Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging

[Display omitted] •Hyperspectral image applied for non-destructive detection of Zn content in plants.•An MSSAE was proposed for extracting deep features from hyperspectral data.•The model based on the deep features extracted by MSSAE had the best prediction. Zinc (Zn) content plays a decisive role i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Ročník 281; s. 121641
Hlavní autori: Fu, Lvhui, Sun, Jun, Wang, Simin, Xu, Min, Yao, Kunshan, Zhou, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.11.2022
Predmet:
ISSN:1386-1425, 1873-3557, 1873-3557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Hyperspectral image applied for non-destructive detection of Zn content in plants.•An MSSAE was proposed for extracting deep features from hyperspectral data.•The model based on the deep features extracted by MSSAE had the best prediction. Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed rape industry. This study adopted a deep learning (DL) method to predict the Zn content of oilseed rape leaves using hyperspectral imaging (HSI). The dropout mechanism was introduced to improve the stacked sparse autoencoder (SSAE) and named modified SSAE (MSSAE). MSSAE extracted deep spectral features of samples based on pixel-level spectral information (the wavelength range of the spectrum is 431–962 nm). Subsequently, the deep spectral features were applied as the inputs for support vector regression (SVR) and least squares support vector regression (LSSVR) to predict the Zn content in oilseed rape leaves. In addition, the successive projections algorithm (SPA) and the variable iterative space shrinkage approach (VISSA) were investigated as wavelength selection algorithms for comparison. The results showed that the MSSAE-LSSVR model had the best prediction performance (the coefficient of determination (R2) and root mean square error (RMSE) of the prediction set were 0.9566 and 1.0240 mg/kg, respectively). The overall results showed that the MSSAE was able to extract the deep features of HSI data and validated the possibility of HSI combined with a DL method for nondestructive testing of Zn content in oilseed rape leaves.
AbstractList [Display omitted] •Hyperspectral image applied for non-destructive detection of Zn content in plants.•An MSSAE was proposed for extracting deep features from hyperspectral data.•The model based on the deep features extracted by MSSAE had the best prediction. Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed rape industry. This study adopted a deep learning (DL) method to predict the Zn content of oilseed rape leaves using hyperspectral imaging (HSI). The dropout mechanism was introduced to improve the stacked sparse autoencoder (SSAE) and named modified SSAE (MSSAE). MSSAE extracted deep spectral features of samples based on pixel-level spectral information (the wavelength range of the spectrum is 431–962 nm). Subsequently, the deep spectral features were applied as the inputs for support vector regression (SVR) and least squares support vector regression (LSSVR) to predict the Zn content in oilseed rape leaves. In addition, the successive projections algorithm (SPA) and the variable iterative space shrinkage approach (VISSA) were investigated as wavelength selection algorithms for comparison. The results showed that the MSSAE-LSSVR model had the best prediction performance (the coefficient of determination (R2) and root mean square error (RMSE) of the prediction set were 0.9566 and 1.0240 mg/kg, respectively). The overall results showed that the MSSAE was able to extract the deep features of HSI data and validated the possibility of HSI combined with a DL method for nondestructive testing of Zn content in oilseed rape leaves.
Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed rape industry. This study adopted a deep learning (DL) method to predict the Zn content of oilseed rape leaves using hyperspectral imaging (HSI). The dropout mechanism was introduced to improve the stacked sparse autoencoder (SSAE) and named modified SSAE (MSSAE). MSSAE extracted deep spectral features of samples based on pixel-level spectral information (the wavelength range of the spectrum is 431-962 nm). Subsequently, the deep spectral features were applied as the inputs for support vector regression (SVR) and least squares support vector regression (LSSVR) to predict the Zn content in oilseed rape leaves. In addition, the successive projections algorithm (SPA) and the variable iterative space shrinkage approach (VISSA) were investigated as wavelength selection algorithms for comparison. The results showed that the MSSAE-LSSVR model had the best prediction performance (the coefficient of determination (R2) and root mean square error (RMSE) of the prediction set were 0.9566 and 1.0240 mg/kg, respectively). The overall results showed that the MSSAE was able to extract the deep features of HSI data and validated the possibility of HSI combined with a DL method for nondestructive testing of Zn content in oilseed rape leaves.Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed rape industry. This study adopted a deep learning (DL) method to predict the Zn content of oilseed rape leaves using hyperspectral imaging (HSI). The dropout mechanism was introduced to improve the stacked sparse autoencoder (SSAE) and named modified SSAE (MSSAE). MSSAE extracted deep spectral features of samples based on pixel-level spectral information (the wavelength range of the spectrum is 431-962 nm). Subsequently, the deep spectral features were applied as the inputs for support vector regression (SVR) and least squares support vector regression (LSSVR) to predict the Zn content in oilseed rape leaves. In addition, the successive projections algorithm (SPA) and the variable iterative space shrinkage approach (VISSA) were investigated as wavelength selection algorithms for comparison. The results showed that the MSSAE-LSSVR model had the best prediction performance (the coefficient of determination (R2) and root mean square error (RMSE) of the prediction set were 0.9566 and 1.0240 mg/kg, respectively). The overall results showed that the MSSAE was able to extract the deep features of HSI data and validated the possibility of HSI combined with a DL method for nondestructive testing of Zn content in oilseed rape leaves.
ArticleNumber 121641
Author Sun, Jun
Wang, Simin
Yao, Kunshan
Zhou, Xin
Fu, Lvhui
Xu, Min
Author_xml – sequence: 1
  givenname: Lvhui
  surname: Fu
  fullname: Fu, Lvhui
– sequence: 2
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  email: sun2000jun@sina.com
– sequence: 3
  givenname: Simin
  surname: Wang
  fullname: Wang, Simin
– sequence: 4
  givenname: Min
  surname: Xu
  fullname: Xu, Min
– sequence: 5
  givenname: Kunshan
  surname: Yao
  fullname: Yao, Kunshan
– sequence: 6
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
BookMark eNp9kMtKAzEUhoMoqNUHcJelm6m5zCXFVRFvUHVhVyKEY-ZEU8ZkTGYKfXujdeWiqxzI_x3O9x-TfR88EnLG2ZQzXl-spglgKpgQUy54XfI9csRVIwtZVc1-nqWqC16K6pAcp7RijHEl2BF5fQy-xTTE0QxujRTX0I0wuOBpsPTFUxP8gH6gztMIPdIOYY2Jjsn5d_rw_Dy_puBb-rHpMaYezRCho-4T3vP_CTmw0CU8_XsnZHlzvby6KxZPt_dX80VhpGRDoUxtFNY1s5LDrGbSNgB8NmPlm0Hblq3ilamEYm2Oy5LJFqAEbqW1b8iEnJDz7do-hq8xy-hPlwx2HXgMY9KinslGZWWVo802amJIKaLVxg2_uvlu12nO9E-deqVznfqnTr2tM5P8H9nHrBk3O5nLLYNZfu0w6mQceoOti7kp3Qa3g_4GiWWPvA
CitedBy_id crossref_primary_10_1016_j_foodcont_2024_110763
crossref_primary_10_1016_j_saa_2024_125212
crossref_primary_10_1109_ACCESS_2025_3587226
crossref_primary_10_1016_j_heliyon_2024_e25844
crossref_primary_10_1016_j_saa_2025_126652
crossref_primary_10_1016_j_scitotenv_2024_175076
crossref_primary_10_1002_saj2_70095
crossref_primary_10_1016_j_saa_2025_126387
crossref_primary_10_1016_j_jfca_2025_107835
crossref_primary_10_3390_horticulturae11070840
crossref_primary_10_1016_j_scitotenv_2022_160652
crossref_primary_10_1016_j_saa_2022_121940
crossref_primary_10_1016_j_biosystemseng_2024_08_008
crossref_primary_10_1016_j_microc_2023_109306
crossref_primary_10_1016_j_saa_2023_122337
crossref_primary_10_1007_s11694_023_02044_x
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_foodchem_2025_144055
crossref_primary_10_1080_01431161_2023_2295832
crossref_primary_10_3390_agronomy15092229
crossref_primary_10_1016_j_compag_2023_107920
crossref_primary_10_3390_bioengineering12090966
crossref_primary_10_1007_s10921_024_01049_w
Cites_doi 10.1111/jfpe.12654
10.1016/j.jhazmat.2013.12.018
10.1111/jfpp.14591
10.1016/j.saa.2020.118917
10.1016/j.neucom.2021.04.047
10.1016/j.postharvbio.2020.111286
10.1145/3357384.3357999
10.1016/j.postharvbio.2020.111318
10.1111/1750-3841.15715
10.1016/j.saa.2018.12.051
10.1016/j.chemolab.2017.12.010
10.1016/j.saa.2021.120460
10.1016/S1671-2927(09)60176-0
10.3389/fpls.2011.00080
10.1080/15226514.2012.702805
10.1007/s12161-017-1134-5
10.1016/j.trac.2019.01.018
10.1007/s11119-012-9285-2
10.1111/jfpe.13570
10.1016/j.foodchem.2020.126503
10.1093/aob/mcq085
10.1007/s11063-017-9668-5
10.1016/j.geoderma.2006.07.004
10.1016/j.tifs.2021.02.044
10.13031/trans.12214
10.1111/jfs.12888
10.1111/jfpe.12647
10.1111/jfpe.13793
10.1007/s10462-021-10018-y
10.1186/s12859-017-1971-7
10.1051/agro:2002073
10.1016/j.infrared.2020.103412
10.1111/jfpe.12446
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.saa.2022.121641
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 10_1016_j_saa_2022_121641
S1386142522007909
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
M36
R2-
SEW
UHS
~HD
7X8
ID FETCH-LOGICAL-c330t-8c6c8e660f31a9603f7aa19904bcefd4d815c5280d3303403daa4a1f3ffbe023
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840538400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-1425
1873-3557
IngestDate Fri Jul 11 08:07:10 EDT 2025
Tue Nov 18 20:43:09 EST 2025
Sat Nov 29 07:06:09 EST 2025
Fri Feb 23 02:37:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oilseed rape
Modified stacked sparse autoencoder
Zinc content
Dropout
Hyperspectral imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-8c6c8e660f31a9603f7aa19904bcefd4d815c5280d3303403daa4a1f3ffbe023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2693780008
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2693780008
crossref_citationtrail_10_1016_j_saa_2022_121641
crossref_primary_10_1016_j_saa_2022_121641
elsevier_sciencedirect_doi_10_1016_j_saa_2022_121641
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Li, Sun, Zhou, Yao, Nirere (b0130) 2020; 43
Rout, Das (b0035) 2003; 23
Deng, Fan, Zeng (b0145) 2017; 18
Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (b0015) 2014; 266
Z. Liu, Y. He, H. Cen, R. Lu, Deep Feature Representation with Stacked Sparse Auto-Encoder and Convolutional Neural Network for Hyperspectral Imaging-Based Detection of Cucumber Defects, Trans. ASABE, 61 (2018) 425-436. https://doi.org/10.13031/trans.12214.
Zhou, Sun, Mao, Wu, Zhang, Yang (b0045) 2018; 41
Zhang, Lu, Wang, Li, Zhang (b0115) 2017; 47
Cheng, Gu, Cong, Zou, Zhang, Wang (b0010) 2010; 9
Sun, Zhou, Wu, Lu, Dai, Shen (b0160) 2019; 212
Zhou, Sun, Tian, Yao, Xu (b0050) 2022; 266
Yu, Fang, Zhao (b0075) 2021; 245
Yang, Yuan, Chang, Zhao, Cao (b0110) 2020; 109
White, Broadley (b0025) 2011; 2
R.A. Viscarra Rossel, R.N. McGlynn, A.B. McBratney, Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy, Geoderma, 137 (2006) 70-82. https://doi.org/10.1016/j.geoderma.2006.07.004.
Zheng, Bai, Luo, Li, Yang, Zhang (b0080) 2020; 169
Chen, Yi (b0155) 2021; 450
Rathod, Rossiter, Noomen, van der Meer (b0165) 2013; 15
Yun, Li, Deng, Cao (b0090) 2019; 113
White, Brown (b0020) 2010; 105
Cao, Sun, Yao, Xu, Tang, Zhou (b0070) 2021; 44
Wang, Huang, Wang, Liu, Zhang (b0005) 2013; 14
X. Yu, H. Lu, Q. Liu, Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf, Chemometr. Intell. Laborat. Syst., 172 (2018) 188-193. https://doi.org/10.1016/j.chemolab.2017.12.010.
Xu, Sun, Zhou, Tang, Shen, Wu (b0040) 2021; 86
Zhou, Sun, Tian, Chen, Wu, Hang (b0065) 2020; 200
Pan, Sun, Cheng, Han (b0055) 2018; 11
Sun, Lu, Mao, Wu, Gao (b0140) 2017; 40
Wang, Liu, Liu, Zhu, Hou, Liu, Li (b0100) 2021; 54
Yao, Sun, Zhang, Zhou, Tian, Tang, Wu (b0135) 2021; 41
Zhang, Sun, Zhou, Nirere, Wu, Dai (b0120) 2020; 44
Lu, Saeys, Kim, Peng, Lu (b0085) 2020; 170
Sun, Cong, Mao, Wu, Yang (b0125) 2018; 41
Li, Li, Liu (b0030) 2019; 78
Özdoğan, Lin, Sun (b0060) 2021; 111
H. Wang, G. Wang, G. Li, L. Lin, CamDrop, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1141-1149. https://doi.org/10.1145/3357384.3357999.
Zhou, Sun, Tian, Lu, Hang, Chen (b0170) 2020; 321
Wang (10.1016/j.saa.2022.121641_b0100) 2021; 54
Yu (10.1016/j.saa.2022.121641_b0075) 2021; 245
Yun (10.1016/j.saa.2022.121641_b0090) 2019; 113
Zhang (10.1016/j.saa.2022.121641_b0115) 2017; 47
10.1016/j.saa.2022.121641_b0175
Rout (10.1016/j.saa.2022.121641_b0035) 2003; 23
White (10.1016/j.saa.2022.121641_b0025) 2011; 2
Sun (10.1016/j.saa.2022.121641_b0125) 2018; 41
Bolan (10.1016/j.saa.2022.121641_b0015) 2014; 266
10.1016/j.saa.2022.121641_b0095
10.1016/j.saa.2022.121641_b0150
Pan (10.1016/j.saa.2022.121641_b0055) 2018; 11
Chen (10.1016/j.saa.2022.121641_b0155) 2021; 450
Li (10.1016/j.saa.2022.121641_b0030) 2019; 78
Wang (10.1016/j.saa.2022.121641_b0005) 2013; 14
Deng (10.1016/j.saa.2022.121641_b0145) 2017; 18
Özdoğan (10.1016/j.saa.2022.121641_b0060) 2021; 111
Cheng (10.1016/j.saa.2022.121641_b0010) 2010; 9
Zhou (10.1016/j.saa.2022.121641_b0050) 2022; 266
10.1016/j.saa.2022.121641_b0105
Sun (10.1016/j.saa.2022.121641_b0140) 2017; 40
Cao (10.1016/j.saa.2022.121641_b0070) 2021; 44
Zheng (10.1016/j.saa.2022.121641_b0080) 2020; 169
Lu (10.1016/j.saa.2022.121641_b0085) 2020; 170
Zhang (10.1016/j.saa.2022.121641_b0120) 2020; 44
Zhou (10.1016/j.saa.2022.121641_b0045) 2018; 41
Yao (10.1016/j.saa.2022.121641_b0135) 2021; 41
Zhou (10.1016/j.saa.2022.121641_b0065) 2020; 200
White (10.1016/j.saa.2022.121641_b0020) 2010; 105
Xu (10.1016/j.saa.2022.121641_b0040) 2021; 86
Cao (10.1016/j.saa.2022.121641_b0130) 2020; 43
Yang (10.1016/j.saa.2022.121641_b0110) 2020; 109
Rathod (10.1016/j.saa.2022.121641_b0165) 2013; 15
Zhou (10.1016/j.saa.2022.121641_b0170) 2020; 321
Sun (10.1016/j.saa.2022.121641_b0160) 2019; 212
References_xml – reference: X. Yu, H. Lu, Q. Liu, Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf, Chemometr. Intell. Laborat. Syst., 172 (2018) 188-193. https://doi.org/10.1016/j.chemolab.2017.12.010.
– volume: 86
  start-page: 2011
  year: 2021
  end-page: 2023
  ident: b0040
  article-title: Research on nondestructive identification of grape varieties based on EEMD-DWT and hyperspectral image
  publication-title: J. Food. Sci.
– volume: 47
  start-page: 829
  year: 2017
  end-page: 839
  ident: b0115
  article-title: Sparse Auto-encoder with Smoothed l1 Regularization
  publication-title: Neural. Process. Lett.
– volume: 212
  start-page: 215
  year: 2019
  end-page: 221
  ident: b0160
  article-title: Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
– volume: 200
  year: 2020
  ident: b0065
  article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves
  publication-title: Chemometr. Intell. Laborat. Syst.
– volume: 109
  year: 2020
  ident: b0110
  article-title: Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm
  publication-title: Infrared. Phys. Technol.
– volume: 245
  year: 2021
  ident: b0075
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
– volume: 54
  start-page: 5205
  year: 2021
  end-page: 5253
  ident: b0100
  article-title: A review of deep learning used in the hyperspectral image analysis for agriculture
  publication-title: Artif. Intell. Rev.
– volume: 41
  year: 2018
  ident: b0125
  article-title: Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique
  publication-title: J. Food. Process. Eng
– volume: 450
  start-page: 354
  year: 2021
  end-page: 361
  ident: b0155
  article-title: Adaptive sparse dropout: Learning the certainty and uncertainty in deep neural networks
  publication-title: Neurocomputing
– volume: 11
  start-page: 1568
  year: 2018
  end-page: 1580
  ident: b0055
  article-title: Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis
  publication-title: Food. Anal. Methods
– volume: 44
  year: 2020
  ident: b0120
  article-title: Classification detection of saccharin jujube based on hyperspectral imaging technology
  publication-title: J. Food. Process. Preserv.
– volume: 111
  start-page: 151
  year: 2021
  end-page: 165
  ident: b0060
  article-title: Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments
  publication-title: Trends. Food. Sci. Technol.
– reference: H. Wang, G. Wang, G. Li, L. Lin, CamDrop, in: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 1141-1149. https://doi.org/10.1145/3357384.3357999.
– volume: 266
  year: 2022
  ident: b0050
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
– volume: 43
  year: 2020
  ident: b0130
  article-title: Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology
  publication-title: J. Food. Process. Eng
– volume: 44
  year: 2021
  ident: b0070
  article-title: Nondestructive detection of lead content in oilseed rape leaves based on MRF-HHO-SVR and hyperspectral technology
  publication-title: J. Food. Process. Eng.
– volume: 78
  start-page: 39
  year: 2019
  end-page: 52
  ident: b0030
  article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data
  publication-title: Int. J. Appl. Earth. Obs. Geoinf.
– reference: R.A. Viscarra Rossel, R.N. McGlynn, A.B. McBratney, Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy, Geoderma, 137 (2006) 70-82. https://doi.org/10.1016/j.geoderma.2006.07.004.
– volume: 105
  start-page: 1073
  year: 2010
  end-page: 1080
  ident: b0020
  article-title: Plant nutrition for sustainable development and global health
  publication-title: Ann. Bot.
– volume: 266
  start-page: 141
  year: 2014
  end-page: 166
  ident: b0015
  article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize?
  publication-title: J. Hazard. Mater.
– volume: 40
  year: 2017
  ident: b0140
  article-title: Quantitative Determination of Rice Moisture Based on Hyperspectral Imaging Technology and BCC-LS-SVR Algorithm
  publication-title: J. Food. Process. Eng.
– volume: 113
  start-page: 102
  year: 2019
  end-page: 115
  ident: b0090
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC,. Trends. Anal. Chem.
– volume: 321
  year: 2020
  ident: b0170
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
– volume: 41
  year: 2021
  ident: b0135
  article-title: Nondestructive detection for egg freshness based on hyperspectral imaging technology combined with harris hawks optimization support vector regression
  publication-title: J. Food. Saf.
– volume: 169
  year: 2020
  ident: b0080
  article-title: Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics
  publication-title: Postharvest. Biol. Technol.
– reference: Z. Liu, Y. He, H. Cen, R. Lu, Deep Feature Representation with Stacked Sparse Auto-Encoder and Convolutional Neural Network for Hyperspectral Imaging-Based Detection of Cucumber Defects, Trans. ASABE, 61 (2018) 425-436. https://doi.org/10.13031/trans.12214.
– volume: 170
  year: 2020
  ident: b0085
  article-title: Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress
  publication-title: Postharvest. Biol. Technol.
– volume: 23
  start-page: 3
  year: 2003
  end-page: 11
  ident: b0035
  article-title: Effect of metal toxicity on plant growth and metabolism: I. Zinc
  publication-title: Agronomie
– volume: 15
  start-page: 405
  year: 2013
  end-page: 426
  ident: b0165
  article-title: Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils
  publication-title: Int. J. Phytoremediation
– volume: 18
  start-page: 569
  year: 2017
  ident: b0145
  article-title: A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
  publication-title: BMC. Bioinf.
– volume: 2
  start-page: 80
  year: 2011
  ident: b0025
  article-title: Physiological limits to zinc biofortification of edible crops
  publication-title: Front. Plant. Sci.
– volume: 41
  year: 2018
  ident: b0045
  article-title: Visualization research of moisture content in leaf lettuce leaves based on WT-PLSR and hyperspectral imaging technology
  publication-title: J. Food. Process. Eng.
– volume: 14
  start-page: 172
  year: 2013
  end-page: 183
  ident: b0005
  article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines
  publication-title: Precis. Agric.
– volume: 9
  start-page: 951
  year: 2010
  end-page: 957
  ident: b0010
  article-title: Combining ability and genetic effects of germination Traits of Brassica napus L. Under waterlogging stress condition
  publication-title: Agric. Sci. China
– volume: 41
  year: 2018
  ident: 10.1016/j.saa.2022.121641_b0125
  article-title: Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique
  publication-title: J. Food. Process. Eng
  doi: 10.1111/jfpe.12654
– volume: 266
  start-page: 141
  year: 2014
  ident: 10.1016/j.saa.2022.121641_b0015
  article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize?
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.12.018
– volume: 44
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0120
  article-title: Classification detection of saccharin jujube based on hyperspectral imaging technology
  publication-title: J. Food. Process. Preserv.
  doi: 10.1111/jfpp.14591
– volume: 245
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0075
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118917
– volume: 450
  start-page: 354
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0155
  article-title: Adaptive sparse dropout: Learning the certainty and uncertainty in deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.047
– volume: 169
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0080
  article-title: Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics
  publication-title: Postharvest. Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111286
– ident: 10.1016/j.saa.2022.121641_b0150
  doi: 10.1145/3357384.3357999
– volume: 170
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0085
  article-title: Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress
  publication-title: Postharvest. Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111318
– volume: 86
  start-page: 2011
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0040
  article-title: Research on nondestructive identification of grape varieties based on EEMD-DWT and hyperspectral image
  publication-title: J. Food. Sci.
  doi: 10.1111/1750-3841.15715
– volume: 212
  start-page: 215
  year: 2019
  ident: 10.1016/j.saa.2022.121641_b0160
  article-title: Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.12.051
– ident: 10.1016/j.saa.2022.121641_b0095
  doi: 10.1016/j.chemolab.2017.12.010
– volume: 266
  year: 2022
  ident: 10.1016/j.saa.2022.121641_b0050
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.120460
– volume: 9
  start-page: 951
  issue: 7
  year: 2010
  ident: 10.1016/j.saa.2022.121641_b0010
  article-title: Combining ability and genetic effects of germination Traits of Brassica napus L. Under waterlogging stress condition
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(09)60176-0
– volume: 2
  start-page: 80
  year: 2011
  ident: 10.1016/j.saa.2022.121641_b0025
  article-title: Physiological limits to zinc biofortification of edible crops
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2011.00080
– volume: 15
  start-page: 405
  year: 2013
  ident: 10.1016/j.saa.2022.121641_b0165
  article-title: Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2012.702805
– volume: 78
  start-page: 39
  year: 2019
  ident: 10.1016/j.saa.2022.121641_b0030
  article-title: Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data
  publication-title: Int. J. Appl. Earth. Obs. Geoinf.
– volume: 11
  start-page: 1568
  year: 2018
  ident: 10.1016/j.saa.2022.121641_b0055
  article-title: Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis
  publication-title: Food. Anal. Methods
  doi: 10.1007/s12161-017-1134-5
– volume: 113
  start-page: 102
  year: 2019
  ident: 10.1016/j.saa.2022.121641_b0090
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC,. Trends. Anal. Chem.
  doi: 10.1016/j.trac.2019.01.018
– volume: 14
  start-page: 172
  issue: 2
  year: 2013
  ident: 10.1016/j.saa.2022.121641_b0005
  article-title: Estimating nitrogen concentration in rape from hyperspectral data at canopy level using support vector machines
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9285-2
– volume: 43
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0130
  article-title: Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology
  publication-title: J. Food. Process. Eng
  doi: 10.1111/jfpe.13570
– volume: 321
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0170
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126503
– volume: 105
  start-page: 1073
  year: 2010
  ident: 10.1016/j.saa.2022.121641_b0020
  article-title: Plant nutrition for sustainable development and global health
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcq085
– volume: 47
  start-page: 829
  year: 2017
  ident: 10.1016/j.saa.2022.121641_b0115
  article-title: Sparse Auto-encoder with Smoothed l1 Regularization
  publication-title: Neural. Process. Lett.
  doi: 10.1007/s11063-017-9668-5
– ident: 10.1016/j.saa.2022.121641_b0175
  doi: 10.1016/j.geoderma.2006.07.004
– volume: 111
  start-page: 151
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0060
  article-title: Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments
  publication-title: Trends. Food. Sci. Technol.
  doi: 10.1016/j.tifs.2021.02.044
– ident: 10.1016/j.saa.2022.121641_b0105
  doi: 10.13031/trans.12214
– volume: 41
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0135
  article-title: Nondestructive detection for egg freshness based on hyperspectral imaging technology combined with harris hawks optimization support vector regression
  publication-title: J. Food. Saf.
  doi: 10.1111/jfs.12888
– volume: 41
  year: 2018
  ident: 10.1016/j.saa.2022.121641_b0045
  article-title: Visualization research of moisture content in leaf lettuce leaves based on WT-PLSR and hyperspectral imaging technology
  publication-title: J. Food. Process. Eng.
  doi: 10.1111/jfpe.12647
– volume: 44
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0070
  article-title: Nondestructive detection of lead content in oilseed rape leaves based on MRF-HHO-SVR and hyperspectral technology
  publication-title: J. Food. Process. Eng.
  doi: 10.1111/jfpe.13793
– volume: 54
  start-page: 5205
  year: 2021
  ident: 10.1016/j.saa.2022.121641_b0100
  article-title: A review of deep learning used in the hyperspectral image analysis for agriculture
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10018-y
– volume: 18
  start-page: 569
  year: 2017
  ident: 10.1016/j.saa.2022.121641_b0145
  article-title: A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
  publication-title: BMC. Bioinf.
  doi: 10.1186/s12859-017-1971-7
– volume: 23
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.saa.2022.121641_b0035
  article-title: Effect of metal toxicity on plant growth and metabolism: I. Zinc
  publication-title: Agronomie
  doi: 10.1051/agro:2002073
– volume: 200
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0065
  article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves
  publication-title: Chemometr. Intell. Laborat. Syst.
– volume: 109
  year: 2020
  ident: 10.1016/j.saa.2022.121641_b0110
  article-title: Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm
  publication-title: Infrared. Phys. Technol.
  doi: 10.1016/j.infrared.2020.103412
– volume: 40
  year: 2017
  ident: 10.1016/j.saa.2022.121641_b0140
  article-title: Quantitative Determination of Rice Moisture Based on Hyperspectral Imaging Technology and BCC-LS-SVR Algorithm
  publication-title: J. Food. Process. Eng.
  doi: 10.1111/jfpe.12446
SSID ssj0001820
ssib047304432
Score 2.4812922
Snippet [Display omitted] •Hyperspectral image applied for non-destructive detection of Zn content in plants.•An MSSAE was proposed for extracting deep features from...
Zinc (Zn) content plays a decisive role in plant growth. Accurate management of Zn fertilizer application can promote high-quality development of the oilseed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121641
SubjectTerms Dropout
Hyperspectral imaging
Modified stacked sparse autoencoder
Oilseed rape
Zinc content
Title Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging
URI https://dx.doi.org/10.1016/j.saa.2022.121641
https://www.proquest.com/docview/2693780008
Volume 281
WOSCitedRecordID wos000840538400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bixMxFA7drqIvoqvielki-KRMmcw181iWLipahBYtizBkMgntsmbK9sL-D_-wJ7fpBXdxH3wZSpo5hJ6vyXdOzgWhd4UUNKuKImB5mgQJTXlQpRUJOOFM1Lxy0Rbfv-TDIZ1Mim-dzm-fC7O-zJWi19fF_L-qGsZA2Tp19g7qboXCAHwGpcMT1A7Pf1L8sFG1cGVh12KrnLfmhefKBKfrAACdyMLmQveN0JVnV8Zp8HU06g_MhcIUDFSbh2nqcvwy3Yy2qezIfNfw6UxXHNBFOVgPCOnV8kPfeFl9310jTWf5twNWaqMTYlqH_tnKeAjW09Vsc0_l8kZa_P7wzm3diswPTlY2_F9tOzDA9tVBdOnWnhvTLCCJzX_2m3JkG7m4bZVEYNWRv-741vlw0VswXUUqinqbubvVtfdOvTYW0Ye5XZQgotQiSiviAB1GeVrQLjrsfxpMPrcHvK55b-x4t25_WW7CBvfWcRPd2Tv4DZsZP0aPnBmC-xY-T1BHqCP04NR3_ztC901oMF88RT93AYU3gMKNxOcKO0DhmcIaUNgCChtAYQMoDBDAO4DCDlDP0PhsMD79GLieHAGP43AZUJ5xKrIslDFhYP3GMmeMAKVJKi5kndSUpDyNaFjD9DgJ45qxhBEZS1kJ4IfPUVc1SrxAWLI8rGIw0FnKErBLKJeEVUJWYPLShOTHKPS_XMldvXrdNuWyvFFjx-h9-8rcFmu5bXLi1VE6tmlZZAnQuu21t151JahEX68xJZrVoowyoPpUk-qXd1nHK_Rw8694jbqgTvEG3ePr5WxxdYIO8gk9cQj8A6tdrWo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nondestructive+evaluation+of+Zn+content+in+rape+leaves+using+MSSAE+and+hyperspectral+imaging&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Fu%2C+Lvhui&rft.au=Sun%2C+Jun&rft.au=Wang%2C+Simin&rft.au=Xu%2C+Min&rft.date=2022-11-15&rft.issn=1386-1425&rft.volume=281&rft.spage=121641&rft_id=info:doi/10.1016%2Fj.saa.2022.121641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2022_121641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon