A data-driven optimization approach to improving maritime transport efficiency
Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying...
Uloženo v:
| Vydáno v: | Transportation research. Part B: methodological Ročník 180; s. 102887 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2024
|
| Témata: | |
| ISSN: | 0191-2615, 1879-2367 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain.
•Propose SRP+ for high-risk ship selection that retains the SRP but optimizes thresholds.•Construct a bi-objective mixed-integer nonlinear model to optimize thresholds in the SRP.•Solve the model by a big-M method and an epsilon-constraint method.•Validate the superiority of SRP+ under different scenarios using practical inspection records. |
|---|---|
| AbstractList | Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain.
•Propose SRP+ for high-risk ship selection that retains the SRP but optimizes thresholds.•Construct a bi-objective mixed-integer nonlinear model to optimize thresholds in the SRP.•Solve the model by a big-M method and an epsilon-constraint method.•Validate the superiority of SRP+ under different scenarios using practical inspection records. |
| ArticleNumber | 102887 |
| Author | Yan, Ran Liu, Yan Wang, Shuaian |
| Author_xml | – sequence: 1 givenname: Ran surname: Yan fullname: Yan, Ran email: ran.yan@ntu.edu.sg organization: School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore – sequence: 2 givenname: Yan surname: Liu fullname: Liu, Yan email: yan.y.liu@polyu.edu.hk organization: Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China – sequence: 3 givenname: Shuaian surname: Wang fullname: Wang, Shuaian email: wangshuaian@gmail.com organization: Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China |
| BookMark | eNp9kM9OAyEQh4mpibX6AN54ga0M7C5LPDWN_5JGL3omLLA6TbtsWNKkPr209eShJ4bJfJP5ftdk0ofeE3IHbA4M6vv1PMV2zhkv8583jbwgU2ikKrio5YRMGSgoeA3VFbkexzVjTJQMpuRtQZ1JpnARd76nYUi4xR-TMPTUDEMMxn7TFChuc73D_otuTcQ85GmKph-HEBP1XYcWfW_3N-SyM5vR3_69M_L59PixfClW78-vy8WqsEKwVDSdtIzXJe98VwnRgvPSNlXpBdgWbJ17wgihJPDWQdZxVhkFlVGu5ZIpMSNw2mtjGMfoOz1EzJftNTB9CESvdQ5EHwLRp0AyI_8xFtPRNJvg5iz5cCJ9Vtqhj3o86nqH0dukXcAz9C9XUH3l |
| CitedBy_id | crossref_primary_10_1016_j_tre_2025_104354 crossref_primary_10_1016_j_tre_2024_103751 crossref_primary_10_1016_j_tre_2024_103741 crossref_primary_10_3390_oceans6010015 crossref_primary_10_1016_j_trc_2025_105317 crossref_primary_10_1016_j_trc_2025_105303 crossref_primary_10_1108_JM2_10_2023_0246 crossref_primary_10_1080_18366503_2025_2554348 crossref_primary_10_3390_app15052519 crossref_primary_10_1016_j_ress_2025_111710 crossref_primary_10_1016_j_ocecoaman_2025_107685 crossref_primary_10_1016_j_ress_2024_110558 crossref_primary_10_1109_TIV_2024_3392647 crossref_primary_10_1080_00207543_2025_2551240 crossref_primary_10_3390_jmse13020207 |
| Cites_doi | 10.1111/poms.12836 10.1017/S0373463313000519 10.1016/j.trb.2022.10.013 10.1016/j.trb.2022.06.006 10.1016/j.trb.2022.07.009 10.1016/j.trb.2022.10.002 10.1111/poms.12727 10.1016/j.trb.2021.05.003 10.1111/poms.12838 10.1016/j.ress.2005.11.018 10.1142/S0217595920400138 10.1017/S0373463308004773 10.1080/03088839.2019.1647362 10.3390/s19040926 10.1016/j.ssci.2015.08.003 10.1111/j.1937-5956.2005.tb00009.x 10.1111/poms.12227 10.1111/j.1539-6924.2009.01287.x 10.1287/opre.2017.1627 10.1111/poms.13448 10.1007/BF03195088 10.1111/poms.12833 10.1016/j.trb.2019.07.017 10.1016/j.trb.2023.03.009 10.1016/j.trb.2022.11.011 10.1016/j.trb.2022.05.011 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.trb.2024.102887 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2367 |
| ExternalDocumentID | 10_1016_j_trb_2024_102887 S0191261524000110 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c330t-8f7c02642fef533b1de7c854e31cb1c65333a339712bd1288dc9a915a9db27093 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0191-2615 |
| IngestDate | Sat Nov 29 07:18:03 EST 2025 Tue Nov 18 21:52:32 EST 2025 Sat Feb 17 16:12:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bi-objective optimization model Maritime transport Predictive analytics Threshold optimization Data-driven optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-8f7c02642fef533b1de7c854e31cb1c65333a339712bd1288dc9a915a9db27093 |
| ParticipantIDs | crossref_primary_10_1016_j_trb_2024_102887 crossref_citationtrail_10_1016_j_trb_2024_102887 elsevier_sciencedirect_doi_10_1016_j_trb_2024_102887 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part B: methodological |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Degré (b14) 2008; 61 Mediterranean MoU (b29) 2022 Mavrotas, Florios (b28) 2013; 219 Dinis, Teixeira, Soares (b15) 2020; 203 Caribbean MoU (b10) 2022 Markou, Corsten (b26) 2021; 30 Yan, Wang, Cao, Sun (b48) 2021; 149 Yan, Zhuge, Wang (b50) 2021; 38 USCG (b45) 2022 Bansal, Gutierrez, Keiser (b7) 2017; 65 Heij, Knapp (b18) 2019; 46 Degré (b13) 2007; 6 Paris MoU (b32) 2012 Sun, Chen, Meng (b38) 2022; 166 Adler, Brudner, Gallotti, Privitera, Ramasco (b4) 2022; 166 Wang, Yan (b47) 2022 Starr, Van Wassenhove (b37) 2014; 23 Silveira, Ângelo Palos, Soares (b36) 2013; 66 Black Sea MoU (b8) 2016 Indian Ocean MoU (b20) 2020 Konak, Coit, Smith (b24) 2006; 91 Tokyo MoU (b41) 2014 Agra, Rodrigues (b5) 2022; 164 Zhen, Zhuge, Wang, Wang (b52) 2022; 162 Kettunen, Salo (b22) 2017; 26 Huber, Meier, Wallimann (b19) 2022; 163 Mrabti, Hamani, Boulaksil, Gargouri, Delahoche (b30) 2022; 164 Choi, Wallace, Wang (b12) 2018; 27 Guha, Kumar (b17) 2018; 27 Abuja MoU (b2) 2022 Baksh, Khan, Gadag, Ferdous (b6) 2015; 80 Mavrotas (b27) 2009; 213 Yan, Wu, Jin, Cao, Wang (b49) 2022; 145 Wang, Yan, Qu (b46) 2019; 128 Riyadh MoU (b34) 2022 Acuerdo de Viña del Mar (b3) 2022 Indian Ocean MoU (b21) 2022 Tian, Yan, Liu, Wang (b40) 2023; 172 Yang, Yang, Yin (b51) 2018; 110 Ulusçu, Özbaş, Altıok, Or (b43) 2009; 29 Abuja MoU (b1) 2012 Tokyo MoU (b42) 2022 Black Sea MoU (b9) 2022 Chankong, Haimes (b11) 2008 Feng, Shanthikumar (b16) 2018; 27 Sun, Toyasaki, Falagara Sigala (b39) 2022; early view Paris MoU (b31) 2011 Paris MoU (b33) 2022 UNCTAD (b44) 2022 Liu, Li, Wang (b25) 2023; 167 Kleindorfer, Saad (b23) 2005; 14 Sanchez-Gonzalez, Díaz-Gutiérrez, Leo, Núñez-Rivas (b35) 2019; 19 Caribbean MoU (10.1016/j.trb.2024.102887_b10) 2022 Tian (10.1016/j.trb.2024.102887_b40) 2023; 172 Bansal (10.1016/j.trb.2024.102887_b7) 2017; 65 Abuja MoU (10.1016/j.trb.2024.102887_b1) 2012 Heij (10.1016/j.trb.2024.102887_b18) 2019; 46 Yan (10.1016/j.trb.2024.102887_b50) 2021; 38 Abuja MoU (10.1016/j.trb.2024.102887_b2) 2022 Indian Ocean MoU (10.1016/j.trb.2024.102887_b21) 2022 Adler (10.1016/j.trb.2024.102887_b4) 2022; 166 Konak (10.1016/j.trb.2024.102887_b24) 2006; 91 Mrabti (10.1016/j.trb.2024.102887_b30) 2022; 164 Wang (10.1016/j.trb.2024.102887_b47) 2022 Black Sea MoU (10.1016/j.trb.2024.102887_b8) 2016 Yan (10.1016/j.trb.2024.102887_b49) 2022; 145 Baksh (10.1016/j.trb.2024.102887_b6) 2015; 80 Mavrotas (10.1016/j.trb.2024.102887_b27) 2009; 213 Riyadh MoU (10.1016/j.trb.2024.102887_b34) 2022 Zhen (10.1016/j.trb.2024.102887_b52) 2022; 162 UNCTAD (10.1016/j.trb.2024.102887_b44) 2022 Degré (10.1016/j.trb.2024.102887_b14) 2008; 61 Liu (10.1016/j.trb.2024.102887_b25) 2023; 167 Markou (10.1016/j.trb.2024.102887_b26) 2021; 30 Dinis (10.1016/j.trb.2024.102887_b15) 2020; 203 Sun (10.1016/j.trb.2024.102887_b39) 2022; early view Tokyo MoU (10.1016/j.trb.2024.102887_b42) 2022 Degré (10.1016/j.trb.2024.102887_b13) 2007; 6 Paris MoU (10.1016/j.trb.2024.102887_b33) 2022 Mediterranean MoU (10.1016/j.trb.2024.102887_b29) 2022 Paris MoU (10.1016/j.trb.2024.102887_b32) 2012 Kleindorfer (10.1016/j.trb.2024.102887_b23) 2005; 14 Huber (10.1016/j.trb.2024.102887_b19) 2022; 163 USCG (10.1016/j.trb.2024.102887_b45) 2022 Kettunen (10.1016/j.trb.2024.102887_b22) 2017; 26 Indian Ocean MoU (10.1016/j.trb.2024.102887_b20) 2020 Yan (10.1016/j.trb.2024.102887_b48) 2021; 149 Guha (10.1016/j.trb.2024.102887_b17) 2018; 27 Ulusçu (10.1016/j.trb.2024.102887_b43) 2009; 29 Chankong (10.1016/j.trb.2024.102887_b11) 2008 Yang (10.1016/j.trb.2024.102887_b51) 2018; 110 Acuerdo de Viña del Mar (10.1016/j.trb.2024.102887_b3) 2022 Sanchez-Gonzalez (10.1016/j.trb.2024.102887_b35) 2019; 19 Sun (10.1016/j.trb.2024.102887_b38) 2022; 166 Feng (10.1016/j.trb.2024.102887_b16) 2018; 27 Mavrotas (10.1016/j.trb.2024.102887_b28) 2013; 219 Silveira (10.1016/j.trb.2024.102887_b36) 2013; 66 Paris MoU (10.1016/j.trb.2024.102887_b31) 2011 Black Sea MoU (10.1016/j.trb.2024.102887_b9) 2022 Wang (10.1016/j.trb.2024.102887_b46) 2019; 128 Agra (10.1016/j.trb.2024.102887_b5) 2022; 164 Starr (10.1016/j.trb.2024.102887_b37) 2014; 23 Tokyo MoU (10.1016/j.trb.2024.102887_b41) 2014 Choi (10.1016/j.trb.2024.102887_b12) 2018; 27 |
| References_xml | – volume: 166 start-page: 444 year: 2022 end-page: 467 ident: b4 article-title: Does big data help answer big questions? The case of airport catchment areas & competition publication-title: Transp. Res. B – year: 2022 ident: b9 article-title: Port state control in the Black Sea Region annual report 2021 – volume: 14 start-page: 53 year: 2005 end-page: 68 ident: b23 article-title: Managing disruption risks in supply chains publication-title: Prod. Oper. Manage. – volume: 27 start-page: 1670 year: 2018 end-page: 1684 ident: b16 article-title: How research in production and operations management may evolve in the era of big data publication-title: Prod. Oper. Manage. – volume: 23 start-page: 925 year: 2014 end-page: 937 ident: b37 article-title: Introduction to the special issue on humanitarian operations and crisis management publication-title: Prod. Oper. Manage. – year: 2022 ident: b44 article-title: Review of maritime transport 2021 – volume: 172 start-page: 32 year: 2023 end-page: 52 ident: b40 article-title: A smart predict-then-optimize method for targeted and cost-effective maritime transportation publication-title: Transp. Res. B – volume: 213 start-page: 455 year: 2009 end-page: 465 ident: b27 article-title: Effective implementation of the publication-title: Appl. Math. Comput. – volume: 66 start-page: 879 year: 2013 end-page: 898 ident: b36 article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal publication-title: J. Navig. – year: 2022 ident: b45 article-title: Port state control in the United States 2021 annual report – year: 2012 ident: b32 article-title: 2011 Annual report “on course for safer shipping” – volume: 27 start-page: 1868 year: 2018 end-page: 1883 ident: b12 article-title: Big data analytics in operations management publication-title: Prod. Oper. Manage. – volume: early view year: 2022 ident: b39 article-title: Incentivizing at-risk production capacity building for COVID-19 vaccines publication-title: Prod. Oper. Manage. – volume: 110 start-page: 38 year: 2018 end-page: 56 ident: b51 article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks publication-title: Transp. Res. A – year: 2016 ident: b8 article-title: Information sheet of the BS mou: New inspection regime – year: 2022 ident: b10 article-title: Caribbean memorandum of understanding on port state control annual report 2021 – volume: 203 year: 2020 ident: b15 article-title: Probabilistic approach for characterising the static risk of ships using Bayesian networks publication-title: Reliab. Eng. Syst. Saf. – year: 2008 ident: b11 article-title: Multiobjective Decision Making: Theory and Methodology – volume: 26 start-page: 1839 year: 2017 end-page: 1853 ident: b22 article-title: Estimation of downside risks in project portfolio selection publication-title: Prod. Oper. Manage. – year: 2014 ident: b41 article-title: New inspection regime (NIR) – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: b24 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliab. Eng. Syst. Saf. – volume: 38 year: 2021 ident: b50 article-title: Development of two highly-efficient and innovative inspection schemes for PSC inspection publication-title: Asia-Pac. J. Oper. Res. – volume: 162 start-page: 1 year: 2022 end-page: 27 ident: b52 article-title: Integrated berth and yard space allocation under uncertainty publication-title: Transp. Res. B – volume: 19 start-page: 926 year: 2019 ident: b35 article-title: Toward digitalization of maritime transport? publication-title: Sensors – year: 2022 ident: b3 article-title: Annual report on port state control for latin American agreement 2021 – year: 2022 ident: b34 article-title: Riyadh memorandum of understanding on port state control annual report 2021 – year: 2012 ident: b1 article-title: Memorandum of understanding on port state control for west and Central African Region – volume: 219 start-page: 9652 year: 2013 end-page: 9669 ident: b28 article-title: An improved version of the augmented publication-title: Appl. Math. Comput. – year: 2022 ident: b2 article-title: Abuja MoU annual report 2021 – year: 2022 ident: b33 article-title: Paris MoU port state control annual report 2021 – year: 2020 ident: b20 article-title: Indian ocean mou, secretariat guidance on port state control inspection – volume: 29 start-page: 1454 year: 2009 end-page: 1472 ident: b43 article-title: Risk analysis of the vessel traffic in the strait of Istanbul publication-title: Risk Anal.: Int. J. – year: 2011 ident: b31 article-title: Paris MoU port state control annual report 2010 – volume: 80 start-page: 274 year: 2015 end-page: 287 ident: b6 article-title: Network based approach for predictive accident modelling publication-title: Saf. Sci. – year: 2022 ident: b29 article-title: Mediterranean memorandum of understanding on port state control annual report 2021 – volume: 145 year: 2022 ident: b49 article-title: Efficient and explainable ship selection planning in port state control publication-title: Transp. Res. C – volume: 167 start-page: 145 year: 2023 end-page: 170 ident: b25 article-title: A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways publication-title: Transp. Res. B – volume: 163 start-page: 22 year: 2022 end-page: 39 ident: b19 article-title: Business analytics meets artificial intelligence: Assessing the demand effects of discounts on swiss train tickets publication-title: Transp. Res. B – volume: 30 start-page: 4635 year: 2021 end-page: 4655 ident: b26 article-title: Financial and operational risk management: Inventory effects in the gold mining industry publication-title: Prod. Oper. Manage. – year: 2022 ident: b47 article-title: “Predict, then optimize” with quantile regression: A global method from predictive to prescriptive analytics and applications to multimodal transportation – volume: 46 start-page: 866 year: 2019 end-page: 883 ident: b18 article-title: Shipping inspections, detentions, and incidents: An empirical analysis of risk dimensions publication-title: Mar. Policy Manage. – year: 2022 ident: b42 article-title: Annual report on port state control in the Asia-Pacific region – volume: 166 start-page: 333 year: 2022 end-page: 347 ident: b38 article-title: Evaluating port efficiency dynamics: A risk-based approach publication-title: Transp. Res. B – year: 2022 ident: b21 article-title: Indian ocean MoU 2021 annual report – volume: 61 start-page: 485 year: 2008 end-page: 497 ident: b14 article-title: From black-grey-white detention-based lists of flags to black-grey-white casualty-based lists of categories of vessels? publication-title: J. Navig. – volume: 6 start-page: 37 year: 2007 end-page: 49 ident: b13 article-title: The use of risk concept to characterize and select high risk vessels for ship inspections publication-title: WMU J. Mar. Aff. – volume: 149 start-page: 52 year: 2021 end-page: 78 ident: b48 article-title: Shipping domain knowledge informed prediction and optimization in port state control publication-title: Transp. Res. B – volume: 65 start-page: 1115 year: 2017 end-page: 1130 ident: b7 article-title: Using experts’ noisy quantile judgments to quantify risks: Theory and application to agribusiness publication-title: Oper. Res. – volume: 27 start-page: 1724 year: 2018 end-page: 1735 ident: b17 article-title: Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap publication-title: Prod. Oper. Manage. – volume: 164 year: 2022 ident: b30 article-title: A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing publication-title: Transp. Res. E: Logist. Transp. Rev. – volume: 128 start-page: 129 year: 2019 end-page: 157 ident: b46 article-title: Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation publication-title: Transp. Res. B – volume: 164 start-page: 1 year: 2022 end-page: 24 ident: b5 article-title: Distributionally robust optimization for the berth allocation problem under uncertainty publication-title: Transp. Res. B – volume: 27 start-page: 1670 issue: 9 year: 2018 ident: 10.1016/j.trb.2024.102887_b16 article-title: How research in production and operations management may evolve in the era of big data publication-title: Prod. Oper. Manage. doi: 10.1111/poms.12836 – volume: 164 issue: 1 year: 2022 ident: 10.1016/j.trb.2024.102887_b30 article-title: A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing publication-title: Transp. Res. E: Logist. Transp. Rev. – volume: 66 start-page: 879 issue: 6 year: 2013 ident: 10.1016/j.trb.2024.102887_b36 article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal publication-title: J. Navig. doi: 10.1017/S0373463313000519 – year: 2014 ident: 10.1016/j.trb.2024.102887_b41 – year: 2022 ident: 10.1016/j.trb.2024.102887_b34 – volume: 166 start-page: 444 year: 2022 ident: 10.1016/j.trb.2024.102887_b4 article-title: Does big data help answer big questions? The case of airport catchment areas & competition publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.10.013 – volume: 163 start-page: 22 year: 2022 ident: 10.1016/j.trb.2024.102887_b19 article-title: Business analytics meets artificial intelligence: Assessing the demand effects of discounts on swiss train tickets publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.06.006 – year: 2011 ident: 10.1016/j.trb.2024.102887_b31 – volume: 164 start-page: 1 year: 2022 ident: 10.1016/j.trb.2024.102887_b5 article-title: Distributionally robust optimization for the berth allocation problem under uncertainty publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.07.009 – year: 2022 ident: 10.1016/j.trb.2024.102887_b9 – volume: 166 start-page: 333 year: 2022 ident: 10.1016/j.trb.2024.102887_b38 article-title: Evaluating port efficiency dynamics: A risk-based approach publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.10.002 – year: 2022 ident: 10.1016/j.trb.2024.102887_b45 – year: 2016 ident: 10.1016/j.trb.2024.102887_b8 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 10.1016/j.trb.2024.102887_b27 article-title: Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems publication-title: Appl. Math. Comput. – volume: 26 start-page: 1839 issue: 10 year: 2017 ident: 10.1016/j.trb.2024.102887_b22 article-title: Estimation of downside risks in project portfolio selection publication-title: Prod. Oper. Manage. doi: 10.1111/poms.12727 – volume: 149 start-page: 52 issue: 1 year: 2021 ident: 10.1016/j.trb.2024.102887_b48 article-title: Shipping domain knowledge informed prediction and optimization in port state control publication-title: Transp. Res. B doi: 10.1016/j.trb.2021.05.003 – volume: 27 start-page: 1868 issue: 10 year: 2018 ident: 10.1016/j.trb.2024.102887_b12 article-title: Big data analytics in operations management publication-title: Prod. Oper. Manage. doi: 10.1111/poms.12838 – volume: 91 start-page: 992 issue: 9 year: 2006 ident: 10.1016/j.trb.2024.102887_b24 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.11.018 – volume: 38 issue: 03 year: 2021 ident: 10.1016/j.trb.2024.102887_b50 article-title: Development of two highly-efficient and innovative inspection schemes for PSC inspection publication-title: Asia-Pac. J. Oper. Res. doi: 10.1142/S0217595920400138 – volume: 61 start-page: 485 issue: 3 year: 2008 ident: 10.1016/j.trb.2024.102887_b14 article-title: From black-grey-white detention-based lists of flags to black-grey-white casualty-based lists of categories of vessels? publication-title: J. Navig. doi: 10.1017/S0373463308004773 – year: 2020 ident: 10.1016/j.trb.2024.102887_b20 – year: 2012 ident: 10.1016/j.trb.2024.102887_b32 – volume: 46 start-page: 866 issue: 7 year: 2019 ident: 10.1016/j.trb.2024.102887_b18 article-title: Shipping inspections, detentions, and incidents: An empirical analysis of risk dimensions publication-title: Mar. Policy Manage. doi: 10.1080/03088839.2019.1647362 – year: 2022 ident: 10.1016/j.trb.2024.102887_b42 – volume: 19 start-page: 926 issue: 4 year: 2019 ident: 10.1016/j.trb.2024.102887_b35 article-title: Toward digitalization of maritime transport? publication-title: Sensors doi: 10.3390/s19040926 – volume: 80 start-page: 274 issue: 1 year: 2015 ident: 10.1016/j.trb.2024.102887_b6 article-title: Network based approach for predictive accident modelling publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.08.003 – year: 2008 ident: 10.1016/j.trb.2024.102887_b11 – year: 2022 ident: 10.1016/j.trb.2024.102887_b29 – year: 2022 ident: 10.1016/j.trb.2024.102887_b10 – volume: 14 start-page: 53 issue: 1 year: 2005 ident: 10.1016/j.trb.2024.102887_b23 article-title: Managing disruption risks in supply chains publication-title: Prod. Oper. Manage. doi: 10.1111/j.1937-5956.2005.tb00009.x – volume: 23 start-page: 925 issue: 6 year: 2014 ident: 10.1016/j.trb.2024.102887_b37 article-title: Introduction to the special issue on humanitarian operations and crisis management publication-title: Prod. Oper. Manage. doi: 10.1111/poms.12227 – volume: 29 start-page: 1454 issue: 10 year: 2009 ident: 10.1016/j.trb.2024.102887_b43 article-title: Risk analysis of the vessel traffic in the strait of Istanbul publication-title: Risk Anal.: Int. J. doi: 10.1111/j.1539-6924.2009.01287.x – volume: 65 start-page: 1115 issue: 5 year: 2017 ident: 10.1016/j.trb.2024.102887_b7 article-title: Using experts’ noisy quantile judgments to quantify risks: Theory and application to agribusiness publication-title: Oper. Res. doi: 10.1287/opre.2017.1627 – volume: 145 issue: 1 year: 2022 ident: 10.1016/j.trb.2024.102887_b49 article-title: Efficient and explainable ship selection planning in port state control publication-title: Transp. Res. C – year: 2022 ident: 10.1016/j.trb.2024.102887_b3 – volume: early view year: 2022 ident: 10.1016/j.trb.2024.102887_b39 article-title: Incentivizing at-risk production capacity building for COVID-19 vaccines publication-title: Prod. Oper. Manage. – volume: 30 start-page: 4635 issue: 12 year: 2021 ident: 10.1016/j.trb.2024.102887_b26 article-title: Financial and operational risk management: Inventory effects in the gold mining industry publication-title: Prod. Oper. Manage. doi: 10.1111/poms.13448 – volume: 6 start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.trb.2024.102887_b13 article-title: The use of risk concept to characterize and select high risk vessels for ship inspections publication-title: WMU J. Mar. Aff. doi: 10.1007/BF03195088 – year: 2022 ident: 10.1016/j.trb.2024.102887_b47 – year: 2022 ident: 10.1016/j.trb.2024.102887_b2 – year: 2022 ident: 10.1016/j.trb.2024.102887_b21 – year: 2022 ident: 10.1016/j.trb.2024.102887_b44 – volume: 203 issue: 1 year: 2020 ident: 10.1016/j.trb.2024.102887_b15 article-title: Probabilistic approach for characterising the static risk of ships using Bayesian networks publication-title: Reliab. Eng. Syst. Saf. – volume: 219 start-page: 9652 issue: 18 year: 2013 ident: 10.1016/j.trb.2024.102887_b28 article-title: An improved version of the augmented ɛ-constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems publication-title: Appl. Math. Comput. – volume: 27 start-page: 1724 issue: 9 year: 2018 ident: 10.1016/j.trb.2024.102887_b17 article-title: Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap publication-title: Prod. Oper. Manage. doi: 10.1111/poms.12833 – volume: 110 start-page: 38 issue: 1 year: 2018 ident: 10.1016/j.trb.2024.102887_b51 article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks publication-title: Transp. Res. A – volume: 128 start-page: 129 issue: 1 year: 2019 ident: 10.1016/j.trb.2024.102887_b46 article-title: Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.07.017 – year: 2022 ident: 10.1016/j.trb.2024.102887_b33 – volume: 172 start-page: 32 year: 2023 ident: 10.1016/j.trb.2024.102887_b40 article-title: A smart predict-then-optimize method for targeted and cost-effective maritime transportation publication-title: Transp. Res. B doi: 10.1016/j.trb.2023.03.009 – year: 2012 ident: 10.1016/j.trb.2024.102887_b1 – volume: 167 start-page: 145 year: 2023 ident: 10.1016/j.trb.2024.102887_b25 article-title: A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.11.011 – volume: 162 start-page: 1 year: 2022 ident: 10.1016/j.trb.2024.102887_b52 article-title: Integrated berth and yard space allocation under uncertainty publication-title: Transp. Res. B doi: 10.1016/j.trb.2022.05.011 |
| SSID | ssj0003401 |
| Score | 2.4830291 |
| Snippet | Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102887 |
| SubjectTerms | Bi-objective optimization model Data-driven optimization Maritime transport Predictive analytics Threshold optimization |
| Title | A data-driven optimization approach to improving maritime transport efficiency |
| URI | https://dx.doi.org/10.1016/j.trb.2024.102887 |
| Volume | 180 |
| WOSCitedRecordID | wos001164995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIEXJ dateStart: 20220201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLa6MmlwQBsbgo1NPuw0lCo_7No-lolpm1C1A2y9ZYntiCKaopIi_vw91z-SMpjGgUsUWfFrlPf1-fPz82eEPiZGNqyqeESGREeAEBmVFRA5TWXBhzpJbbXFzxM2HvPJRPzo9X77vTA3l6yu-e2tuHpSV0MbONtsnX2Eu4NRaIB7cDpcwe1w_S_Hjw5N1WekFiaOHc4hJMzcXssgIG4I5zRkE2aFETaaaXNchBU6N1Ue09Wffm3RNwihW2tOJ-h8ADQU-hyZ5II9kNoH1BBS3GJTp_5nulwF_7bll09cny8LD1mXjUiJL2BuE5QiiWBWRtcjbNyJkYbS2EH2r_BtMwkXg2ZRDoz1QfvsulT2nSEsFBb6mrWLHEzkxkRuTTxDGymjgvfRxujb8eR7GK0zErszK-17-5XvVQ3gnfe4n7t0-MjpS7TtJhJ4ZAHwCvV0vYNe-H3m1ztoqyM1-RqNR7gDC9yFBfawwM0cB1hgDwscYIFbWLxBZ1-OTz9_jdxZGpHMsriJeMUkTLdJWukKGH6ZKM0kp0RniSwTOYS2rMiAnCZpqYCzcCVFIRJaCFWmLBbZLurX81rvIUwJK5lOGaOsIkLCFIEOFVcplTIuYqX2Uey_Ui6d0Lw57-Qyf9A7--hT6HJlVVb-9TDxnz53NNHSvxxg9HC3t4_5jXdos0X3Aeo3i6V-j57Lm2Z6vfjgMPQHYpGIMQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+optimization+approach+to+improving+maritime+transport+efficiency&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Yan%2C+Ran&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Shuaian&rft.date=2024-02-01&rft.issn=0191-2615&rft.volume=180&rft.spage=102887&rft_id=info:doi/10.1016%2Fj.trb.2024.102887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trb_2024_102887 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |