On the Analytic Continuation of Lauricella–Saran Hypergeometric Function FK(a1,a2,b1,b2;a1,b2,c3;z)

The paper establishes an analytical extension of two ratios of Lauricella–Saran hypergeometric functions FK with some parameter values to the corresponding branched continued fractions in their domain of convergence. The PC method used here is based on the correspondence between a formal triple powe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 21; s. 4487
Hlavní autoři: Antonova, Tamara, Dmytryshyn, Roman, Goran, Vitaliy
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper establishes an analytical extension of two ratios of Lauricella–Saran hypergeometric functions FK with some parameter values to the corresponding branched continued fractions in their domain of convergence. The PC method used here is based on the correspondence between a formal triple power series and a branched continued fraction. As additional results, analytical extensions of the Lauricella–Saran hypergeometric functions FK(a1,a2,1,b2;a1,b2,c3;z) and FK(a1,1,b1,b2;a1,b2,c3;z) to the corresponding branched continued fractions were obtained. To illustrate this, we provide some numerical experiments at the end.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11214487