesis, Monash University, Australia, 2001.
– volume: 19
  start-page: 279
  year: 2009
  end-page: 292
  ident: b0170
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Network World
– year: 2014
  ident: b0260
  article-title: Improved clustering criterion for image clustering with artificial bee colony algorithm
  publication-title: Pattern Anal. Appl.
– reference: J. MacQueen, Some methods for classification and analysis of multivariate observations, in: 5th Berkeley Symp. Math. Stat. Probability, 1967, pp. 281–297.
– volume: 13
  start-page: 991
  year: 2009
  end-page: 1005
  ident: b0240
  article-title: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 481
  year: 2013
  end-page: 513
  ident: b0180
  article-title: A novel differential evolution algorithm for binary optimization
  publication-title: Comput. Optim. Appl.
– reference: J. Puzicha, T. Hofmann, J.M. Buhmann, Histogram Clustering for Unsupervised Image Segmentation, in: CVPR’99, 1999.
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: b0160
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 8
  start-page: 332
  year: 2006
  end-page: 344
  ident: b0255
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
– volume: 18
  start-page: 1
  year: 2013
  end-page: 14
  ident: b0030
  article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft Comput.
– start-page: 6915
  year: 2010
  ident: b0140
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
– reference: D. Teodorovic, M. Dell’orco, Bee colony optimization – a cooperative learning approach to complex transportation problems, in: 16th mini-EURO Conference on Advanced OR and AI Methods in Transportation, 2005, pp. 51–60.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b0040
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– year: 2005
  ident: b0285
  article-title: The bees algorithm
  publication-title: Manufacturing Engineering Centre
– volume: 25
  start-page: 485
  year: 2014
  end-page: 503
  ident: b0265
  article-title: Color quantization: a short review and an application with artificial bee colony algorithm
  publication-title: Informatica
– volume: 2
  start-page: 1462
  year: 2007
  ident: b0025
  article-title: Swarm intelligence
  publication-title: Scholarpedia
– year: 2009
  ident: b0060
  article-title: Metaheuristic Clustering
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0205
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 6056
  year: 2011
  end-page: 6065
  ident: b0270
  article-title: Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm
  publication-title: Sensors
– reference: H. Wedde, M. Farooq, Y. Zhang, BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior, 2004, pp. 83–94.
– reference: L. Anne, X. Descombes, J. Zerubia, Fully unsupervised fuzzy clustering with entropy criterion, in: D. Xavier, Z. Josiane (Eds.), 15th International Conference on Pattern Recognition (ICPR’00), 2000, pp. 3998–3998.
– reference: P. Lucic, D. Teodorovic, Bee system: modeling combinatorial optimization transportation engineering problems by swarm intelligence, in: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, 2001, pp. 441–445.
– volume: 3
  start-page: 58
  year: 1974
  end-page: 72
  ident: b0015
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybernet.
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: b0175
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– start-page: 98
  year: 2010
  end-page: 105
  ident: b0340
  article-title: Multiple sequence alignment based on ABC_SA
  publication-title: Lecture Notes in Computer Science
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b0155
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– reference: E. Zitzler, M. Laumanns, Test problems and test data for multiobjective optimizers, in: Systems Optimization, Test Problem Suite, ETH, Zurich, 2014. <
– reference: C. Wallace, D. Dowe, Intrinsic classification by MML – the snob program, in: Seventh Australian Joint Conference on Artificial Intelligence, UNE, Armidale, NSW, Australia, 1994, pp. 37–44.
– reference: >.
– volume: 21
  start-page: 2307
  year: 2013
  end-page: 2328
  ident: b0195
  article-title: XOR-based artificial bee colony algorithm for binary optimization
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– reference: G. Pampara, A.P. Engelbrecht, Binary artificial bee colony optimization, in: IEEE Symposium on Swarm Intelligence (SIS), 2011, pp. 1–8.
– volume: 3
  start-page: 841
  year: 1991
  end-page: 846
  ident: b0335
  article-title: Validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Learn.
– year: 1995
  ident: b0200
  article-title: Self-Organizing Maps
– volume: 5
  start-page: 24
  year: 2010
  end-page: 31
  ident: b0355
  article-title: Memetic computation-past, present & future [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 4
  start-page: 95
  year: 1974
  end-page: 104
  ident: b0095
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
– reference: Z. Yan, Z. Chun-Guang, W. Sheng-Sheng, H. Lan, A dynamic clustering based on genetic algorithm, in: International Conference on Machine Learning and Cybernetics, vol. 221, 2003, pp. 222–224.
– reference: M. Dorigo, Optimization Learning and Natural Algorithms, Ph.D. Thesis, Politecnico Di Milano, Italy, 1992.
– volume: 11
  start-page: 5205
  year: 2011
  end-page: 5214
  ident: b0220
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 661
  year: 2006
  end-page: 680
  ident: b0110
  article-title: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization
  publication-title: Water Resour. Manage.
– volume: 7
  start-page: 205
  year: 2004
  end-page: 220
  ident: b0045
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal. Appl.
– volume: 26
  start-page: 847
  year: 2011
  end-page: 854
  ident: b0050
  article-title: An advanced quantum-inspired evolutionary algorithm for unit commitment
  publication-title: IEEE Trans. Power Syst.
– reference: D. Karaboga, An Idea based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.ins.2014.10.060_b0030
  article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft Comput.
– volume: 18
  start-page: 847
  year: 2012
  ident: 10.1016/j.ins.2014.10.060_b0165
  article-title: Cluster based wireless sensor network routing using artificial bee colony algorithm
  publication-title: Wireless Networks
  doi: 10.1007/s11276-012-0438-z
– start-page: 157
  year: 1974
  ident: 10.1016/j.ins.2014.10.060_b0020
  article-title: Numerical taxonomy with fuzzy sets
  publication-title: J. Math. Biol.
– volume: 2
  start-page: 1462
  year: 2007
  ident: 10.1016/j.ins.2014.10.060_b0025
  article-title: Swarm intelligence
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1462
– volume: 12
  start-page: 342
  year: 2012
  ident: 10.1016/j.ins.2014.10.060_b0185
  article-title: DisABC: a new artificial bee colony algorithm for binary optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.038
– ident: 10.1016/j.ins.2014.10.060_b0035
  doi: 10.1109/SIS.2013.6615186
– ident: 10.1016/j.ins.2014.10.060_b0310
– volume: 4
  start-page: 95
  year: 1974
  ident: 10.1016/j.ins.2014.10.060_b0095
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: J. Cybern.
  doi: 10.1080/01969727408546059
– ident: 10.1016/j.ins.2014.10.060_b0215
– start-page: 98
  year: 2010
  ident: 10.1016/j.ins.2014.10.060_b0340
  article-title: Multiple sequence alignment based on ABC_SA
  doi: 10.1007/978-3-642-16527-6_14
– volume: 12
  start-page: 164
  year: 2013
  ident: 10.1016/j.ins.2014.10.060_b0230
  article-title: A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem
  publication-title: WSEAS Trans. Comput.
– volume: 1
  start-page: 224
  year: 1979
  ident: 10.1016/j.ins.2014.10.060_b0080
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 6915
  year: 2010
  ident: 10.1016/j.ins.2014.10.060_b0140
  article-title: Artificial bee colony algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6915
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.ins.2014.10.060_b0040
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 3
  start-page: 841
  year: 1991
  ident: 10.1016/j.ins.2014.10.060_b0335
  article-title: Validity measure for fuzzy clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Learn.
  doi: 10.1109/34.85677
– volume: 9
  start-page: 226
  year: 2009
  ident: 10.1016/j.ins.2014.10.060_b0075
  article-title: Automatic image pixel clustering with an improved differential evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.12.008
– ident: 10.1016/j.ins.2014.10.060_b0280
  doi: 10.1109/SIS.2011.5952562
– ident: 10.1016/j.ins.2014.10.060_b0305
– ident: 10.1016/j.ins.2014.10.060_b0135
– start-page: 51
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0330
  article-title: Improved artificial bee colony algorithm with chaos
– volume: 21
  start-page: 2307
  year: 2013
  ident: 10.1016/j.ins.2014.10.060_b0195
  article-title: XOR-based artificial bee colony algorithm for binary optimization
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1203-104
– volume: 1
  start-page: 98
  year: 1993
  ident: 10.1016/j.ins.2014.10.060_b0205
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.ins.2014.10.060_b0005
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.07.015
– year: 2005
  ident: 10.1016/j.ins.2014.10.060_b0285
  article-title: The bees algorithm
– ident: 10.1016/j.ins.2014.10.060_b0275
– volume: 55
  start-page: 481
  year: 2013
  ident: 10.1016/j.ins.2014.10.060_b0180
  article-title: A novel differential evolution algorithm for binary optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9521-8
– ident: 10.1016/j.ins.2014.10.060_b0250
– year: 2010
  ident: 10.1016/j.ins.2014.10.060_b0360
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.08.049
– ident: 10.1016/j.ins.2014.10.060_b0090
– ident: 10.1016/j.ins.2014.10.060_b0315
– volume: 195
  start-page: 124
  year: 2012
  ident: 10.1016/j.ins.2014.10.060_b0210
  article-title: Integration of particle swarm optimization and genetic algorithm for dynamic clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.01.021
– volume: 3
  start-page: 58
  year: 1974
  ident: 10.1016/j.ins.2014.10.060_b0015
  article-title: Cluster validity with fuzzy sets
  publication-title: J. Cybernet.
  doi: 10.1080/01969727308546047
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.ins.2014.10.060_b0150
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– ident: 10.1016/j.ins.2014.10.060_b0125
  doi: 10.1109/ELECO.2013.6713896
– volume: 44
  start-page: 1884
  year: 2014
  ident: 10.1016/j.ins.2014.10.060_b0070
  article-title: A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2014.2298916
– start-page: 59
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0300
  article-title: Differential artificial bee colony for dynamic environment
– volume: 8
  start-page: 332
  year: 2006
  ident: 10.1016/j.ins.2014.10.060_b0255
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-005-0015-5
– ident: 10.1016/j.ins.2014.10.060_b0320
  doi: 10.1109/SIS.2005.1501641
– volume: 11
  start-page: 6056
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0270
  article-title: Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm
  publication-title: Sensors
  doi: 10.3390/s110606056
– ident: 10.1016/j.ins.2014.10.060_b0010
– ident: 10.1016/j.ins.2014.10.060_b0325
  doi: 10.1007/978-3-540-28646-2_8
– volume: 26
  start-page: 847
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0050
  article-title: An advanced quantum-inspired evolutionary algorithm for unit commitment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2059716
– volume: 13
  start-page: 991
  year: 2009
  ident: 10.1016/j.ins.2014.10.060_b0240
  article-title: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2012163
– year: 1976
  ident: 10.1016/j.ins.2014.10.060_b0085
– year: 1994
  ident: 10.1016/j.ins.2014.10.060_b0235
– ident: 10.1016/j.ins.2014.10.060_b0295
  doi: 10.1016/S0167-8655(99)00056-2
– ident: 10.1016/j.ins.2014.10.060_b0100
  doi: 10.1109/MHS.1995.494215
– year: 2004
  ident: 10.1016/j.ins.2014.10.060_b0190
– year: 2014
  ident: 10.1016/j.ins.2014.10.060_b0260
  article-title: Improved clustering criterion for image clustering with artificial bee colony algorithm
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-014-0365-y
– volume: 25
  start-page: 485
  year: 2014
  ident: 10.1016/j.ins.2014.10.060_b0265
  article-title: Color quantization: a short review and an application with artificial bee colony algorithm
  publication-title: Informatica
  doi: 10.15388/Informatica.2014.25
– volume: 84
  start-page: 285
  year: 2001
  ident: 10.1016/j.ins.2014.10.060_b0290
  article-title: Spatial models for fuzzy clustering
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2001.0951
– volume: 7
  start-page: 205
  year: 2004
  ident: 10.1016/j.ins.2014.10.060_b0045
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-004-0218-1
– year: 1995
  ident: 10.1016/j.ins.2014.10.060_b0200
– ident: 10.1016/j.ins.2014.10.060_b0345
– volume: 19
  start-page: 279
  year: 2009
  ident: 10.1016/j.ins.2014.10.060_b0170
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Network World
– volume: 13
  start-page: 4676
  year: 2013
  ident: 10.1016/j.ins.2014.10.060_b0065
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.009
– volume: 31
  start-page: 61
  year: 2009
  ident: 10.1016/j.ins.2014.10.060_b0145
  article-title: A survey: algorithms simulating bee swarm intelligence
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9127-4
– volume: 38
  start-page: 218
  year: 2008
  ident: 10.1016/j.ins.2014.10.060_b0055
  article-title: Automatic clustering using an improved differential evolution algorithm
  publication-title: IEEE Trans. Syst., Man Cybernet., Part A: Syst. Hum.
  doi: 10.1109/TSMCA.2007.909595
– ident: 10.1016/j.ins.2014.10.060_b0115
  doi: 10.1109/ICDM.2001.989517
– volume: 11
  start-page: 5205
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0220
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.039
– ident: 10.1016/j.ins.2014.10.060_b0225
– ident: 10.1016/j.ins.2014.10.060_b0365
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.ins.2014.10.060_b0130
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 11
  start-page: 652
  year: 2011
  ident: 10.1016/j.ins.2014.10.060_b0175
  article-title: A novel clustering approach: artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.025
– volume: 42
  start-page: 21
  year: 2014
  ident: 10.1016/j.ins.2014.10.060_b0160
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– year: 2009
  ident: 10.1016/j.ins.2014.10.060_b0060
– volume: 20
  start-page: 661
  year: 2006
  ident: 10.1016/j.ins.2014.10.060_b0110
  article-title: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-005-9001-3
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.ins.2014.10.060_b0245
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.11.003
– year: 2005
  ident: 10.1016/j.ins.2014.10.060_b0350
  article-title: Engineering optimizations via nature-inspired virtual bee algorithms
– ident: 10.1016/j.ins.2014.10.060_b0105
– volume: 5
  start-page: 24
  year: 2010
  ident: 10.1016/j.ins.2014.10.060_b0355
  article-title: Memetic computation-past, present & future [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.936309
– volume: 8
  start-page: 687
  year: 2008
  ident: 10.1016/j.ins.2014.10.060_b0155
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– ident: 10.1016/j.ins.2014.10.060_b0120
  doi: 10.1109/CEC.2012.6252919
SSID ssj0004766
Score 2.5150552
Snippet This study proposes a novel binary version of the artificial bee colony algorithm based on genetic operators (GB-ABC) such as crossover and swap to solve...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 154
SubjectTerms Algorithms
Artificial bee colony
Binary optimization
Children
Dynamic clustering
Foods
Genetic algorithm
Genetics
Knapsack problem
Mathematical models
Operators
Optimization
Swarm intelligence
Title A novel binary artificial bee colony algorithm based on genetic operators
URI https://dx.doi.org/10.1016/j.ins.2014.10.060
https://www.proquest.com/docview/1660079925
Volume 297
WOSCitedRecordID wos000347862200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHBAPEgCEjIQ5EQXEcx_axGkMM0OAwpN4ix7HHpiyp2m6a-Ot5jp00K9rEDlyiJHKe0r5f3offF0JvOVdgtQsbU1byOOPaxKAE81hoQpnOrTZ-ask3fngoZjP5I1RcL7txArxpxOWlnP9XVsM9YLYrnb0FuweicAPOgelwBLbD8Z8YP42a9sLUUekrbd2K0CWiNC41vQZ_P1L1cbs4Wf06i5waq1zIAAi6gsaonZsu9L4c262haqkDS1CagzH-_TeorU6o7pla1WuZBot8Mc3ZaNf5q1oA7vx27kcnqK5sPBAWd1lsY2EKnqdzScbCNPXZtkEcEt8gOmhW4keE_CW0_f7BKXgarn86yT64dDs_ZeBqg-wNxTWkE_aZaqcFkCgcCbgugMRdtJVyJsUEbU0P9mdf1hWz3Eex-5_Qx7u7zL-N97jOYtnQ3Z1BcvQIPQyeBJ56BDxGd0yzjR6M-ktuo91QlYLf4REDcZDnT9DBFHdYwR4reI0VDFjBHit4wArusIKBQsAKHrDyFP38tH-09zkOszViTWmyiqVKhGY2KbMqz7Wx2pIKbHsllOvhSCtpGTfU2pwIrVTJONUp15IaKi3RSUmfoUnTNuY5wpxSWiWmLKkRmcpSBUZuZmzCXAzbErGDkv7_K3RoPO_mn9TFtXzbQe-HR-a-68pNi7OeKUX4Arw5WADAbnrsTc_AAkSqi5OpxrTny4LkbmiDlCl7cZv3eInurz-TV2iyWpybXXRPX6xOlovXAYF_AJ2xmY4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+binary+artificial+bee+colony+algorithm+based+on+genetic+operators&rft.jtitle=Information+sciences&rft.au=Ozturk%2C+Celal&rft.au=Hancer%2C+Emrah&rft.au=Karaboga%2C+Dervis&rft.date=2015-03-10&rft.issn=0020-0255&rft.volume=297&rft.spage=154&rft.epage=170&rft_id=info:doi/10.1016%2Fj.ins.2014.10.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2014_10_060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon