A data-driven optimization approach to improving maritime transport efficiency

Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transportation research. Part B: methodological Ročník 180; s. 102887
Hlavní autoři: Yan, Ran, Liu, Yan, Wang, Shuaian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2024
Témata:
ISSN:0191-2615, 1879-2367
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain. •Propose SRP+ for high-risk ship selection that retains the SRP but optimizes thresholds.•Construct a bi-objective mixed-integer nonlinear model to optimize thresholds in the SRP.•Solve the model by a big-M method and an epsilon-constraint method.•Validate the superiority of SRP+ under different scenarios using practical inspection records.
AbstractList Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain. •Propose SRP+ for high-risk ship selection that retains the SRP but optimizes thresholds.•Construct a bi-objective mixed-integer nonlinear model to optimize thresholds in the SRP.•Solve the model by a big-M method and an epsilon-constraint method.•Validate the superiority of SRP+ under different scenarios using practical inspection records.
ArticleNumber 102887
Author Yan, Ran
Liu, Yan
Wang, Shuaian
Author_xml – sequence: 1
  givenname: Ran
  surname: Yan
  fullname: Yan, Ran
  email: ran.yan@ntu.edu.sg
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
– sequence: 2
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  email: yan.y.liu@polyu.edu.hk
  organization: Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
– sequence: 3
  givenname: Shuaian
  surname: Wang
  fullname: Wang, Shuaian
  email: wangshuaian@gmail.com
  organization: Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
BookMark eNp9kM9OAyEQh4mpibX6AN54ga0M7C5LPDWN_5JGL3omLLA6TbtsWNKkPr209eShJ4bJfJP5ftdk0ofeE3IHbA4M6vv1PMV2zhkv8583jbwgU2ikKrio5YRMGSgoeA3VFbkexzVjTJQMpuRtQZ1JpnARd76nYUi4xR-TMPTUDEMMxn7TFChuc73D_otuTcQ85GmKph-HEBP1XYcWfW_3N-SyM5vR3_69M_L59PixfClW78-vy8WqsEKwVDSdtIzXJe98VwnRgvPSNlXpBdgWbJ17wgihJPDWQdZxVhkFlVGu5ZIpMSNw2mtjGMfoOz1EzJftNTB9CESvdQ5EHwLRp0AyI_8xFtPRNJvg5iz5cCJ9Vtqhj3o86nqH0dukXcAz9C9XUH3l
CitedBy_id crossref_primary_10_1016_j_tre_2025_104354
crossref_primary_10_1016_j_tre_2024_103751
crossref_primary_10_1016_j_tre_2024_103741
crossref_primary_10_3390_oceans6010015
crossref_primary_10_1016_j_trc_2025_105317
crossref_primary_10_1016_j_trc_2025_105303
crossref_primary_10_1108_JM2_10_2023_0246
crossref_primary_10_1080_18366503_2025_2554348
crossref_primary_10_3390_app15052519
crossref_primary_10_1016_j_ress_2025_111710
crossref_primary_10_1016_j_ocecoaman_2025_107685
crossref_primary_10_1016_j_ress_2024_110558
crossref_primary_10_1109_TIV_2024_3392647
crossref_primary_10_1080_00207543_2025_2551240
crossref_primary_10_3390_jmse13020207
Cites_doi 10.1111/poms.12836
10.1017/S0373463313000519
10.1016/j.trb.2022.10.013
10.1016/j.trb.2022.06.006
10.1016/j.trb.2022.07.009
10.1016/j.trb.2022.10.002
10.1111/poms.12727
10.1016/j.trb.2021.05.003
10.1111/poms.12838
10.1016/j.ress.2005.11.018
10.1142/S0217595920400138
10.1017/S0373463308004773
10.1080/03088839.2019.1647362
10.3390/s19040926
10.1016/j.ssci.2015.08.003
10.1111/j.1937-5956.2005.tb00009.x
10.1111/poms.12227
10.1111/j.1539-6924.2009.01287.x
10.1287/opre.2017.1627
10.1111/poms.13448
10.1007/BF03195088
10.1111/poms.12833
10.1016/j.trb.2019.07.017
10.1016/j.trb.2023.03.009
10.1016/j.trb.2022.11.011
10.1016/j.trb.2022.05.011
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trb.2024.102887
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
ExternalDocumentID 10_1016_j_trb_2024_102887
S0191261524000110
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c330t-8f7c02642fef533b1de7c854e31cb1c65333a339712bd1288dc9a915a9db27093
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0191-2615
IngestDate Sat Nov 29 07:18:03 EST 2025
Tue Nov 18 21:52:32 EST 2025
Sat Feb 17 16:12:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bi-objective optimization model
Maritime transport
Predictive analytics
Threshold optimization
Data-driven optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-8f7c02642fef533b1de7c854e31cb1c65333a339712bd1288dc9a915a9db27093
ParticipantIDs crossref_primary_10_1016_j_trb_2024_102887
crossref_citationtrail_10_1016_j_trb_2024_102887
elsevier_sciencedirect_doi_10_1016_j_trb_2024_102887
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Degré (b14) 2008; 61
Mediterranean MoU (b29) 2022
Mavrotas, Florios (b28) 2013; 219
Dinis, Teixeira, Soares (b15) 2020; 203
Caribbean MoU (b10) 2022
Markou, Corsten (b26) 2021; 30
Yan, Wang, Cao, Sun (b48) 2021; 149
Yan, Zhuge, Wang (b50) 2021; 38
USCG (b45) 2022
Bansal, Gutierrez, Keiser (b7) 2017; 65
Heij, Knapp (b18) 2019; 46
Degré (b13) 2007; 6
Paris MoU (b32) 2012
Sun, Chen, Meng (b38) 2022; 166
Adler, Brudner, Gallotti, Privitera, Ramasco (b4) 2022; 166
Wang, Yan (b47) 2022
Starr, Van Wassenhove (b37) 2014; 23
Silveira, Ângelo Palos, Soares (b36) 2013; 66
Black Sea MoU (b8) 2016
Indian Ocean MoU (b20) 2020
Konak, Coit, Smith (b24) 2006; 91
Tokyo MoU (b41) 2014
Agra, Rodrigues (b5) 2022; 164
Zhen, Zhuge, Wang, Wang (b52) 2022; 162
Kettunen, Salo (b22) 2017; 26
Huber, Meier, Wallimann (b19) 2022; 163
Mrabti, Hamani, Boulaksil, Gargouri, Delahoche (b30) 2022; 164
Choi, Wallace, Wang (b12) 2018; 27
Guha, Kumar (b17) 2018; 27
Abuja MoU (b2) 2022
Baksh, Khan, Gadag, Ferdous (b6) 2015; 80
Mavrotas (b27) 2009; 213
Yan, Wu, Jin, Cao, Wang (b49) 2022; 145
Wang, Yan, Qu (b46) 2019; 128
Riyadh MoU (b34) 2022
Acuerdo de Viña del Mar (b3) 2022
Indian Ocean MoU (b21) 2022
Tian, Yan, Liu, Wang (b40) 2023; 172
Yang, Yang, Yin (b51) 2018; 110
Ulusçu, Özbaş, Altıok, Or (b43) 2009; 29
Abuja MoU (b1) 2012
Tokyo MoU (b42) 2022
Black Sea MoU (b9) 2022
Chankong, Haimes (b11) 2008
Feng, Shanthikumar (b16) 2018; 27
Sun, Toyasaki, Falagara Sigala (b39) 2022; early view
Paris MoU (b31) 2011
Paris MoU (b33) 2022
UNCTAD (b44) 2022
Liu, Li, Wang (b25) 2023; 167
Kleindorfer, Saad (b23) 2005; 14
Sanchez-Gonzalez, Díaz-Gutiérrez, Leo, Núñez-Rivas (b35) 2019; 19
Caribbean MoU (10.1016/j.trb.2024.102887_b10) 2022
Tian (10.1016/j.trb.2024.102887_b40) 2023; 172
Bansal (10.1016/j.trb.2024.102887_b7) 2017; 65
Abuja MoU (10.1016/j.trb.2024.102887_b1) 2012
Heij (10.1016/j.trb.2024.102887_b18) 2019; 46
Yan (10.1016/j.trb.2024.102887_b50) 2021; 38
Abuja MoU (10.1016/j.trb.2024.102887_b2) 2022
Indian Ocean MoU (10.1016/j.trb.2024.102887_b21) 2022
Adler (10.1016/j.trb.2024.102887_b4) 2022; 166
Konak (10.1016/j.trb.2024.102887_b24) 2006; 91
Mrabti (10.1016/j.trb.2024.102887_b30) 2022; 164
Wang (10.1016/j.trb.2024.102887_b47) 2022
Black Sea MoU (10.1016/j.trb.2024.102887_b8) 2016
Yan (10.1016/j.trb.2024.102887_b49) 2022; 145
Baksh (10.1016/j.trb.2024.102887_b6) 2015; 80
Mavrotas (10.1016/j.trb.2024.102887_b27) 2009; 213
Riyadh MoU (10.1016/j.trb.2024.102887_b34) 2022
Zhen (10.1016/j.trb.2024.102887_b52) 2022; 162
UNCTAD (10.1016/j.trb.2024.102887_b44) 2022
Degré (10.1016/j.trb.2024.102887_b14) 2008; 61
Liu (10.1016/j.trb.2024.102887_b25) 2023; 167
Markou (10.1016/j.trb.2024.102887_b26) 2021; 30
Dinis (10.1016/j.trb.2024.102887_b15) 2020; 203
Sun (10.1016/j.trb.2024.102887_b39) 2022; early view
Tokyo MoU (10.1016/j.trb.2024.102887_b42) 2022
Degré (10.1016/j.trb.2024.102887_b13) 2007; 6
Paris MoU (10.1016/j.trb.2024.102887_b33) 2022
Mediterranean MoU (10.1016/j.trb.2024.102887_b29) 2022
Paris MoU (10.1016/j.trb.2024.102887_b32) 2012
Kleindorfer (10.1016/j.trb.2024.102887_b23) 2005; 14
Huber (10.1016/j.trb.2024.102887_b19) 2022; 163
USCG (10.1016/j.trb.2024.102887_b45) 2022
Kettunen (10.1016/j.trb.2024.102887_b22) 2017; 26
Indian Ocean MoU (10.1016/j.trb.2024.102887_b20) 2020
Yan (10.1016/j.trb.2024.102887_b48) 2021; 149
Guha (10.1016/j.trb.2024.102887_b17) 2018; 27
Ulusçu (10.1016/j.trb.2024.102887_b43) 2009; 29
Chankong (10.1016/j.trb.2024.102887_b11) 2008
Yang (10.1016/j.trb.2024.102887_b51) 2018; 110
Acuerdo de Viña del Mar (10.1016/j.trb.2024.102887_b3) 2022
Sanchez-Gonzalez (10.1016/j.trb.2024.102887_b35) 2019; 19
Sun (10.1016/j.trb.2024.102887_b38) 2022; 166
Feng (10.1016/j.trb.2024.102887_b16) 2018; 27
Mavrotas (10.1016/j.trb.2024.102887_b28) 2013; 219
Silveira (10.1016/j.trb.2024.102887_b36) 2013; 66
Paris MoU (10.1016/j.trb.2024.102887_b31) 2011
Black Sea MoU (10.1016/j.trb.2024.102887_b9) 2022
Wang (10.1016/j.trb.2024.102887_b46) 2019; 128
Agra (10.1016/j.trb.2024.102887_b5) 2022; 164
Starr (10.1016/j.trb.2024.102887_b37) 2014; 23
Tokyo MoU (10.1016/j.trb.2024.102887_b41) 2014
Choi (10.1016/j.trb.2024.102887_b12) 2018; 27
References_xml – volume: 166
  start-page: 444
  year: 2022
  end-page: 467
  ident: b4
  article-title: Does big data help answer big questions? The case of airport catchment areas & competition
  publication-title: Transp. Res. B
– year: 2022
  ident: b9
  article-title: Port state control in the Black Sea Region annual report 2021
– volume: 14
  start-page: 53
  year: 2005
  end-page: 68
  ident: b23
  article-title: Managing disruption risks in supply chains
  publication-title: Prod. Oper. Manage.
– volume: 27
  start-page: 1670
  year: 2018
  end-page: 1684
  ident: b16
  article-title: How research in production and operations management may evolve in the era of big data
  publication-title: Prod. Oper. Manage.
– volume: 23
  start-page: 925
  year: 2014
  end-page: 937
  ident: b37
  article-title: Introduction to the special issue on humanitarian operations and crisis management
  publication-title: Prod. Oper. Manage.
– year: 2022
  ident: b44
  article-title: Review of maritime transport 2021
– volume: 172
  start-page: 32
  year: 2023
  end-page: 52
  ident: b40
  article-title: A smart predict-then-optimize method for targeted and cost-effective maritime transportation
  publication-title: Transp. Res. B
– volume: 213
  start-page: 455
  year: 2009
  end-page: 465
  ident: b27
  article-title: Effective implementation of the
  publication-title: Appl. Math. Comput.
– volume: 66
  start-page: 879
  year: 2013
  end-page: 898
  ident: b36
  article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal
  publication-title: J. Navig.
– year: 2022
  ident: b45
  article-title: Port state control in the United States 2021 annual report
– year: 2012
  ident: b32
  article-title: 2011 Annual report “on course for safer shipping”
– volume: 27
  start-page: 1868
  year: 2018
  end-page: 1883
  ident: b12
  article-title: Big data analytics in operations management
  publication-title: Prod. Oper. Manage.
– volume: early view
  year: 2022
  ident: b39
  article-title: Incentivizing at-risk production capacity building for COVID-19 vaccines
  publication-title: Prod. Oper. Manage.
– volume: 110
  start-page: 38
  year: 2018
  end-page: 56
  ident: b51
  article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks
  publication-title: Transp. Res. A
– year: 2016
  ident: b8
  article-title: Information sheet of the BS mou: New inspection regime
– year: 2022
  ident: b10
  article-title: Caribbean memorandum of understanding on port state control annual report 2021
– volume: 203
  year: 2020
  ident: b15
  article-title: Probabilistic approach for characterising the static risk of ships using Bayesian networks
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2008
  ident: b11
  article-title: Multiobjective Decision Making: Theory and Methodology
– volume: 26
  start-page: 1839
  year: 2017
  end-page: 1853
  ident: b22
  article-title: Estimation of downside risks in project portfolio selection
  publication-title: Prod. Oper. Manage.
– year: 2014
  ident: b41
  article-title: New inspection regime (NIR)
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: b24
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 38
  year: 2021
  ident: b50
  article-title: Development of two highly-efficient and innovative inspection schemes for PSC inspection
  publication-title: Asia-Pac. J. Oper. Res.
– volume: 162
  start-page: 1
  year: 2022
  end-page: 27
  ident: b52
  article-title: Integrated berth and yard space allocation under uncertainty
  publication-title: Transp. Res. B
– volume: 19
  start-page: 926
  year: 2019
  ident: b35
  article-title: Toward digitalization of maritime transport?
  publication-title: Sensors
– year: 2022
  ident: b3
  article-title: Annual report on port state control for latin American agreement 2021
– year: 2022
  ident: b34
  article-title: Riyadh memorandum of understanding on port state control annual report 2021
– year: 2012
  ident: b1
  article-title: Memorandum of understanding on port state control for west and Central African Region
– volume: 219
  start-page: 9652
  year: 2013
  end-page: 9669
  ident: b28
  article-title: An improved version of the augmented
  publication-title: Appl. Math. Comput.
– year: 2022
  ident: b2
  article-title: Abuja MoU annual report 2021
– year: 2022
  ident: b33
  article-title: Paris MoU port state control annual report 2021
– year: 2020
  ident: b20
  article-title: Indian ocean mou, secretariat guidance on port state control inspection
– volume: 29
  start-page: 1454
  year: 2009
  end-page: 1472
  ident: b43
  article-title: Risk analysis of the vessel traffic in the strait of Istanbul
  publication-title: Risk Anal.: Int. J.
– year: 2011
  ident: b31
  article-title: Paris MoU port state control annual report 2010
– volume: 80
  start-page: 274
  year: 2015
  end-page: 287
  ident: b6
  article-title: Network based approach for predictive accident modelling
  publication-title: Saf. Sci.
– year: 2022
  ident: b29
  article-title: Mediterranean memorandum of understanding on port state control annual report 2021
– volume: 145
  year: 2022
  ident: b49
  article-title: Efficient and explainable ship selection planning in port state control
  publication-title: Transp. Res. C
– volume: 167
  start-page: 145
  year: 2023
  end-page: 170
  ident: b25
  article-title: A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways
  publication-title: Transp. Res. B
– volume: 163
  start-page: 22
  year: 2022
  end-page: 39
  ident: b19
  article-title: Business analytics meets artificial intelligence: Assessing the demand effects of discounts on swiss train tickets
  publication-title: Transp. Res. B
– volume: 30
  start-page: 4635
  year: 2021
  end-page: 4655
  ident: b26
  article-title: Financial and operational risk management: Inventory effects in the gold mining industry
  publication-title: Prod. Oper. Manage.
– year: 2022
  ident: b47
  article-title: “Predict, then optimize” with quantile regression: A global method from predictive to prescriptive analytics and applications to multimodal transportation
– volume: 46
  start-page: 866
  year: 2019
  end-page: 883
  ident: b18
  article-title: Shipping inspections, detentions, and incidents: An empirical analysis of risk dimensions
  publication-title: Mar. Policy Manage.
– year: 2022
  ident: b42
  article-title: Annual report on port state control in the Asia-Pacific region
– volume: 166
  start-page: 333
  year: 2022
  end-page: 347
  ident: b38
  article-title: Evaluating port efficiency dynamics: A risk-based approach
  publication-title: Transp. Res. B
– year: 2022
  ident: b21
  article-title: Indian ocean MoU 2021 annual report
– volume: 61
  start-page: 485
  year: 2008
  end-page: 497
  ident: b14
  article-title: From black-grey-white detention-based lists of flags to black-grey-white casualty-based lists of categories of vessels?
  publication-title: J. Navig.
– volume: 6
  start-page: 37
  year: 2007
  end-page: 49
  ident: b13
  article-title: The use of risk concept to characterize and select high risk vessels for ship inspections
  publication-title: WMU J. Mar. Aff.
– volume: 149
  start-page: 52
  year: 2021
  end-page: 78
  ident: b48
  article-title: Shipping domain knowledge informed prediction and optimization in port state control
  publication-title: Transp. Res. B
– volume: 65
  start-page: 1115
  year: 2017
  end-page: 1130
  ident: b7
  article-title: Using experts’ noisy quantile judgments to quantify risks: Theory and application to agribusiness
  publication-title: Oper. Res.
– volume: 27
  start-page: 1724
  year: 2018
  end-page: 1735
  ident: b17
  article-title: Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap
  publication-title: Prod. Oper. Manage.
– volume: 164
  year: 2022
  ident: b30
  article-title: A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing
  publication-title: Transp. Res. E: Logist. Transp. Rev.
– volume: 128
  start-page: 129
  year: 2019
  end-page: 157
  ident: b46
  article-title: Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation
  publication-title: Transp. Res. B
– volume: 164
  start-page: 1
  year: 2022
  end-page: 24
  ident: b5
  article-title: Distributionally robust optimization for the berth allocation problem under uncertainty
  publication-title: Transp. Res. B
– volume: 27
  start-page: 1670
  issue: 9
  year: 2018
  ident: 10.1016/j.trb.2024.102887_b16
  article-title: How research in production and operations management may evolve in the era of big data
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.12836
– volume: 164
  issue: 1
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b30
  article-title: A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing
  publication-title: Transp. Res. E: Logist. Transp. Rev.
– volume: 66
  start-page: 879
  issue: 6
  year: 2013
  ident: 10.1016/j.trb.2024.102887_b36
  article-title: Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal
  publication-title: J. Navig.
  doi: 10.1017/S0373463313000519
– year: 2014
  ident: 10.1016/j.trb.2024.102887_b41
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b34
– volume: 166
  start-page: 444
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b4
  article-title: Does big data help answer big questions? The case of airport catchment areas & competition
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.10.013
– volume: 163
  start-page: 22
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b19
  article-title: Business analytics meets artificial intelligence: Assessing the demand effects of discounts on swiss train tickets
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.06.006
– year: 2011
  ident: 10.1016/j.trb.2024.102887_b31
– volume: 164
  start-page: 1
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b5
  article-title: Distributionally robust optimization for the berth allocation problem under uncertainty
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.07.009
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b9
– volume: 166
  start-page: 333
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b38
  article-title: Evaluating port efficiency dynamics: A risk-based approach
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.10.002
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b45
– year: 2016
  ident: 10.1016/j.trb.2024.102887_b8
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 10.1016/j.trb.2024.102887_b27
  article-title: Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems
  publication-title: Appl. Math. Comput.
– volume: 26
  start-page: 1839
  issue: 10
  year: 2017
  ident: 10.1016/j.trb.2024.102887_b22
  article-title: Estimation of downside risks in project portfolio selection
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.12727
– volume: 149
  start-page: 52
  issue: 1
  year: 2021
  ident: 10.1016/j.trb.2024.102887_b48
  article-title: Shipping domain knowledge informed prediction and optimization in port state control
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2021.05.003
– volume: 27
  start-page: 1868
  issue: 10
  year: 2018
  ident: 10.1016/j.trb.2024.102887_b12
  article-title: Big data analytics in operations management
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.12838
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 10.1016/j.trb.2024.102887_b24
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.11.018
– volume: 38
  issue: 03
  year: 2021
  ident: 10.1016/j.trb.2024.102887_b50
  article-title: Development of two highly-efficient and innovative inspection schemes for PSC inspection
  publication-title: Asia-Pac. J. Oper. Res.
  doi: 10.1142/S0217595920400138
– volume: 61
  start-page: 485
  issue: 3
  year: 2008
  ident: 10.1016/j.trb.2024.102887_b14
  article-title: From black-grey-white detention-based lists of flags to black-grey-white casualty-based lists of categories of vessels?
  publication-title: J. Navig.
  doi: 10.1017/S0373463308004773
– year: 2020
  ident: 10.1016/j.trb.2024.102887_b20
– year: 2012
  ident: 10.1016/j.trb.2024.102887_b32
– volume: 46
  start-page: 866
  issue: 7
  year: 2019
  ident: 10.1016/j.trb.2024.102887_b18
  article-title: Shipping inspections, detentions, and incidents: An empirical analysis of risk dimensions
  publication-title: Mar. Policy Manage.
  doi: 10.1080/03088839.2019.1647362
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b42
– volume: 19
  start-page: 926
  issue: 4
  year: 2019
  ident: 10.1016/j.trb.2024.102887_b35
  article-title: Toward digitalization of maritime transport?
  publication-title: Sensors
  doi: 10.3390/s19040926
– volume: 80
  start-page: 274
  issue: 1
  year: 2015
  ident: 10.1016/j.trb.2024.102887_b6
  article-title: Network based approach for predictive accident modelling
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2015.08.003
– year: 2008
  ident: 10.1016/j.trb.2024.102887_b11
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b29
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b10
– volume: 14
  start-page: 53
  issue: 1
  year: 2005
  ident: 10.1016/j.trb.2024.102887_b23
  article-title: Managing disruption risks in supply chains
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/j.1937-5956.2005.tb00009.x
– volume: 23
  start-page: 925
  issue: 6
  year: 2014
  ident: 10.1016/j.trb.2024.102887_b37
  article-title: Introduction to the special issue on humanitarian operations and crisis management
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.12227
– volume: 29
  start-page: 1454
  issue: 10
  year: 2009
  ident: 10.1016/j.trb.2024.102887_b43
  article-title: Risk analysis of the vessel traffic in the strait of Istanbul
  publication-title: Risk Anal.: Int. J.
  doi: 10.1111/j.1539-6924.2009.01287.x
– volume: 65
  start-page: 1115
  issue: 5
  year: 2017
  ident: 10.1016/j.trb.2024.102887_b7
  article-title: Using experts’ noisy quantile judgments to quantify risks: Theory and application to agribusiness
  publication-title: Oper. Res.
  doi: 10.1287/opre.2017.1627
– volume: 145
  issue: 1
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b49
  article-title: Efficient and explainable ship selection planning in port state control
  publication-title: Transp. Res. C
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b3
– volume: early view
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b39
  article-title: Incentivizing at-risk production capacity building for COVID-19 vaccines
  publication-title: Prod. Oper. Manage.
– volume: 30
  start-page: 4635
  issue: 12
  year: 2021
  ident: 10.1016/j.trb.2024.102887_b26
  article-title: Financial and operational risk management: Inventory effects in the gold mining industry
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.13448
– volume: 6
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.trb.2024.102887_b13
  article-title: The use of risk concept to characterize and select high risk vessels for ship inspections
  publication-title: WMU J. Mar. Aff.
  doi: 10.1007/BF03195088
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b47
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b2
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b21
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b44
– volume: 203
  issue: 1
  year: 2020
  ident: 10.1016/j.trb.2024.102887_b15
  article-title: Probabilistic approach for characterising the static risk of ships using Bayesian networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 219
  start-page: 9652
  issue: 18
  year: 2013
  ident: 10.1016/j.trb.2024.102887_b28
  article-title: An improved version of the augmented ɛ-constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 1724
  issue: 9
  year: 2018
  ident: 10.1016/j.trb.2024.102887_b17
  article-title: Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap
  publication-title: Prod. Oper. Manage.
  doi: 10.1111/poms.12833
– volume: 110
  start-page: 38
  issue: 1
  year: 2018
  ident: 10.1016/j.trb.2024.102887_b51
  article-title: Realising advanced risk-based port state control inspection using data-driven Bayesian networks
  publication-title: Transp. Res. A
– volume: 128
  start-page: 129
  issue: 1
  year: 2019
  ident: 10.1016/j.trb.2024.102887_b46
  article-title: Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2019.07.017
– year: 2022
  ident: 10.1016/j.trb.2024.102887_b33
– volume: 172
  start-page: 32
  year: 2023
  ident: 10.1016/j.trb.2024.102887_b40
  article-title: A smart predict-then-optimize method for targeted and cost-effective maritime transportation
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2023.03.009
– year: 2012
  ident: 10.1016/j.trb.2024.102887_b1
– volume: 167
  start-page: 145
  year: 2023
  ident: 10.1016/j.trb.2024.102887_b25
  article-title: A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.11.011
– volume: 162
  start-page: 1
  year: 2022
  ident: 10.1016/j.trb.2024.102887_b52
  article-title: Integrated berth and yard space allocation under uncertainty
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2022.05.011
SSID ssj0003401
Score 2.4830291
Snippet Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102887
SubjectTerms Bi-objective optimization model
Data-driven optimization
Maritime transport
Predictive analytics
Threshold optimization
Title A data-driven optimization approach to improving maritime transport efficiency
URI https://dx.doi.org/10.1016/j.trb.2024.102887
Volume 180
WOSCitedRecordID wos001164995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIEXJ
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLa6MmlwQBsbgo1NPuw0lCo_7No-lolpm1C1A2y9ZYntiCKaopIi_vw91z-SMpjGgUsUWfFrlPf1-fPz82eEPiZGNqyqeESGREeAEBmVFRA5TWXBhzpJbbXFzxM2HvPJRPzo9X77vTA3l6yu-e2tuHpSV0MbONtsnX2Eu4NRaIB7cDpcwe1w_S_Hjw5N1WekFiaOHc4hJMzcXssgIG4I5zRkE2aFETaaaXNchBU6N1Ue09Wffm3RNwihW2tOJ-h8ADQU-hyZ5II9kNoH1BBS3GJTp_5nulwF_7bll09cny8LD1mXjUiJL2BuE5QiiWBWRtcjbNyJkYbS2EH2r_BtMwkXg2ZRDoz1QfvsulT2nSEsFBb6mrWLHEzkxkRuTTxDGymjgvfRxujb8eR7GK0zErszK-17-5XvVQ3gnfe4n7t0-MjpS7TtJhJ4ZAHwCvV0vYNe-H3m1ztoqyM1-RqNR7gDC9yFBfawwM0cB1hgDwscYIFbWLxBZ1-OTz9_jdxZGpHMsriJeMUkTLdJWukKGH6ZKM0kp0RniSwTOYS2rMiAnCZpqYCzcCVFIRJaCFWmLBbZLurX81rvIUwJK5lOGaOsIkLCFIEOFVcplTIuYqX2Uey_Ui6d0Lw57-Qyf9A7--hT6HJlVVb-9TDxnz53NNHSvxxg9HC3t4_5jXdos0X3Aeo3i6V-j57Lm2Z6vfjgMPQHYpGIMQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+optimization+approach+to+improving+maritime+transport+efficiency&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Yan%2C+Ran&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Shuaian&rft.date=2024-02-01&rft.issn=0191-2615&rft.volume=180&rft.spage=102887&rft_id=info:doi/10.1016%2Fj.trb.2024.102887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trb_2024_102887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon