Randomized algorithms for nonlinear system identification with deep learning modification

Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 364-365; s. 197 - 212
Hlavní autoři: de la Rosa, Erick, Yu, Wen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.10.2016
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information in system identification. In this paper, the distributions of the hidden weights are obtained by the restricted Boltzmann machines. This deep learning method uses input data to construct the statistical features of the hidden weights. The output weights of the neural model are trained by normal randomized algorithms. So we successfully combine the unsupervised training (deep learning) and the supervised learning method (randomized algorithm), and take advantages from both of them. The proposed randomized algorithms with deep learning modification are validated with three benchmark problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.09.048