Randomized algorithms for nonlinear system identification with deep learning modification

Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 364-365; s. 197 - 212
Hlavní autori: de la Rosa, Erick, Yu, Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.10.2016
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information in system identification. In this paper, the distributions of the hidden weights are obtained by the restricted Boltzmann machines. This deep learning method uses input data to construct the statistical features of the hidden weights. The output weights of the neural model are trained by normal randomized algorithms. So we successfully combine the unsupervised training (deep learning) and the supervised learning method (randomized algorithm), and take advantages from both of them. The proposed randomized algorithms with deep learning modification are validated with three benchmark problems.
AbstractList Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information in system identification. In this paper, the distributions of the hidden weights are obtained by the restricted Boltzmann machines. This deep learning method uses input data to construct the statistical features of the hidden weights. The output weights of the neural model are trained by normal randomized algorithms. So we successfully combine the unsupervised training (deep learning) and the supervised learning method (randomized algorithm), and take advantages from both of them. The proposed randomized algorithms with deep learning modification are validated with three benchmark problems.
Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden weights of the randomized algorithms require suitable distributions in advance, and the deep learning methods do not use the output information in system identification. In this paper, the distributions of the hidden weights are obtained by the restricted Boltzmann machines. This deep learning method uses input data to construct the statistical features of the hidden weights. The output weights of the neural model are trained by normal randomized algorithms. So we successfully combine the unsupervised training (deep learning) and the supervised learning method (randomized algorithm), and take advantages from both of them. The proposed randomized algorithms with deep learning modification are validated with three benchmark problems.
Author Yu, Wen
de la Rosa, Erick
Author_xml – sequence: 1
  givenname: Erick
  surname: de la Rosa
  fullname: de la Rosa, Erick
– sequence: 2
  givenname: Wen
  orcidid: 0000-0002-9540-7924
  surname: Yu
  fullname: Yu, Wen
  email: yuw@ctrl.cinvestav.mx
BookMark eNp9kD9rHDEQxUVwIOdzPkA6lW52PdL-x1Uwjm04MJikSCW00uxljl3pIskJ9qePzmdcpHA1DPN-83jvlJ0475CxLwJKAaK92JXkYilBNCUMJdT9B7YSfSeLVg7ihK0AJBQgm-YTO41xBwB117Yr9vNBO-sXekbL9bz1gdKvJfLJB54dZnKoA49PMeHCyaJLNJHRibzjf7OUW8Q9n7PIkdvyxdu3-xn7OOk54ufXuWY_vl1_v7otNvc3d1dfN4WpKkjFUEFXWbBDr5txnJpOoJYTjLLD0Zhp6E0FtqrH1qJuxVBb2-fdjtANk-7bulqz8-PfffC_HzEmtVA0OM_aoX-MSvQ5tZSQbdZMHKUm-BgDTmofaNHhSQlQhxrVTuUa1aFGBYPKNWam-48xlF4CpqBpfpe8PJKY0_8hDCoaQmfQUkCTlPX0Dv0PnHqRpg
CitedBy_id crossref_primary_10_1016_j_engappai_2021_104244
crossref_primary_10_1016_j_ins_2021_03_043
crossref_primary_10_1016_j_asoc_2021_107248
crossref_primary_10_1016_j_ymssp_2017_08_002
crossref_primary_10_1109_ACCESS_2019_2912072
crossref_primary_10_1109_TASE_2018_2865663
crossref_primary_10_1088_1361_6587_abc397
crossref_primary_10_1007_s10489_021_02416_0
crossref_primary_10_1016_j_neunet_2019_09_035
crossref_primary_10_1109_TSMC_2020_2964519
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1016_j_knosys_2016_12_012
crossref_primary_10_1088_1361_6587_ab8a64
crossref_primary_10_1109_TII_2021_3069869
crossref_primary_10_3390_s19102381
crossref_primary_10_1007_s00521_020_05077_1
crossref_primary_10_1016_j_ins_2018_10_019
crossref_primary_10_1007_s00521_022_07673_9
crossref_primary_10_1016_j_neucom_2017_08_040
crossref_primary_10_1007_s40940_020_00132_8
crossref_primary_10_1109_TSMC_2018_2812156
crossref_primary_10_1007_s11071_019_04915_9
crossref_primary_10_1016_j_cie_2020_107015
crossref_primary_10_1016_j_neunet_2020_10_013
crossref_primary_10_1016_j_ymssp_2025_113238
crossref_primary_10_1109_TNET_2024_3404509
crossref_primary_10_1109_TASE_2021_3074984
crossref_primary_10_1007_s13042_018_0847_0
crossref_primary_10_1088_1742_6596_1769_1_012025
crossref_primary_10_1109_TIE_2018_2883262
crossref_primary_10_1016_j_asoc_2018_01_019
crossref_primary_10_1016_j_knosys_2025_113879
crossref_primary_10_1155_2019_2756284
crossref_primary_10_1016_j_asoc_2017_07_061
crossref_primary_10_1016_j_ins_2018_07_015
crossref_primary_10_1016_j_ymssp_2017_03_034
crossref_primary_10_1016_j_knosys_2021_107376
crossref_primary_10_1016_j_measurement_2018_08_010
crossref_primary_10_1016_j_neunet_2017_10_006
crossref_primary_10_1360_SSI_2024_0192
crossref_primary_10_1016_j_kine_2016_06_009
crossref_primary_10_20965_jaciii_2017_p0031
crossref_primary_10_1016_j_ifacol_2020_12_1327
crossref_primary_10_1016_j_robot_2025_105154
crossref_primary_10_3233_JIFS_210173
crossref_primary_10_1016_j_ymssp_2024_111301
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_1007_s11042_017_4554_8
Cites_doi 10.1016/j.conengprac.2012.08.009
10.1162/neco.2008.11-07-647
10.1109/TNN.2002.804317
10.1109/TNNLS.2012.2236572
10.1109/TNN.2011.2168423
10.1207/s15516709cog0901_7
10.1109/21.256541
10.1109/TNNLS.2014.2305760
10.1109/72.846746
10.1109/TFUZZ.1993.390281
10.1109/72.471375
10.1016/S0005-1098(96)80007-0
10.1109/72.80336
10.1142/S0129065710002516
10.1109/TNN.2003.811356
10.1137/0111030
10.1016/j.neunet.2013.02.008
10.1109/3477.484441
10.1016/j.ins.2013.12.016
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2015.09.048
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 212
ExternalDocumentID 10_1016_j_ins_2015_09_048
S0020025515007033
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-93073d0d98a5bbf571ea2f0b27ebccf98c30d34b6dea6194dd80d3db079fa8643
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378969400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Sep 27 22:46:28 EDT 2025
Tue Nov 18 22:25:52 EST 2025
Sat Nov 29 06:24:58 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Nonlinear system modeling
Randomized algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-93073d0d98a5bbf571ea2f0b27ebccf98c30d34b6dea6194dd80d3db079fa8643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9540-7924
PQID 1825522007
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1825522007
crossref_primary_10_1016_j_ins_2015_09_048
crossref_citationtrail_10_1016_j_ins_2015_09_048
elsevier_sciencedirect_doi_10_1016_j_ins_2015_09_048
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hjalmarsson, Rojas, Rivera (bib0011) 2012; 20
Wang, Langari (bib0026) 1996; 26
Liu, Chan, Hua (bib0016) 2014; 25
Alhamdoosh, Wang (bib0002) 2014; 264
Erhan, Bengio, Courville, Manzagol, Vincent (bib0008) 2010; 11
Yu, Li (bib0027) 2010; 20
Narendra, Parthasarathy (bib0019) 1991; 3
Hinton, Sejnowski (bib0010) 1986; vol. 1
Tapson, van Schaik (bib0025) 2013; 45
Jagannathan, Lewis (bib0013) 1996; 32
Bengio, Delalleau (bib0003) 2009; 21
De Brabanter, Dreesen, Karsmakers, Pelckmans, De Brabanter, Suykens, De Moor (bib0007) 2009
Jang (bib0014) 1993; 23
Ackley, Hinton, Sejnowski (bib0001) 1985; 9
Schmidt, Kraaijveld, Duin (bib0021) 1992
Igelnik, Pao (bib0012) 1995; 6
Mitra, Hayashi (bib0018) 2000; 11
Sugeno, Yasukawa (bib0024) 1993; 1
Schoukens, Suykens, Ljung (bib0022) 2009
Bergstra, Bengio (bib0004) 2011
Chakrabartty, Shaga, Aono (bib0006) 2013; 24
Haykin (bib0009) 1994
Rivals, Personnaz (bib0020) 2003; 14
Song (bib0023) 2011; 22
Leung, Lam, Ling, Tam (bib0015) 2003; 14
Marquardt (bib0017) 1963; 11
Box, Jenkins, Reinsel (bib0005) 2008
Song (10.1016/j.ins.2015.09.048_bib0023) 2011; 22
Igelnik (10.1016/j.ins.2015.09.048_bib0012) 1995; 6
Schoukens (10.1016/j.ins.2015.09.048_bib0022) 2009
Tapson (10.1016/j.ins.2015.09.048_bib0025) 2013; 45
Yu (10.1016/j.ins.2015.09.048_bib0027) 2010; 20
Mitra (10.1016/j.ins.2015.09.048_bib0018) 2000; 11
Liu (10.1016/j.ins.2015.09.048_bib0016) 2014; 25
Bergstra (10.1016/j.ins.2015.09.048_bib0004) 2011
Rivals (10.1016/j.ins.2015.09.048_bib0020) 2003; 14
Bengio (10.1016/j.ins.2015.09.048_bib0003) 2009; 21
De Brabanter (10.1016/j.ins.2015.09.048_bib0007) 2009
Haykin (10.1016/j.ins.2015.09.048_bib0009) 1994
Schmidt (10.1016/j.ins.2015.09.048_bib0021) 1992
Alhamdoosh (10.1016/j.ins.2015.09.048_bib0002) 2014; 264
Marquardt (10.1016/j.ins.2015.09.048_bib0017) 1963; 11
Jagannathan (10.1016/j.ins.2015.09.048_bib0013) 1996; 32
Leung (10.1016/j.ins.2015.09.048_bib0015) 2003; 14
Ackley (10.1016/j.ins.2015.09.048_bib0001) 1985; 9
Erhan (10.1016/j.ins.2015.09.048_bib0008) 2010; 11
Sugeno (10.1016/j.ins.2015.09.048_bib0024) 1993; 1
Wang (10.1016/j.ins.2015.09.048_bib0026) 1996; 26
Chakrabartty (10.1016/j.ins.2015.09.048_bib0006) 2013; 24
Narendra (10.1016/j.ins.2015.09.048_bib0019) 1991; 3
Jang (10.1016/j.ins.2015.09.048_bib0014) 1993; 23
Hinton (10.1016/j.ins.2015.09.048_bib0010) 1986; vol. 1
Hjalmarsson (10.1016/j.ins.2015.09.048_bib0011) 2012; 20
Box (10.1016/j.ins.2015.09.048_bib0005) 2008
References_xml – volume: 20
  start-page: 1095
  year: 2012
  end-page: 1096
  ident: bib0011
  article-title: System identification: a Wiener–Hammerstein benchmark
  publication-title: Control Eng. Pract.
– volume: 3
  start-page: 252
  year: 1991
  end-page: 262
  ident: bib0019
  article-title: Gradient methods for optimization of dynamical systems containing neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 22
  start-page: 2460
  year: 2011
  end-page: 2473
  ident: bib0023
  article-title: Robust initialization of a Jordan network with recurrent constrained learning
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 804
  year: 2003
  end-page: 820
  ident: bib0020
  article-title: Neural-network construction and selection in nonlinear modeling
  publication-title: IEEE Trans. Neural Netw.
– volume: vol. 1
  start-page: 282
  year: 1986
  end-page: 317
  ident: bib0010
  article-title: Learning and relearning in Boltzmann machines
  publication-title: Parallel Distributed Processing
– volume: 1
  start-page: 7
  year: 1993
  end-page: 31
  ident: bib0024
  article-title: A fuzzy logic based approach to qualitative modeling
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 24
  start-page: 554
  year: 2013
  end-page: 565
  ident: bib0006
  article-title: Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 100
  year: 1996
  end-page: 106
  ident: bib0026
  article-title: Complex systems modeling via fuzzy logic
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 32
  start-page: 1707
  year: 1996
  end-page: 1712
  ident: bib0013
  article-title: Identification of nonlinear dynamical systems using multilayered neural networks
  publication-title: Automatica
– start-page: 281
  year: 2011
  end-page: 305
  ident: bib0004
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 429
  year: 2010
  end-page: 435
  ident: bib0027
  article-title: Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing
  publication-title: Int. J. Neural Syst.
– volume: 21
  start-page: 1601
  year: 2009
  end-page: 1621
  ident: bib0003
  article-title: Justifying and generalizing contrastive divergence
  publication-title: Neural Comput.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: bib0008
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 2295
  year: 2014
  end-page: 2302
  ident: bib0016
  article-title: Hybrid manifold embedding
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib0014
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2009
  ident: bib0022
  article-title: Wiener–Hammerstein benchmark
  publication-title: Proceedings of the 15th IFAC Symposium on System Identification
– volume: 9
  start-page: 147
  year: 1985
  end-page: 169
  ident: bib0001
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn. Sci.
– volume: 264
  start-page: 104
  year: 2014
  end-page: 117
  ident: bib0002
  article-title: Fast decorrelated neural network ensembles with random weights
  publication-title: Inf. Sci.
– year: 1994
  ident: bib0009
  publication-title: Neural Networks—A Comprehensive Foundation
– volume: 14
  start-page: 79
  year: 2003
  end-page: 88
  ident: bib0015
  article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib0017
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: SIAM J. Appl. Math.
– volume: 11
  start-page: 748
  year: 2000
  end-page: 769
  ident: bib0018
  article-title: Neuro-fuzzy rule generation: survey in soft computing framework
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: 1320
  year: 1995
  end-page: 1329
  ident: bib0012
  article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net
  publication-title: IEEE Trans. Neural Netw.
– volume: 45
  start-page: 94
  year: 2013
  end-page: 100
  ident: bib0025
  article-title: Learning the pseudoinverse solution to network weights
  publication-title: Neural Netw.
– year: 2008
  ident: bib0005
  publication-title: Time Series Analysis: Forecasting and Control
– start-page: 1
  year: 1992
  end-page: 4
  ident: bib0021
  article-title: Feedforward neural networks with random weights
  publication-title: Proceedings of the 11th IAPR International Conference on Pattern Recognition
– start-page: 826
  year: 2009
  end-page: 831
  ident: bib0007
  article-title: Fixed-size LS-SVM applied to the Wiener–Hammerstein benchmark
  publication-title: Proceedings of the 15th IFAC Symposium on System Identification
– volume: 20
  start-page: 1095
  year: 2012
  ident: 10.1016/j.ins.2015.09.048_bib0011
  article-title: System identification: a Wiener–Hammerstein benchmark
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.08.009
– volume: 21
  start-page: 1601
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2015.09.048_bib0003
  article-title: Justifying and generalizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.11-07-647
– year: 2009
  ident: 10.1016/j.ins.2015.09.048_bib0022
  article-title: Wiener–Hammerstein benchmark
– volume: vol. 1
  start-page: 282
  year: 1986
  ident: 10.1016/j.ins.2015.09.048_bib0010
  article-title: Learning and relearning in Boltzmann machines
– volume: 14
  start-page: 79
  year: 2003
  ident: 10.1016/j.ins.2015.09.048_bib0015
  article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804317
– volume: 24
  start-page: 554
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2015.09.048_bib0006
  article-title: Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2236572
– start-page: 281
  year: 2011
  ident: 10.1016/j.ins.2015.09.048_bib0004
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 826
  year: 2009
  ident: 10.1016/j.ins.2015.09.048_bib0007
  article-title: Fixed-size LS-SVM applied to the Wiener–Hammerstein benchmark
– volume: 22
  start-page: 2460
  issue: 12
  year: 2011
  ident: 10.1016/j.ins.2015.09.048_bib0023
  article-title: Robust initialization of a Jordan network with recurrent constrained learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2168423
– volume: 9
  start-page: 147
  year: 1985
  ident: 10.1016/j.ins.2015.09.048_bib0001
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog0901_7
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.ins.2015.09.048_bib0014
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– volume: 25
  start-page: 2295
  issue: 12
  year: 2014
  ident: 10.1016/j.ins.2015.09.048_bib0016
  article-title: Hybrid manifold embedding
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2305760
– volume: 11
  start-page: 748
  issue: 3
  year: 2000
  ident: 10.1016/j.ins.2015.09.048_bib0018
  article-title: Neuro-fuzzy rule generation: survey in soft computing framework
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.846746
– volume: 1
  start-page: 7
  issue: 1
  year: 1993
  ident: 10.1016/j.ins.2015.09.048_bib0024
  article-title: A fuzzy logic based approach to qualitative modeling
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.1993.390281
– year: 2008
  ident: 10.1016/j.ins.2015.09.048_bib0005
– start-page: 1
  year: 1992
  ident: 10.1016/j.ins.2015.09.048_bib0021
  article-title: Feedforward neural networks with random weights
– year: 1994
  ident: 10.1016/j.ins.2015.09.048_bib0009
– volume: 6
  start-page: 1320
  issue: 2
  year: 1995
  ident: 10.1016/j.ins.2015.09.048_bib0012
  article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.471375
– volume: 32
  start-page: 1707
  issue: 12
  year: 1996
  ident: 10.1016/j.ins.2015.09.048_bib0013
  article-title: Identification of nonlinear dynamical systems using multilayered neural networks
  publication-title: Automatica
  doi: 10.1016/S0005-1098(96)80007-0
– volume: 3
  start-page: 252
  issue: 2
  year: 1991
  ident: 10.1016/j.ins.2015.09.048_bib0019
  article-title: Gradient methods for optimization of dynamical systems containing neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80336
– volume: 20
  start-page: 429
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2015.09.048_bib0027
  article-title: Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065710002516
– volume: 14
  start-page: 804
  issue: 4
  year: 2003
  ident: 10.1016/j.ins.2015.09.048_bib0020
  article-title: Neural-network construction and selection in nonlinear modeling
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.811356
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.ins.2015.09.048_bib0017
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0111030
– volume: 45
  start-page: 94
  year: 2013
  ident: 10.1016/j.ins.2015.09.048_bib0025
  article-title: Learning the pseudoinverse solution to network weights
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.02.008
– volume: 26
  start-page: 100
  issue: 1
  year: 1996
  ident: 10.1016/j.ins.2015.09.048_bib0026
  article-title: Complex systems modeling via fuzzy logic
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/3477.484441
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.ins.2015.09.048_bib0008
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 264
  start-page: 104
  year: 2014
  ident: 10.1016/j.ins.2015.09.048_bib0002
  article-title: Fast decorrelated neural network ensembles with random weights
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.016
SSID ssj0004766
Score 2.4420683
Snippet Both randomized algorithms and deep learning techniques have been successfully used for regression and classification problems. However, the random hidden...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms Algorithms
Benchmarking
Classification
Deep learning
Dynamical systems
Learning
Nonlinear system modeling
Randomized algorithms
Regression
System identification
Training
Title Randomized algorithms for nonlinear system identification with deep learning modification
URI https://dx.doi.org/10.1016/j.ins.2015.09.048
https://www.proquest.com/docview/1825522007
Volume 364-365
WOSCitedRecordID wos000378969400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9swEBZr2ofuYWztxrqtQ4PRhwaDY1mW9FhGxzZGGaWF9EnIltSlZE5oklH263eyJNtNaVkf9iISxRJK7svpTrr7DqGPRHHDaMUSTZhOckZNUmqqEthMLHFs0MQ2icLf2ckJH4_Fj1DuaNGUE2B1zW9uxPy_ihr6QNgudfYR4m4nhQ54DUKHFsQO7T8J_lTVevZr8gcsSTW9nIHz_9OTLgxrT4uhIn_zcKJDrJBHQXMmq42Zx1oSl65QTvt5344NWUzNsLCJtsa5NsOpGp7OFioq2jYb6GLVxPSF9LNw2DAq2rC1LvgfOjLPrBsVKCnyhBS0pwZHPuY27KiZD5S-o6z9ucEVeBiON31EG8JZz7t5mxh7bcNqwwhjhNqVhCmkm0KmQsIUG2gzY1TwAdo8-no8_tZlyjJ_ex2_RrznbiL-1tZxn6Wytmc3hsjZc_QseBD4yEv-BXpi6h30tMcruYP2QzYKPsA9QeGgx3fRRYcR3GEEw5O4xQj2GMG3MYIdRrDDCI4YwX2MvETnn4_PPn1JQo2NpCIkXSbC6XidasEVLUtL2ciozKZlxkxZVVbwiqSa5GWhjXIHXlpzeK_LlAmrOJizr9AAVmZeI5yB821YbrSAVnFbMlD2hdUVzSw3Od9Dafw9ZRUI6F0dlKm8V4576LAdMvfsKw89nEchyYB8bxZKANxDwz5EgUpQre6-TNVmtlpIcL0puCdgRb95zDreou3ur_MODZbXK7OPtqrfy8ni-n1A5F--Q6Ab
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+algorithms+for+nonlinear+system+identification+with+deep+learning+modification&rft.jtitle=Information+sciences&rft.au=de+la+Rosa%2C+Erick&rft.au=Yu%2C+Wen&rft.date=2016-10-01&rft.issn=0020-0255&rft.volume=364-365&rft.spage=197&rft.epage=212&rft_id=info:doi/10.1016%2Fj.ins.2015.09.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2015_09_048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon