Data-intensive applications, challenges, techniques and technologies: A survey on Big Data

It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore’s Law at the beginning of this new century, excessive data is making great troubles to human...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 275; pp. 314 - 347
Main Authors: Philip Chen, C.L., Zhang, Chun-Yang
Format: Journal Article
Language:English
Published: Elsevier Inc 10.08.2014
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore’s Law at the beginning of this new century, excessive data is making great troubles to human beings. However, there are so much potential and highly useful values hidden in the huge volume of data. A new scientific paradigm is born as data-intensive scientific discovery (DISD), also known as Big Data problems. A large number of fields and sectors, ranging from economic and business activities to public administration, from national security to scientific researches in many areas, involve with Big Data problems. On the one hand, Big Data is extremely valuable to produce productivity in businesses and evolutionary breakthroughs in scientific disciplines, which give us a lot of opportunities to make great progresses in many fields. There is no doubt that the future competitions in business productivity and technologies will surely converge into the Big Data explorations. On the other hand, Big Data also arises with many challenges, such as difficulties in data capture, data storage, data analysis and data visualization. This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies we currently adopt to deal with the Big Data problems. We also discuss several underlying methodologies to handle the data deluge, for example, granular computing, cloud computing, bio-inspired computing, and quantum computing.
AbstractList It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore's Law at the beginning of this new century, excessive data is making great troubles to human beings. However, there are so much potential and highly useful values hidden in the huge volume of data. A new scientific paradigm is born as data-intensive scientific discovery (DISD), also known as Big Data problems. A large number of fields and sectors, ranging from economic and business activities to public administration, from national security to scientific researches in many areas, involve with Big Data problems. On the one hand, Big Data is extremely valuable to produce productivity in businesses and evolutionary breakthroughs in scientific disciplines, which give us a lot of opportunities to make great progresses in many fields. There is no doubt that the future competitions in business productivity and technologies will surely converge into the Big Data explorations. On the other hand, Big Data also arises with many challenges, such as difficulties in data capture, data storage, data analysis and data visualization. This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies we currently adopt to deal with the Big Data problems. We also discuss several underlying methodologies to handle the data deluge, for example, granular computing, cloud computing, bio-inspired computing, and quantum computing.
Author Philip Chen, C.L.
Zhang, Chun-Yang
Author_xml – sequence: 1
  givenname: C.L.
  surname: Philip Chen
  fullname: Philip Chen, C.L.
  email: Philip.Chen@ieee.org
– sequence: 2
  givenname: Chun-Yang
  surname: Zhang
  fullname: Zhang, Chun-Yang
  email: cyzhangfst@gmail.com
BookMark eNp9kDtPAzEMgCMEEm3hB7DdyMAdzj1yF5hKeUqVWGBhidKc06a6JiVJK_Xfc6VMDJUs2Zb8WfY3JKfWWSTkikJGgbLbZWZsyHKgZQa0j-qEDGhT5ynLOT0lA4AcUsir6pwMQ1gCQFkzNiBfjzLK1NiINpgtJnK97oyS0TgbbhK1kF2Hdo59HVEtrPneYEikbQ-t69zcYLhLxknY-C3uEmeTBzNP9lsvyJmWXcDLvzwin89PH5PXdPr-8jYZT1NVFBDTRkKtoaUMATXlxYwVNfImZ3zWoM6x1DPeaqXUDFjZtHVRgeJMI5QaeCV1MSLXh71r7_bnRbEyQWHXSYtuEwTtFRQMGOf9KD2MKu9C8KjF2puV9DtBQew9iqXoPYq9RwG0j6pn6n-MMvFXUPTSdEfJ-wOJ_fdbg14EZdAqbI1HFUXrzBH6B8wvkBY
CitedBy_id crossref_primary_10_3390_a17110502
crossref_primary_10_1016_j_gexplo_2021_106872
crossref_primary_10_3233_JIFS_220171
crossref_primary_10_1108_IJOPM_05_2017_0268
crossref_primary_10_3390_s22103615
crossref_primary_10_1109_TFUZZ_2015_2406889
crossref_primary_10_1016_j_rser_2021_111459
crossref_primary_10_1016_j_rtbm_2020_100429
crossref_primary_10_1108_info_04_2016_0016
crossref_primary_10_1016_j_procs_2016_09_211
crossref_primary_10_1080_17445760_2019_1585848
crossref_primary_10_1145_3079759
crossref_primary_10_1016_j_future_2014_10_029
crossref_primary_10_2139_ssrn_5113169
crossref_primary_10_1063_1_5113650
crossref_primary_10_3390_app8112269
crossref_primary_10_1002_cpe_4517
crossref_primary_10_3390_su17051924
crossref_primary_10_1007_s11187_019_00205_1
crossref_primary_10_1007_s11042_018_5733_y
crossref_primary_10_1080_14479338_2021_1894942
crossref_primary_10_1007_s10916_017_0832_2
crossref_primary_10_1016_j_eswa_2021_114840
crossref_primary_10_3390_app10186355
crossref_primary_10_1080_13662716_2022_2109455
crossref_primary_10_1016_j_rcim_2015_09_016
crossref_primary_10_1140_epjds_s13688_018_0165_5
crossref_primary_10_1016_j_ipm_2017_03_006
crossref_primary_10_1108_JKM_03_2024_0262
crossref_primary_10_1080_10095020_2023_2182236
crossref_primary_10_3390_app10228052
crossref_primary_10_1016_j_ijinfomgt_2017_09_007
crossref_primary_10_1016_j_jbusres_2019_01_044
crossref_primary_10_3390_electronics12204232
crossref_primary_10_1007_s12145_023_01207_0
crossref_primary_10_1109_ACCESS_2020_2964413
crossref_primary_10_1109_TCYB_2018_2816657
crossref_primary_10_4028_www_scientific_net_AMR_1022_253
crossref_primary_10_1016_j_procs_2015_09_147
crossref_primary_10_1088_2515_7639_ad467b
crossref_primary_10_1108_SCM_05_2019_0196
crossref_primary_10_1007_s42488_019_00001_2
crossref_primary_10_1007_s13198_016_0455_x
crossref_primary_10_1016_j_eswa_2017_12_044
crossref_primary_10_1108_BPMJ_09_2016_0188
crossref_primary_10_3390_math12040506
crossref_primary_10_1109_ACCESS_2021_3079207
crossref_primary_10_1016_j_eswa_2017_12_026
crossref_primary_10_1109_MNET_2016_1500104NM
crossref_primary_10_1007_s11749_019_00651_9
crossref_primary_10_1155_2021_9988318
crossref_primary_10_1007_s40305_015_0109_8
crossref_primary_10_1016_j_ins_2017_12_040
crossref_primary_10_3390_su14074098
crossref_primary_10_1016_j_knosys_2018_05_006
crossref_primary_10_1080_14760584_2018_1493928
crossref_primary_10_3390_computers14070276
crossref_primary_10_1109_MCSE_2018_042781329
crossref_primary_10_1016_j_neucom_2017_01_126
crossref_primary_10_3389_fphys_2021_712649
crossref_primary_10_1016_j_orgel_2019_07_028
crossref_primary_10_3389_fenvs_2019_00121
crossref_primary_10_1016_j_ijinfomgt_2018_12_011
crossref_primary_10_4018_IRMJ_2019070101
crossref_primary_10_1109_ACCESS_2022_3205118
crossref_primary_10_1111_cobi_13044
crossref_primary_10_1111_exsy_12403
crossref_primary_10_1016_j_bdr_2021_100290
crossref_primary_10_1109_TII_2019_2916689
crossref_primary_10_1186_s43067_023_00090_5
crossref_primary_10_1007_s11227_017_2210_8
crossref_primary_10_1016_j_bdr_2017_10_002
crossref_primary_10_1016_j_knosys_2016_11_008
crossref_primary_10_1080_1206212X_2017_1417768
crossref_primary_10_1016_j_ecoinf_2022_101876
crossref_primary_10_1186_s12889_024_20316_z
crossref_primary_10_1155_2018_8058670
crossref_primary_10_1007_s00500_021_05760_y
crossref_primary_10_1016_j_procs_2014_09_098
crossref_primary_10_1016_j_future_2016_06_005
crossref_primary_10_1080_17517575_2018_1462404
crossref_primary_10_1017_dap_2023_13
crossref_primary_10_3233_JIFS_200366
crossref_primary_10_1016_j_future_2018_08_015
crossref_primary_10_1109_ACCESS_2020_3017636
crossref_primary_10_1007_s10922_018_9481_0
crossref_primary_10_1145_2788402_2788410
crossref_primary_10_1007_s10207_024_00853_9
crossref_primary_10_1016_j_procs_2018_05_107
crossref_primary_10_1109_ACCESS_2017_2689040
crossref_primary_10_1002_asia_202401477
crossref_primary_10_1007_s10586_022_03568_5
crossref_primary_10_1057_s41270_019_00054_7
crossref_primary_10_1186_s40537_022_00659_3
crossref_primary_10_3390_info11120569
crossref_primary_10_1111_poms_12833
crossref_primary_10_2478_cait_2018_0031
crossref_primary_10_1016_j_hydres_2024_03_002
crossref_primary_10_1109_TITS_2014_2345663
crossref_primary_10_1111_poms_12838
crossref_primary_10_12973_eurasia_2017_00951a
crossref_primary_10_1155_2018_3702808
crossref_primary_10_3390_data6020016
crossref_primary_10_1177_00368504221124004
crossref_primary_10_1016_j_neucom_2016_05_112
crossref_primary_10_1016_j_indmarman_2020_03_015
crossref_primary_10_1016_j_jocs_2017_05_023
crossref_primary_10_1016_j_envsoft_2024_106255
crossref_primary_10_1109_ACCESS_2018_2832175
crossref_primary_10_1109_TSMC_2018_2854904
crossref_primary_10_1155_2015_834217
crossref_primary_10_1016_j_compind_2018_03_018
crossref_primary_10_1186_s13638_018_1254_7
crossref_primary_10_3390_rs10111678
crossref_primary_10_1080_19942060_2018_1452296
crossref_primary_10_1007_s11227_016_1677_z
crossref_primary_10_1002_ila2_70009
crossref_primary_10_1109_TSMC_2016_2531674
crossref_primary_10_1142_S0219649223500600
crossref_primary_10_1155_2021_3740476
crossref_primary_10_1016_j_ijpe_2019_107599
crossref_primary_10_1049_iet_ifs_2015_0545
crossref_primary_10_1080_18756891_2016_1175811
crossref_primary_10_1109_TSMC_2018_2881018
crossref_primary_10_1002_poi3_258
crossref_primary_10_4018_IJITWE_2018040104
crossref_primary_10_1016_j_iimb_2022_07_001
crossref_primary_10_1016_j_emj_2020_10_006
crossref_primary_10_1016_j_ins_2016_09_005
crossref_primary_10_2166_hydro_2017_092
crossref_primary_10_1016_j_sigpro_2018_04_014
crossref_primary_10_1016_j_clinthera_2015_12_001
crossref_primary_10_1016_j_jss_2023_111744
crossref_primary_10_1016_j_compchemeng_2023_108306
crossref_primary_10_1080_13675567_2017_1369501
crossref_primary_10_1016_j_ejor_2018_09_018
crossref_primary_10_1109_TDSC_2017_2731844
crossref_primary_10_1109_ACCESS_2018_2815629
crossref_primary_10_1007_s13042_018_00904_3
crossref_primary_10_1016_j_compeleceng_2017_08_002
crossref_primary_10_1088_2631_7990_ad2e13
crossref_primary_10_1016_j_compenvurbsys_2016_10_010
crossref_primary_10_1109_TNSE_2024_3493053
crossref_primary_10_1016_j_bdr_2015_01_001
crossref_primary_10_1088_1757_899X_439_3_032083
crossref_primary_10_1108_MEQ_09_2024_0392
crossref_primary_10_1109_TFUZZ_2017_2762285
crossref_primary_10_3390_s23177580
crossref_primary_10_1007_s10479_017_2607_z
crossref_primary_10_3233_JIFS_189284
crossref_primary_10_1109_TCOMM_2018_2840717
crossref_primary_10_1016_j_procs_2019_02_101
crossref_primary_10_3390_su11184864
crossref_primary_10_3390_app13063725
crossref_primary_10_1016_j_cie_2016_09_023
crossref_primary_10_1016_j_jclepro_2020_124126
crossref_primary_10_3389_frma_2023_1279376
crossref_primary_10_1007_s40843_021_2029_y
crossref_primary_10_1088_1757_899X_225_1_012148
crossref_primary_10_1016_j_bdr_2019_100121
crossref_primary_10_1016_j_tre_2017_08_013
crossref_primary_10_1155_2016_9175418
crossref_primary_10_3390_app11156993
crossref_primary_10_1016_j_knosys_2016_12_002
crossref_primary_10_1007_s10586_016_0715_1
crossref_primary_10_1016_j_techfore_2018_06_007
crossref_primary_10_1186_s40537_024_00914_9
crossref_primary_10_1016_j_neucom_2015_04_049
crossref_primary_10_1108_JEIM_02_2020_0080
crossref_primary_10_1007_s10115_017_1034_4
crossref_primary_10_1007_s11227_017_2182_8
crossref_primary_10_1007_s12652_019_01361_8
crossref_primary_10_1016_j_arcontrol_2018_09_003
crossref_primary_10_1108_INTR_04_2021_0231
crossref_primary_10_1088_1742_6596_1988_1_012111
crossref_primary_10_3390_sym13040573
crossref_primary_10_1109_ACCESS_2020_2987934
crossref_primary_10_1007_s10618_019_00643_1
crossref_primary_10_1109_TC_2020_2993561
crossref_primary_10_1016_j_giq_2019_101401
crossref_primary_10_1109_COMST_2021_3094993
crossref_primary_10_1080_12460125_2023_2263676
crossref_primary_10_1109_TIT_2021_3062614
crossref_primary_10_70315_uloap_ulete_2025_0201002
crossref_primary_10_1016_j_ins_2014_07_029
crossref_primary_10_1145_3132088
crossref_primary_10_1109_TETCI_2019_2915813
crossref_primary_10_1007_s10257_017_0362_y
crossref_primary_10_1016_j_ins_2014_08_065
crossref_primary_10_1007_s10479_024_06054_w
crossref_primary_10_1016_j_knosys_2018_04_037
crossref_primary_10_1016_j_matpr_2020_10_273
crossref_primary_10_1016_j_ins_2017_05_001
crossref_primary_10_1016_j_procs_2018_05_167
crossref_primary_10_3390_e21080774
crossref_primary_10_3390_app10020724
crossref_primary_10_1016_j_procs_2014_05_044
crossref_primary_10_1108_MEDAR_04_2018_0325
crossref_primary_10_1016_j_eswa_2016_08_008
crossref_primary_10_1109_JIOT_2017_2695535
crossref_primary_10_1002_cpe_4927
crossref_primary_10_1007_s11227_021_03661_3
crossref_primary_10_3390_molecules27248888
crossref_primary_10_1016_j_egypro_2017_08_267
crossref_primary_10_1002_aelm_201800418
crossref_primary_10_1016_j_entcom_2024_100792
crossref_primary_10_4018_IJOCI_2017070105
crossref_primary_10_1155_2019_4184708
crossref_primary_10_1109_TSUSC_2018_2817043
crossref_primary_10_1016_j_neucom_2015_04_090
crossref_primary_10_32604_EE_2022_014877
crossref_primary_10_1002_jnm_2844
crossref_primary_10_1016_j_jss_2019_04_058
crossref_primary_10_1002_inf2_12659
crossref_primary_10_1080_17538947_2016_1239771
crossref_primary_10_2196_publichealth_8726
crossref_primary_10_1016_j_cities_2025_106214
crossref_primary_10_1016_j_im_2019_05_004
crossref_primary_10_1016_j_techfore_2024_123225
crossref_primary_10_3390_electronics9111771
crossref_primary_10_52255_smarttourism_2022_2_1_3
crossref_primary_10_1109_ACCESS_2020_2997791
crossref_primary_10_1007_s00607_019_00732_5
crossref_primary_10_1016_j_ins_2020_02_070
crossref_primary_10_1109_ACCESS_2019_2924075
crossref_primary_10_1007_s10619_020_07317_8
crossref_primary_10_1007_s42524_020_0092_6
crossref_primary_10_1016_j_techfore_2016_04_028
crossref_primary_10_3390_su11184821
crossref_primary_10_1007_s00521_018_3666_z
crossref_primary_10_1155_2019_4592902
crossref_primary_10_1007_s11042_021_11283_3
crossref_primary_10_1186_s40537_016_0048_1
crossref_primary_10_1016_j_tra_2018_07_011
crossref_primary_10_1109_TNNLS_2024_3392583
crossref_primary_10_3390_fi14010019
crossref_primary_10_1016_j_ins_2017_12_059
crossref_primary_10_1016_j_autcon_2021_104118
crossref_primary_10_1007_s00500_023_08539_5
crossref_primary_10_1108_IJPPM_09_2020_0481
crossref_primary_10_1016_j_ins_2021_02_060
crossref_primary_10_1016_j_knosys_2017_09_021
crossref_primary_10_1080_00207543_2019_1634847
crossref_primary_10_1002_app_55998
crossref_primary_10_3390_rs14030521
crossref_primary_10_1145_3718364
crossref_primary_10_1016_j_ins_2017_11_043
crossref_primary_10_1007_s11227_018_2426_2
crossref_primary_10_1080_23270012_2016_1186578
crossref_primary_10_3390_sym12081274
crossref_primary_10_1080_00207543_2017_1349946
crossref_primary_10_3390_app11219820
crossref_primary_10_3390_ijgi14040143
crossref_primary_10_1016_j_ijinfomgt_2016_03_006
crossref_primary_10_26634_jfet_19_4_20913
crossref_primary_10_3390_technologies13010022
crossref_primary_10_1007_s40747_022_00798_3
crossref_primary_10_4018_IJAPUC_2018040102
crossref_primary_10_1007_s00500_017_2989_5
crossref_primary_10_1109_TFUZZ_2020_2975152
crossref_primary_10_47909_ijsmc_153
crossref_primary_10_3390_systems13090832
crossref_primary_10_1080_17509653_2016_1162968
crossref_primary_10_1109_TGRS_2021_3100601
crossref_primary_10_1177_2394901517696606
crossref_primary_10_3390_s19071565
crossref_primary_10_1016_j_neucom_2017_06_059
crossref_primary_10_1186_s13677_023_00520_9
crossref_primary_10_1007_s00500_018_03722_5
crossref_primary_10_1016_j_socscimed_2019_112533
crossref_primary_10_1016_j_swevo_2018_08_009
crossref_primary_10_33889_IJMEMS_2016_1_2_006
crossref_primary_10_1007_s10115_018_1248_0
crossref_primary_10_1007_s13369_023_08172_2
crossref_primary_10_1109_ACCESS_2019_2908856
crossref_primary_10_1007_s13042_018_0791_z
crossref_primary_10_1109_ACCESS_2019_2905101
crossref_primary_10_1016_j_hcc_2023_100124
crossref_primary_10_1007_s11227_024_06085_x
crossref_primary_10_1007_s10107_017_1156_1
crossref_primary_10_1108_JKM_06_2015_0238
crossref_primary_10_1007_s10586_017_1029_7
crossref_primary_10_1007_s11761_019_00262_0
crossref_primary_10_1016_j_enbuild_2020_109776
crossref_primary_10_1016_j_ipm_2018_01_010
crossref_primary_10_1007_s10586_018_2201_4
crossref_primary_10_1016_j_ifacol_2017_08_2038
crossref_primary_10_1155_2018_8467413
crossref_primary_10_1109_MNET_2016_7389825
crossref_primary_10_4018_IJWLTT_2020040103
crossref_primary_10_1002_pol_20230909
crossref_primary_10_3390_app15115841
crossref_primary_10_1002_widm_1134
crossref_primary_10_1109_ACCESS_2020_2972975
crossref_primary_10_1109_TCYB_2020_3027415
crossref_primary_10_1002_int_22425
crossref_primary_10_1007_s40747_017_0037_9
crossref_primary_10_1016_j_jenvman_2020_110238
crossref_primary_10_1109_TPDS_2021_3134336
crossref_primary_10_1016_j_ins_2017_08_043
crossref_primary_10_1080_01426397_2021_1970123
crossref_primary_10_1109_TBDATA_2017_2757942
crossref_primary_10_1109_TCOMM_2018_2877391
crossref_primary_10_1016_j_ijinfomgt_2015_09_005
crossref_primary_10_3390_info11020069
crossref_primary_10_1016_j_ipm_2018_01_004
crossref_primary_10_3390_app8040582
crossref_primary_10_1039_C7CC09956H
crossref_primary_10_3390_math8111908
crossref_primary_10_1007_s00170_015_7756_0
crossref_primary_10_1016_j_comcom_2021_03_021
crossref_primary_10_1108_REGE_03_2020_0014
crossref_primary_10_1108_IJLSS_06_2024_0128
crossref_primary_10_1186_s40537_017_0068_5
crossref_primary_10_1016_j_procs_2018_10_453
crossref_primary_10_1016_j_suscom_2020_100420
crossref_primary_10_1038_s41598_022_07368_0
crossref_primary_10_3233_JIFS_191090
crossref_primary_10_1016_j_eswa_2022_117965
crossref_primary_10_1007_s10664_022_10271_x
crossref_primary_10_1016_j_apenergy_2022_119775
crossref_primary_10_1080_02522667_2017_1372130
crossref_primary_10_3390_data5030080
crossref_primary_10_52711_2321_581X_2023_00001
crossref_primary_10_1007_s12083_020_00978_3
crossref_primary_10_1016_j_asoc_2019_105806
crossref_primary_10_1111_1467_8551_12343
crossref_primary_10_3390_buildings11010030
crossref_primary_10_3390_app12020651
crossref_primary_10_1016_j_inffus_2015_07_004
crossref_primary_10_1186_s12859_016_0990_0
crossref_primary_10_21078_JSSI_2021_175_17
crossref_primary_10_1142_S179300572550053X
crossref_primary_10_3390_ijgi5060081
crossref_primary_10_3390_pr5040064
crossref_primary_10_1016_j_future_2018_07_060
crossref_primary_10_1002_net_21628
crossref_primary_10_1016_j_chemolab_2019_05_009
crossref_primary_10_3390_bdcc4020004
crossref_primary_10_1007_s13167_020_00213_2
crossref_primary_10_1080_08874417_2017_1418631
crossref_primary_10_1109_JSTARS_2016_2547020
crossref_primary_10_1007_s11704_020_9159_0
crossref_primary_10_1016_j_future_2016_02_002
crossref_primary_10_1016_j_future_2015_07_019
crossref_primary_10_1155_2017_2306458
crossref_primary_10_1039_D3RA08820K
crossref_primary_10_1111_1467_8551_12333
crossref_primary_10_1007_s00779_020_01461_9
crossref_primary_10_1016_j_techfore_2018_01_014
crossref_primary_10_1016_j_procs_2020_10_060
crossref_primary_10_1186_s13742_016_0117_6
crossref_primary_10_1007_s11042_017_4685_y
crossref_primary_10_3390_su12083386
crossref_primary_10_1016_j_knosys_2015_05_027
crossref_primary_10_1002_aelm_202101356
crossref_primary_10_1016_j_jnca_2021_103025
crossref_primary_10_3390_info11010017
crossref_primary_10_1002_widm_1387
crossref_primary_10_1016_j_jfds_2018_04_001
crossref_primary_10_1089_big_2020_0383
crossref_primary_10_1142_S0217595917400012
crossref_primary_10_1080_10496505_2019_1638264
crossref_primary_10_1109_TC_2016_2636840
crossref_primary_10_12688_f1000research_73269_3
crossref_primary_10_12688_f1000research_73269_2
crossref_primary_10_1002_inf2_12120
crossref_primary_10_1007_s10462_024_10744_z
crossref_primary_10_1007_s10586_021_03442_w
crossref_primary_10_1016_j_agwat_2020_106357
crossref_primary_10_12688_f1000research_73269_4
crossref_primary_10_1007_s13740_018_0086_2
crossref_primary_10_1016_j_procs_2015_04_027
crossref_primary_10_1109_ACCESS_2019_2901118
crossref_primary_10_1108_ECAM_12_2019_0717
crossref_primary_10_1109_TEM_2021_3091661
crossref_primary_10_1016_j_rcim_2019_101851
crossref_primary_10_1155_2020_5471849
crossref_primary_10_1016_j_scib_2019_07_004
crossref_primary_10_1007_s11042_019_07793_w
crossref_primary_10_1016_j_ins_2015_03_026
crossref_primary_10_3390_sym9110284
crossref_primary_10_1007_s11042_016_4026_6
crossref_primary_10_1016_j_cor_2016_09_018
crossref_primary_10_1002_stvr_70003
crossref_primary_10_1515_amcs_2017_0046
crossref_primary_10_1145_3460201
crossref_primary_10_2478_sbe_2018_0027
crossref_primary_10_1016_j_ssci_2018_11_003
crossref_primary_10_3390_su11071961
crossref_primary_10_1016_j_procs_2021_01_004
crossref_primary_10_1109_TII_2016_2547584
crossref_primary_10_1007_s40747_021_00532_5
crossref_primary_10_1109_TPDS_2020_3005572
crossref_primary_10_1016_j_simpat_2016_01_010
crossref_primary_10_1111_deci_12451
crossref_primary_10_3390_s16111813
crossref_primary_10_3390_s22010066
crossref_primary_10_1007_s41066_016_0032_3
crossref_primary_10_1007_s10586_023_04074_y
crossref_primary_10_1109_TSMC_2018_2876455
crossref_primary_10_3390_app10020474
crossref_primary_10_1007_s12039_023_02163_4
crossref_primary_10_1080_09537287_2020_1810764
crossref_primary_10_4018_IRMJ_2018010102
crossref_primary_10_1007_s00187_020_00294_0
crossref_primary_10_1109_ACCESS_2021_3067815
crossref_primary_10_2478_picbe_2023_0182
crossref_primary_10_1007_s13042_022_01521_x
crossref_primary_10_1631_FITEE_1500441
crossref_primary_10_1007_s10707_017_0309_y
crossref_primary_10_1016_j_ecolind_2017_02_040
crossref_primary_10_1108_info_03_2016_0012
crossref_primary_10_1016_j_sysarc_2021_101996
crossref_primary_10_1016_j_future_2019_02_041
crossref_primary_10_1016_j_procs_2018_10_201
crossref_primary_10_1007_s40171_024_00428_6
crossref_primary_10_1016_j_jocs_2020_101180
crossref_primary_10_1016_j_neucom_2018_01_056
crossref_primary_10_1089_big_2018_0017
crossref_primary_10_1108_ITSE_10_2021_0192
crossref_primary_10_2166_wcc_2018_197
crossref_primary_10_1109_TBDATA_2020_3036813
crossref_primary_10_1016_j_procs_2019_04_177
crossref_primary_10_1007_s11664_024_11393_2
crossref_primary_10_1007_s11227_017_1963_4
crossref_primary_10_1007_s12553_017_0191_5
crossref_primary_10_1007_s40846_015_0091_y
crossref_primary_10_1080_23742917_2019_1601889
crossref_primary_10_1177_0735633119845694
crossref_primary_10_1109_ACCESS_2022_3206805
crossref_primary_10_1007_s10586_014_0406_8
crossref_primary_10_1016_j_jnca_2018_12_013
crossref_primary_10_1016_j_micpro_2015_08_013
crossref_primary_10_1108_IJM_05_2022_0247
crossref_primary_10_1007_s40692_022_00250_y
crossref_primary_10_32604_cmc_2021_014330
crossref_primary_10_1016_j_jmsy_2018_01_003
crossref_primary_10_1051_shsconf_20208301006
crossref_primary_10_1002_nem_1978
crossref_primary_10_1016_j_compind_2019_06_006
crossref_primary_10_1016_j_inffus_2017_10_006
crossref_primary_10_1016_j_clscn_2022_100074
crossref_primary_10_1016_j_inffus_2017_10_001
crossref_primary_10_1007_s11227_024_05997_y
crossref_primary_10_1109_TITS_2024_3392959
crossref_primary_10_3390_nano12010012
crossref_primary_10_1007_s12652_019_01443_7
crossref_primary_10_1109_TCYB_2017_2750481
crossref_primary_10_1016_j_asoc_2023_110154
crossref_primary_10_1109_JSTARS_2016_2574810
crossref_primary_10_1109_TETC_2017_2760927
crossref_primary_10_3390_ijerph17155330
crossref_primary_10_3390_electronics12010053
crossref_primary_10_1016_j_indmarman_2019_08_004
crossref_primary_10_1109_TPDS_2022_3170574
crossref_primary_10_1057_s41264_023_00235_7
crossref_primary_10_1007_s11265_016_1185_7
crossref_primary_10_1016_j_ins_2019_10_030
crossref_primary_10_1007_s13042_022_01634_3
crossref_primary_10_1002_sres_2985
crossref_primary_10_1016_j_bspc_2016_09_006
crossref_primary_10_1007_s42488_024_00132_1
crossref_primary_10_1108_JEIM_08_2019_0222
crossref_primary_10_1016_j_jpdc_2017_12_002
crossref_primary_10_1007_s00500_020_05544_w
crossref_primary_10_1016_j_cirp_2019_03_009
crossref_primary_10_1109_JIOT_2016_2557487
crossref_primary_10_1109_TII_2017_2766885
crossref_primary_10_1016_j_future_2020_02_020
crossref_primary_10_1016_j_jclepro_2020_121863
crossref_primary_10_1088_2632_2153_abe193
crossref_primary_10_1007_s11760_022_02341_w
crossref_primary_10_1007_s12652_015_0259_x
crossref_primary_10_1007_s11831_021_09616_4
crossref_primary_10_1007_s11113_018_9464_6
crossref_primary_10_1371_journal_pone_0250229
crossref_primary_10_1016_j_ins_2016_01_075
crossref_primary_10_1016_j_neunet_2019_09_039
crossref_primary_10_1016_j_asr_2015_10_038
crossref_primary_10_1016_j_ijhm_2019_01_003
crossref_primary_10_1016_j_datak_2024_102310
crossref_primary_10_1155_2020_5186870
crossref_primary_10_1002_cpe_5212
crossref_primary_10_1109_TEMC_2025_3583673
crossref_primary_10_1007_s11227_022_04399_2
crossref_primary_10_1016_j_ijinfomgt_2019_11_002
crossref_primary_10_1016_j_im_2018_12_003
crossref_primary_10_1016_j_knosys_2018_12_028
crossref_primary_10_1007_s13222_018_0275_z
crossref_primary_10_1007_s10462_024_10811_5
crossref_primary_10_1016_j_mtadv_2025_100571
crossref_primary_10_1016_j_petrol_2022_111296
crossref_primary_10_1016_j_ins_2019_11_039
crossref_primary_10_1142_S0217595917400097
crossref_primary_10_1007_s11192_016_1945_y
crossref_primary_10_1155_2015_748681
crossref_primary_10_1007_s40708_014_0001_z
crossref_primary_10_3390_su15043482
crossref_primary_10_1109_TFUZZ_2019_2947231
crossref_primary_10_3390_su13116230
crossref_primary_10_1016_j_ins_2015_07_040
crossref_primary_10_1016_j_asoc_2024_112261
crossref_primary_10_1016_j_jii_2018_02_002
crossref_primary_10_1016_j_bdr_2024_100454
crossref_primary_10_1016_j_tele_2020_101529
crossref_primary_10_1016_j_future_2018_07_042
crossref_primary_10_1108_JEIM_01_2024_0059
crossref_primary_10_1080_00207543_2020_1868599
crossref_primary_10_3390_informatics9010012
crossref_primary_10_7717_peerj_cs_276
crossref_primary_10_1016_j_datak_2024_102333
crossref_primary_10_1109_MCI_2015_2405316
crossref_primary_10_1016_j_jnca_2016_09_008
crossref_primary_10_1016_j_ins_2018_02_053
crossref_primary_10_1016_j_ijinfomgt_2020_102167
crossref_primary_10_1109_ACCESS_2022_3188117
crossref_primary_10_1016_j_procs_2022_12_277
crossref_primary_10_1007_s10699_019_09588_6
crossref_primary_10_1016_j_future_2018_07_056
crossref_primary_10_1002_aisy_202200353
crossref_primary_10_1080_12460125_2020_1869432
crossref_primary_10_1002_jcph_1141
crossref_primary_10_1016_S2095_3119_17_61859_8
crossref_primary_10_1016_j_cosrev_2020_100313
crossref_primary_10_1016_j_procir_2022_09_098
crossref_primary_10_1155_2018_5418679
crossref_primary_10_1002_aisy_202000055
crossref_primary_10_1002_cpe_6968
crossref_primary_10_1016_j_ins_2019_10_069
crossref_primary_10_1007_s10664_017_9503_7
crossref_primary_10_3390_w12102796
crossref_primary_10_3390_su162310772
crossref_primary_10_1108_IJQRM_07_2021_0224
crossref_primary_10_1111_coin_12246
crossref_primary_10_1109_ACCESS_2019_2946884
crossref_primary_10_1016_j_neucom_2018_02_020
crossref_primary_10_1016_j_fss_2019_05_009
crossref_primary_10_1016_j_materresbull_2023_112634
crossref_primary_10_1108_JEIM_10_2015_0099
crossref_primary_10_2139_ssrn_5051526
crossref_primary_10_1109_ACCESS_2020_3046132
crossref_primary_10_1080_23729333_2019_1637488
crossref_primary_10_1016_j_future_2016_03_018
crossref_primary_10_1177_1550147719839014
crossref_primary_10_1016_j_jksuci_2017_12_007
crossref_primary_10_1061__ASCE_CP_1943_5487_0000682
crossref_primary_10_1109_TNNLS_2022_3184120
crossref_primary_10_1080_08874417_2016_1183977
crossref_primary_10_1007_s10792_022_02279_5
crossref_primary_10_1080_19479832_2017_1391336
crossref_primary_10_1007_s10479_022_04772_7
crossref_primary_10_3233_IDA_194663
crossref_primary_10_1007_s10796_017_9822_7
crossref_primary_10_1016_j_techfore_2023_122884
crossref_primary_10_3390_buildings14113635
crossref_primary_10_1109_ACCESS_2018_2882240
crossref_primary_10_12677_ecl_2024_1341727
crossref_primary_10_1016_j_inffus_2018_10_005
crossref_primary_10_1080_02664763_2024_2307535
crossref_primary_10_1186_s40537_019_0241_0
crossref_primary_10_1016_j_ijhm_2020_102853
crossref_primary_10_1016_j_ijinfomgt_2016_07_009
crossref_primary_10_1016_j_pce_2025_104063
crossref_primary_10_1109_TIT_2020_2999909
crossref_primary_10_3390_bdcc3010012
crossref_primary_10_1007_s13132_020_00703_8
crossref_primary_10_1177_2053951720906849
crossref_primary_10_1007_s11276_020_02321_3
crossref_primary_10_1016_j_foreco_2020_118104
crossref_primary_10_1016_j_ins_2016_10_012
crossref_primary_10_1080_00207543_2019_1598599
crossref_primary_10_1007_s10791_025_09518_0
crossref_primary_10_1016_j_artmed_2018_09_002
crossref_primary_10_1016_j_iot_2022_100658
crossref_primary_10_1007_s10270_019_00730_3
crossref_primary_10_1016_j_swevo_2024_101751
crossref_primary_10_1080_08839514_2019_1665262
crossref_primary_10_1007_s11707_019_0748_x
crossref_primary_10_1016_j_omega_2018_07_008
crossref_primary_10_1080_09537287_2020_1834126
crossref_primary_10_1108_AEAT_12_2020_0318
crossref_primary_10_1155_2019_5235706
crossref_primary_10_1109_TSMC_2015_2391262
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_1109_ACCESS_2020_3007763
crossref_primary_10_1016_j_envsoft_2015_12_015
crossref_primary_10_1111_exsy_12331
crossref_primary_10_1017_dap_2024_19
crossref_primary_10_1016_j_ins_2016_02_029
crossref_primary_10_1109_TKDE_2018_2866149
crossref_primary_10_1080_13683500_2018_1564739
crossref_primary_10_1016_j_asoc_2022_109843
crossref_primary_10_1016_j_jii_2023_100483
crossref_primary_10_3233_IP_190156
crossref_primary_10_1007_s00607_021_00999_7
crossref_primary_10_1016_j_cie_2018_04_013
crossref_primary_10_1109_TSMC_2017_2667703
crossref_primary_10_1111_trf_16939
crossref_primary_10_1016_j_procir_2016_08_036
crossref_primary_10_3102_0013189X251318346
crossref_primary_10_1007_s00778_020_00614_9
crossref_primary_10_1109_TCDS_2022_3192536
crossref_primary_10_1016_j_techfore_2017_10_005
crossref_primary_10_1016_j_giq_2021_101617
crossref_primary_10_1364_AO_454422
crossref_primary_10_3390_bdcc2040032
crossref_primary_10_1016_j_econmod_2017_02_014
crossref_primary_10_1108_BPMJ_01_2016_0017
crossref_primary_10_1109_ACCESS_2020_3018667
crossref_primary_10_1080_15567036_2019_1631410
crossref_primary_10_1109_TDSC_2022_3149544
crossref_primary_10_1140_epjst_e2020_000261_8
crossref_primary_10_1007_s00146_021_01166_4
crossref_primary_10_1080_21681724_2024_2444654
crossref_primary_10_1093_comjnl_bxad017
crossref_primary_10_1080_17517575_2024_2415568
crossref_primary_10_1108_ECAM_11_2024_1502
crossref_primary_10_3390_ijgi7090371
crossref_primary_10_1007_s11831_024_10156_w
crossref_primary_10_1109_TCSVT_2016_2565918
crossref_primary_10_1016_j_ijinfomgt_2019_05_006
crossref_primary_10_1108_TG_09_2019_0085
crossref_primary_10_1109_TBDATA_2021_3139069
crossref_primary_10_1016_j_im_2022_103743
crossref_primary_10_1016_j_parco_2021_102751
crossref_primary_10_1007_s11227_017_1991_0
crossref_primary_10_1007_s41870_018_0243_8
crossref_primary_10_1016_j_ijinfomgt_2019_05_003
crossref_primary_10_3389_fpsyg_2020_580820
crossref_primary_10_1016_j_infsof_2017_06_001
crossref_primary_10_1049_htl_2018_5046
crossref_primary_10_3390_su9112139
crossref_primary_10_1109_ACCESS_2018_2889122
crossref_primary_10_1109_ACCESS_2019_2944641
crossref_primary_10_1109_JLT_2024_3481628
crossref_primary_10_1051_itmconf_20213802005
crossref_primary_10_1145_3442696
crossref_primary_10_1007_s10586_018_2821_8
crossref_primary_10_1016_j_future_2018_01_026
crossref_primary_10_1080_12460125_2018_1437654
crossref_primary_10_1108_IJCHM_03_2019_0279
crossref_primary_10_1186_s40537_020_00337_2
crossref_primary_10_1016_j_scitotenv_2018_09_349
crossref_primary_10_3389_frma_2021_678554
crossref_primary_10_1007_s10462_019_09685_9
crossref_primary_10_1016_j_inffus_2018_11_009
crossref_primary_10_1007_s00607_017_0563_8
crossref_primary_10_1108_EJIM_05_2021_0256
crossref_primary_10_1108_MD_07_2018_0833
crossref_primary_10_3390_math11173767
crossref_primary_10_3390_smartcities7030061
crossref_primary_10_1016_j_eswa_2019_112869
crossref_primary_10_1007_s00500_019_04384_7
crossref_primary_10_1016_j_ins_2016_02_056
crossref_primary_10_1007_s10586_018_2186_z
crossref_primary_10_1109_ACCESS_2020_2968969
crossref_primary_10_1177_0340035220931882
crossref_primary_10_1007_s12599_023_00826_7
crossref_primary_10_1016_j_physa_2018_04_089
crossref_primary_10_1016_j_cirp_2020_05_002
crossref_primary_10_1007_s13132_024_02037_1
crossref_primary_10_3390_app10228137
crossref_primary_10_1016_j_procs_2015_09_023
crossref_primary_10_1007_s12652_020_02287_2
crossref_primary_10_1002_pssa_202000655
crossref_primary_10_1016_j_ejor_2021_11_003
crossref_primary_10_1109_JIOT_2018_2844296
crossref_primary_10_1016_j_measurement_2020_107735
crossref_primary_10_1186_s40537_018_0166_z
crossref_primary_10_1007_s10639_023_11940_0
crossref_primary_10_1108_DPRG_01_2022_0005
crossref_primary_10_1177_09610006241259495
crossref_primary_10_1016_j_ins_2016_11_002
crossref_primary_10_1371_journal_pone_0141229
crossref_primary_10_1007_s10730_019_09377_5
crossref_primary_10_1016_j_future_2015_10_003
crossref_primary_10_1007_s10586_020_03155_6
crossref_primary_10_1080_10618600_2022_2084404
crossref_primary_10_1108_ITP_06_2019_0286
crossref_primary_10_1108_BIJ_03_2021_0127
crossref_primary_10_1109_TKDE_2024_3381192
crossref_primary_10_3390_e22101084
crossref_primary_10_3390_electronics10091062
crossref_primary_10_1109_EMR_2018_2810069
crossref_primary_10_1016_j_cie_2018_04_055
crossref_primary_10_1109_TNSM_2023_3291890
crossref_primary_10_3389_fpsyg_2022_948764
crossref_primary_10_3390_su14105854
crossref_primary_10_1016_j_tre_2017_04_001
crossref_primary_10_1016_j_jisa_2019_102362
crossref_primary_10_1007_s10878_017_0240_z
crossref_primary_10_1016_j_isci_2024_111327
crossref_primary_10_1016_j_jbusres_2019_07_006
crossref_primary_10_1016_j_ins_2016_11_012
crossref_primary_10_1111_mice_12381
crossref_primary_10_1007_s40815_023_01534_w
crossref_primary_10_1108_TQM_02_2021_0051
crossref_primary_10_1080_08839514_2021_1936423
crossref_primary_10_1016_j_eswa_2021_114741
crossref_primary_10_3390_app112211033
crossref_primary_10_1108_JBIM_10_2020_0464
crossref_primary_10_1016_j_jbusres_2019_09_062
crossref_primary_10_1109_ACCESS_2018_2804623
crossref_primary_10_1109_TSMC_2015_2464787
crossref_primary_10_1007_s10586_021_03296_2
crossref_primary_10_1007_s00500_023_08279_6
crossref_primary_10_1016_j_csi_2017_03_006
crossref_primary_10_1108_JEIM_03_2022_0074
crossref_primary_10_5937_ekonomika2501039M
crossref_primary_10_1016_j_neucom_2018_09_028
crossref_primary_10_1109_ACCESS_2021_3078269
crossref_primary_10_1007_s11203_018_9190_z
crossref_primary_10_1016_j_matpr_2022_05_117
crossref_primary_10_3390_app14051963
crossref_primary_10_1007_s10796_018_9872_5
crossref_primary_10_1016_j_jclepro_2020_123142
crossref_primary_10_1016_j_future_2018_05_085
crossref_primary_10_1007_s11042_017_5078_y
crossref_primary_10_1109_TNNLS_2016_2638321
crossref_primary_10_3390_su141610002
crossref_primary_10_1007_s11432_017_9421_3
crossref_primary_10_1016_j_jclepro_2018_12_199
crossref_primary_10_1108_BFJ_04_2021_0444
crossref_primary_10_1108_MEDAR_10_2017_0225
crossref_primary_10_1038_s41467_019_13166_6
crossref_primary_10_1016_j_future_2018_04_031
crossref_primary_10_1007_s11573_022_01095_8
crossref_primary_10_1007_s41870_020_00559_w
crossref_primary_10_1016_j_future_2018_04_032
crossref_primary_10_1108_BPMJ_03_2024_0171
crossref_primary_10_1016_j_jss_2019_01_051
crossref_primary_10_1080_17517575_2019_1612098
crossref_primary_10_3390_electronics8050546
crossref_primary_10_1016_j_procs_2018_05_020
crossref_primary_10_1016_j_eswa_2021_115898
crossref_primary_10_1016_j_jpdc_2019_04_011
crossref_primary_10_1016_j_patcog_2018_01_033
crossref_primary_10_1016_j_compag_2018_06_008
crossref_primary_10_1016_j_envsoft_2021_105049
crossref_primary_10_1108_FS_10_2022_0114
crossref_primary_10_3390_info12110480
crossref_primary_10_1108_JOSM_06_2019_0173
crossref_primary_10_1016_j_chb_2021_106778
crossref_primary_10_1109_TSC_2015_2501300
crossref_primary_10_1080_23270012_2016_1141332
crossref_primary_10_1016_j_jtice_2018_05_020
crossref_primary_10_1016_j_chb_2021_106777
crossref_primary_10_1016_j_jii_2019_100105
crossref_primary_10_1109_TPDS_2018_2879603
crossref_primary_10_1016_j_ins_2018_11_007
crossref_primary_10_1016_j_adhoc_2015_07_012
crossref_primary_10_3390_a9010013
crossref_primary_10_3390_bdcc3030042
crossref_primary_10_1061__ASCE_IS_1943_555X_0000549
crossref_primary_10_1007_s10479_016_2386_y
crossref_primary_10_1002_int_21960
crossref_primary_10_1002_bse_2942
crossref_primary_10_1080_09720529_2020_1721869
crossref_primary_10_1016_j_knosys_2014_12_033
crossref_primary_10_1002_aelm_202100432
crossref_primary_10_1007_s10586_018_2184_1
crossref_primary_10_1016_j_cie_2018_06_019
crossref_primary_10_1108_LHT_11_2016_0134
crossref_primary_10_2478_fiqf_2025_0004
crossref_primary_10_1007_s11277_021_09213_5
crossref_primary_10_1186_s40537_019_0196_1
crossref_primary_10_1016_j_isatra_2022_01_030
crossref_primary_10_1007_s40009_018_0771_6
crossref_primary_10_1016_j_procir_2017_03_019
crossref_primary_10_1007_s00521_021_06332_9
crossref_primary_10_1007_s11227_015_1501_1
crossref_primary_10_1108_IJPDLM_11_2017_0341
crossref_primary_10_3390_app11167547
crossref_primary_10_1007_s10479_016_2264_7
crossref_primary_10_1088_1742_6596_2089_1_012007
crossref_primary_10_1016_j_techfore_2017_04_023
crossref_primary_10_1016_j_jbusres_2016_08_001
crossref_primary_10_32628_IJSRST52310228
crossref_primary_10_1007_s00500_023_08516_y
crossref_primary_10_1007_s10462_021_09994_y
crossref_primary_10_1016_j_ins_2018_12_055
crossref_primary_10_1016_j_giq_2020_101550
crossref_primary_10_1007_s00521_017_3000_1
crossref_primary_10_1109_ACCESS_2020_2970143
crossref_primary_10_1007_s10626_024_00407_0
crossref_primary_10_1007_s11042_017_5161_4
crossref_primary_10_7202_1042308ar
crossref_primary_10_1007_s00187_025_00400_0
crossref_primary_10_1016_j_scs_2020_102233
crossref_primary_10_1109_ACCESS_2022_3170038
crossref_primary_10_1108_IMDS_11_2018_0532
crossref_primary_10_1109_TCYB_2021_3071110
crossref_primary_10_3390_s23062952
crossref_primary_10_1016_j_eap_2024_12_036
crossref_primary_10_1007_s13042_022_01728_y
crossref_primary_10_1109_RITA_2016_2589480
crossref_primary_10_1007_s11423_023_10224_1
crossref_primary_10_1080_10618600_2021_2000419
crossref_primary_10_1002_pol_20230273
crossref_primary_10_1002_cpe_3909
crossref_primary_10_1016_j_cor_2021_105641
crossref_primary_10_4018_IJKBO_2017100104
crossref_primary_10_1007_s11241_016_9257_0
crossref_primary_10_1109_TSC_2014_2358213
crossref_primary_10_1016_j_cor_2017_07_004
crossref_primary_10_1109_TSMC_2020_3043147
crossref_primary_10_1007_s10479_021_04263_1
crossref_primary_10_1080_02642069_2024_2374990
crossref_primary_10_1016_j_elerap_2017_02_002
crossref_primary_10_1108_DTA_05_2019_0076
crossref_primary_10_1038_s41467_023_37472_2
crossref_primary_10_1109_ACCESS_2018_2871827
crossref_primary_10_1186_s40537_017_0081_8
crossref_primary_10_1002_adma_202004178
crossref_primary_10_3390_info11040210
crossref_primary_10_1108_BPMJ_09_2024_0886
crossref_primary_10_1007_s13278_018_0507_0
crossref_primary_10_1080_10580530_2020_1696551
crossref_primary_10_1145_3711858
crossref_primary_10_3390_ijgi8020054
crossref_primary_10_1016_j_ins_2016_10_048
crossref_primary_10_1016_j_jisa_2020_102634
crossref_primary_10_1080_10494820_2020_1712427
crossref_primary_10_1016_j_techfore_2017_06_029
crossref_primary_10_1080_13504851_2024_2339376
crossref_primary_10_1016_j_ins_2016_10_044
crossref_primary_10_1109_ACCESS_2018_2809456
crossref_primary_10_1109_ACCESS_2020_3030562
crossref_primary_10_3390_app122312265
crossref_primary_10_2478_amns_2024_3649
crossref_primary_10_1002_ajs4_135
crossref_primary_10_1007_s10586_023_04209_1
crossref_primary_10_4018_IRMJ_2018100101
crossref_primary_10_1016_j_patrec_2019_08_017
crossref_primary_10_1016_j_csi_2018_02_002
crossref_primary_10_3390_ijgi7020050
crossref_primary_10_1016_j_measurement_2024_116543
crossref_primary_10_1016_j_proeng_2017_01_279
crossref_primary_10_1111_radm_12727
crossref_primary_10_1145_3427476
crossref_primary_10_1080_13614533_2020_1764071
crossref_primary_10_1007_s12293_016_0188_z
crossref_primary_10_1016_j_ejor_2020_06_045
crossref_primary_10_1016_j_ijinfomgt_2016_04_014
crossref_primary_10_1016_j_ins_2016_03_041
crossref_primary_10_1080_03031853_2016_1243060
crossref_primary_10_1016_j_enbuild_2018_03_021
crossref_primary_10_1016_j_ins_2018_12_002
crossref_primary_10_1016_j_jnca_2016_04_008
crossref_primary_10_1109_TKDE_2018_2876848
crossref_primary_10_1111_tgis_12558
crossref_primary_10_1093_logcom_exac046
crossref_primary_10_1016_j_csi_2017_01_004
crossref_primary_10_1109_TFUZZ_2024_3494243
crossref_primary_10_1109_ACCESS_2020_2971264
crossref_primary_10_3390_digital1020009
crossref_primary_10_1155_2021_9800114
crossref_primary_10_1109_MSMC_2016_2557479
crossref_primary_10_1109_TAI_2021_3110500
crossref_primary_10_1680_jinam_21_00004
crossref_primary_10_3390_app13020960
crossref_primary_10_1016_j_geoforum_2019_12_019
crossref_primary_10_1002_ett_5019
crossref_primary_10_1016_j_biosystems_2016_04_002
crossref_primary_10_1515_iwp_2024_2005
crossref_primary_10_1016_j_bdr_2018_04_004
crossref_primary_10_1109_ACCESS_2019_2907885
crossref_primary_10_1088_1742_6596_1712_1_012002
crossref_primary_10_1145_3511918
crossref_primary_10_1108_JQME_08_2021_0064
crossref_primary_10_1109_MNET_001_1800540
crossref_primary_10_3390_met12111884
crossref_primary_10_4018_IJSKD_2019070101
crossref_primary_10_1109_TDSC_2016_2536601
crossref_primary_10_4018_JGIM_384084
crossref_primary_10_1016_j_techfore_2020_120039
crossref_primary_10_1155_2022_2288321
crossref_primary_10_2196_jmir_9366
crossref_primary_10_1109_TDSC_2018_2864748
crossref_primary_10_3390_su132111587
crossref_primary_10_1016_j_ins_2020_07_026
crossref_primary_10_28925_2312_5829_2025_1_5
crossref_primary_10_1016_j_ins_2016_06_036
crossref_primary_10_1088_1757_899X_928_3_032013
crossref_primary_10_1016_j_ijinfomgt_2018_07_005
crossref_primary_10_4271_2021_01_0010
crossref_primary_10_1016_j_jclepro_2018_04_113
crossref_primary_10_1111_bjet_12595
crossref_primary_10_1016_j_knosys_2016_06_012
crossref_primary_10_1108_IDD_06_2020_0071
crossref_primary_10_1631_FITEE_1700061
crossref_primary_10_3389_fninf_2015_00024
crossref_primary_10_1016_j_ijar_2017_05_001
crossref_primary_10_1155_2014_243921
crossref_primary_10_3390_su13042273
crossref_primary_10_1371_journal_pone_0141980
crossref_primary_10_1016_j_eap_2024_03_020
crossref_primary_10_1080_0194262X_2023_2185919
crossref_primary_10_1017_S0033583515000190
crossref_primary_10_1016_j_iot_2018_08_009
crossref_primary_10_1109_TPDS_2019_2930992
crossref_primary_10_1016_j_jbusres_2021_10_042
crossref_primary_10_1109_ACCESS_2019_2926518
crossref_primary_10_1007_s10796_018_9839_6
crossref_primary_10_1109_TC_2021_3068577
crossref_primary_10_1016_j_trc_2016_12_008
crossref_primary_10_1111_jace_14948
crossref_primary_10_3390_app9112331
crossref_primary_10_1002_inf2_12473
crossref_primary_10_1007_s11634_016_0260_z
crossref_primary_10_1016_j_matpr_2021_04_324
crossref_primary_10_1080_00207543_2019_1677961
crossref_primary_10_1007_s10796_016_9637_y
crossref_primary_10_1108_JAAR_10_2017_0114
crossref_primary_10_1016_j_compind_2016_02_004
crossref_primary_10_1108_JIABR_03_2022_0067
crossref_primary_10_1044_2018_AJA_IMIA3_18_0003
crossref_primary_10_61969_jai_1394542
crossref_primary_10_1108_JICES_04_2016_0011
crossref_primary_10_1002_cpe_8205
crossref_primary_10_4018_IJISSS_2019100101
crossref_primary_10_1016_j_aca_2023_341129
crossref_primary_10_1016_j_jag_2024_103832
crossref_primary_10_1109_TCBB_2016_2576459
crossref_primary_10_3390_app11041913
crossref_primary_10_1007_s11227_018_2605_1
crossref_primary_10_3233_JIFS_169361
crossref_primary_10_1080_13662716_2024_2320765
crossref_primary_10_1007_s10115_017_1092_7
crossref_primary_10_1016_j_neucom_2015_09_129
crossref_primary_10_1108_IJQRM_09_2019_0304
crossref_primary_10_1016_j_technovation_2022_102688
crossref_primary_10_1080_0144929X_2021_1936176
crossref_primary_10_1016_j_apenergy_2019_02_002
crossref_primary_10_3390_en11030596
crossref_primary_10_1109_TCSI_2022_3180199
crossref_primary_10_1016_j_procs_2017_11_096
crossref_primary_10_1016_j_ijinfomgt_2019_01_020
crossref_primary_10_1016_j_jjimei_2025_100321
crossref_primary_10_1109_ACCESS_2018_2885440
crossref_primary_10_3390_s19122772
crossref_primary_10_1016_j_jnca_2017_10_011
crossref_primary_10_1016_j_ssci_2018_05_012
crossref_primary_10_1061_JMENEA_MEENG_6296
crossref_primary_10_1080_23270012_2016_1265906
crossref_primary_10_1007_s10586_018_1863_2
crossref_primary_10_1016_j_future_2017_03_033
crossref_primary_10_1016_j_im_2018_05_003
crossref_primary_10_1109_TSMC_2016_2606159
crossref_primary_10_1108_IJLM_07_2021_0352
crossref_primary_10_1007_s13198_017_0592_x
crossref_primary_10_1007_s11042_022_13929_2
crossref_primary_10_1108_IJLM_02_2018_0026
crossref_primary_10_3233_JIFS_169116
crossref_primary_10_1109_TNNLS_2022_3184846
crossref_primary_10_1109_TCAD_2020_3012880
crossref_primary_10_3390_e25050782
crossref_primary_10_1136_bmjopen_2024_091883
crossref_primary_10_1007_s11192_017_2383_1
crossref_primary_10_1109_TEM_2020_2977222
crossref_primary_10_1016_j_omega_2021_102452
crossref_primary_10_1109_TSMC_2018_2878789
crossref_primary_10_3390_bdcc6040158
crossref_primary_10_1108_RAUSP_06_2023_0099
crossref_primary_10_1002_spe_3065
crossref_primary_10_1007_s12083_019_00813_4
crossref_primary_10_1016_j_automatica_2019_01_036
crossref_primary_10_1016_j_jairtraman_2020_101940
crossref_primary_10_1145_3150226
crossref_primary_10_3141_2477_10
crossref_primary_10_1016_j_ceramint_2022_04_171
crossref_primary_10_1016_j_ins_2020_07_054
crossref_primary_10_1002_widm_1289
crossref_primary_10_24136_oc_2021_009
crossref_primary_10_3233_RFT_171671
crossref_primary_10_1177_0952076716687355
crossref_primary_10_1155_2018_2691759
crossref_primary_10_1002_lol2_10084
crossref_primary_10_1007_s40747_025_02041_1
crossref_primary_10_1109_TFUZZ_2019_2956917
crossref_primary_10_1002_dac_5378
crossref_primary_10_1007_s43939_021_00012_0
crossref_primary_10_1016_j_knosys_2018_08_009
crossref_primary_10_1038_s41575_019_0102_5
crossref_primary_10_1108_LHT_06_2017_0131
crossref_primary_10_1155_2020_8884926
crossref_primary_10_1016_j_ufug_2022_127828
crossref_primary_10_1016_j_ijpe_2024_109461
crossref_primary_10_1007_s41060_025_00750_x
crossref_primary_10_1016_j_ins_2016_04_009
crossref_primary_10_1016_j_ins_2019_05_013
crossref_primary_10_1108_BL_11_2020_0071
crossref_primary_10_1039_D4NR04865B
crossref_primary_10_1016_j_jnca_2017_08_011
crossref_primary_10_1109_ACCESS_2019_2917841
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1016_j_emj_2020_04_001
crossref_primary_10_1016_j_ins_2016_04_002
crossref_primary_10_1109_ACCESS_2019_2899578
crossref_primary_10_1016_j_ssci_2017_08_012
crossref_primary_10_1007_s10462_021_10053_9
crossref_primary_10_1016_j_ins_2018_11_052
crossref_primary_10_1016_j_infsof_2024_107410
crossref_primary_10_1002_aelm_202200172
crossref_primary_10_1016_j_im_2019_02_001
crossref_primary_10_1109_ACCESS_2019_2922199
crossref_primary_10_1109_ACCESS_2017_2696365
crossref_primary_10_1016_j_njas_2019_100313
crossref_primary_10_1016_j_solener_2020_01_061
crossref_primary_10_1186_s40537_018_0126_7
crossref_primary_10_3390_app12189174
crossref_primary_10_1109_ACCESS_2020_3009482
crossref_primary_10_1109_TITS_2018_2868852
crossref_primary_10_1109_ACCESS_2021_3083175
crossref_primary_10_1002_admt_202401589
crossref_primary_10_1007_s10796_021_10155_3
crossref_primary_10_1016_j_acalib_2024_102856
crossref_primary_10_3390_computers10020023
crossref_primary_10_1109_TNNLS_2017_2716952
crossref_primary_10_3390_su10082709
crossref_primary_10_1177_1460458219854603
crossref_primary_10_1016_j_techsoc_2022_102139
crossref_primary_10_1016_j_simpat_2017_03_001
crossref_primary_10_1038_s41598_018_23886_2
crossref_primary_10_1186_s40537_021_00468_0
crossref_primary_10_1109_TNNLS_2019_2920903
crossref_primary_10_3390_su15043562
crossref_primary_10_1016_j_emj_2022_07_001
crossref_primary_10_1080_08874417_2016_1220239
crossref_primary_10_1109_TCC_2020_3018089
crossref_primary_10_1007_s11227_017_2163_y
crossref_primary_10_1049_cim2_12046
crossref_primary_10_1007_s10639_021_10614_z
crossref_primary_10_1016_j_ins_2019_02_022
crossref_primary_10_1155_2018_5232543
crossref_primary_10_1162_qss_a_00220
crossref_primary_10_4102_sajip_v49i0_2033
crossref_primary_10_1109_TCYB_2021_3079311
crossref_primary_10_1007_s11042_017_5247_z
crossref_primary_10_1007_s10723_018_9431_9
crossref_primary_10_1002_cpe_4234
crossref_primary_10_1021_acs_cgd_5c00572
crossref_primary_10_1186_s40537_015_0028_x
crossref_primary_10_3390_ijerph22030362
crossref_primary_10_1016_j_ins_2019_07_085
crossref_primary_10_1186_s13638_018_1255_6
crossref_primary_10_1007_s11227_020_03289_9
crossref_primary_10_3389_fpsyg_2023_1009459
crossref_primary_10_1108_MD_07_2018_0754
crossref_primary_10_1016_j_ins_2016_07_007
crossref_primary_10_3390_app10093309
crossref_primary_10_1007_s10115_015_0830_y
crossref_primary_10_1108_EL_01_2020_0004
crossref_primary_10_4018_IJBAN_2017100102
crossref_primary_10_1016_j_jallcom_2025_181079
crossref_primary_10_1007_s10916_016_0565_7
crossref_primary_10_1108_IJLM_05_2017_0115
crossref_primary_10_1109_ACCESS_2020_2967436
crossref_primary_10_1109_TII_2017_2650204
crossref_primary_10_1080_23311975_2022_2043535
crossref_primary_10_1016_j_ijpe_2016_03_014
crossref_primary_10_1108_EL_02_2024_0045
crossref_primary_10_1108_K_07_2017_0274
crossref_primary_10_1016_j_ibusrev_2021_101967
crossref_primary_10_1007_s41060_019_00176_2
crossref_primary_10_1109_TNNLS_2018_2872974
crossref_primary_10_1145_3383464
crossref_primary_10_1080_17517575_2019_1691268
crossref_primary_10_1155_2022_9515181
crossref_primary_10_1007_s13042_021_01438_x
crossref_primary_10_1155_2020_2390941
crossref_primary_10_1108_ECAM_11_2024_1595
crossref_primary_10_1016_j_ijpvp_2023_105061
crossref_primary_10_1016_j_giq_2018_01_004
crossref_primary_10_1038_s41467_021_22243_8
crossref_primary_10_1103_PRXQuantum_4_030332
crossref_primary_10_1145_3332301
crossref_primary_10_1108_OIR_12_2016_0361
crossref_primary_10_1016_j_is_2017_09_002
crossref_primary_10_1155_2022_3672905
crossref_primary_10_1016_j_asoc_2020_106164
crossref_primary_10_3390_ijgi9110632
crossref_primary_10_1016_j_eswa_2023_122071
crossref_primary_10_1007_s10489_020_01952_5
crossref_primary_10_1080_14783363_2018_1442715
crossref_primary_10_1186_s40537_021_00553_4
crossref_primary_10_1109_TSMC_2019_2958382
crossref_primary_10_1016_j_cie_2018_08_004
crossref_primary_10_1016_j_envsoft_2020_104955
crossref_primary_10_1109_JSTSP_2018_2818649
crossref_primary_10_1016_j_procs_2018_10_514
crossref_primary_10_3389_fdata_2024_1441869
crossref_primary_10_1002_sdr_1587
crossref_primary_10_1080_01605682_2019_1630328
crossref_primary_10_1108_EL_06_2016_0134
crossref_primary_10_3390_computation8030080
crossref_primary_10_1007_s10479_016_2214_4
crossref_primary_10_3390_su11133748
crossref_primary_10_1002_adfm_202423800
crossref_primary_10_1016_j_yofte_2025_104344
crossref_primary_10_1088_1742_6596_1228_1_012003
crossref_primary_10_1016_j_acalib_2021_102320
crossref_primary_10_1177_1473871618756584
crossref_primary_10_1002_widm_1206
crossref_primary_10_1007_s11227_019_02907_5
crossref_primary_10_1155_2022_6967158
crossref_primary_10_1002_widm_1450
crossref_primary_10_1007_s10586_017_1320_7
crossref_primary_10_1016_j_future_2019_09_051
crossref_primary_10_1002_cpe_3589
crossref_primary_10_1016_j_ins_2016_08_086
crossref_primary_10_1007_s11442_022_2040_3
crossref_primary_10_1038_s41598_020_61853_y
crossref_primary_10_1108_JAMR_02_2024_0059
crossref_primary_10_1002_spe_2374
crossref_primary_10_1145_3012286
crossref_primary_10_1016_j_future_2017_04_006
crossref_primary_10_1016_j_ins_2016_06_009
crossref_primary_10_1016_j_bdr_2015_04_001
crossref_primary_10_1016_j_apenergy_2021_116969
crossref_primary_10_1016_j_enbuild_2017_07_089
crossref_primary_10_3390_app10010182
crossref_primary_10_1108_JEDT_12_2021_0739
crossref_primary_10_1016_j_future_2017_05_042
crossref_primary_10_1002_spy2_13
crossref_primary_10_1016_j_ecoinf_2021_101361
crossref_primary_10_1016_j_ins_2019_03_035
crossref_primary_10_1108_EL_11_2015_0235
crossref_primary_10_1016_j_scitotenv_2020_144530
crossref_primary_10_1111_jse_12270
crossref_primary_10_1016_j_jksuci_2017_06_001
crossref_primary_10_1016_j_iedeen_2017_06_002
crossref_primary_10_1515_geo_2017_0047
crossref_primary_10_1038_s41538_025_00394_y
crossref_primary_10_1109_TED_2024_3376312
crossref_primary_10_1080_2331186X_2022_2162697
crossref_primary_10_3390_polym15224374
crossref_primary_10_1016_j_technovation_2024_103026
crossref_primary_10_1007_s13042_020_01243_y
crossref_primary_10_1007_s42044_018_0019_0
crossref_primary_10_1080_19368623_2021_1937434
crossref_primary_10_1007_s13042_022_01524_8
crossref_primary_10_1016_j_jfranklin_2016_11_024
crossref_primary_10_1016_j_bdr_2017_07_001
crossref_primary_10_1016_j_telpol_2017_10_004
crossref_primary_10_1186_s40854_024_00634_2
crossref_primary_10_1016_j_eswa_2017_05_031
crossref_primary_10_1007_s11269_016_1283_0
crossref_primary_10_3390_risks11060106
crossref_primary_10_1007_s13132_024_02001_z
crossref_primary_10_1109_TC_2020_2976996
crossref_primary_10_1016_j_ijinfomgt_2019_102055
crossref_primary_10_4102_sajbm_v56i1_4766
crossref_primary_10_1007_s10479_020_03912_1
crossref_primary_10_1016_j_ins_2015_12_030
crossref_primary_10_1186_s40537_019_0236_x
crossref_primary_10_1016_j_ijar_2022_12_004
crossref_primary_10_1080_0960085X_2021_1940324
crossref_primary_10_1155_2021_2888673
crossref_primary_10_1007_s13127_019_00397_0
crossref_primary_10_1080_00207543_2020_1832273
crossref_primary_10_1109_ACCESS_2018_2806881
crossref_primary_10_1007_s11227_023_05668_4
Cites_doi 10.1109/TPAMI.2004.1262340
10.1109/SURV.2011.032211.00087
10.1109/MCSE.2011.73
10.1109/ICAICT.2012.6398484
10.1126/science.1170411
10.1109/TPDS.2012.24
10.1109/TNET.2010.2046645
10.1109/TPDS.2006.112
10.1109/HPCA.2007.346181
10.1109/MCSE.2010.85
10.1038/440413a
10.1109/TIT.1982.1056489
10.1038/455028a
10.1016/j.neucom.2008.09.022
10.1109/38.933522
10.1109/TKDE.2011.18
10.1109/MC.2012.358
10.1109/JLT.2005.856254
10.1109/ICPCA.2011.6106531
10.1109/72.165590
10.1109/MPOT.2009.934894
10.1109/MIS.2007.41
10.1145/1536616.1536632
10.1109/HPCC.2012.83
10.1109/TKDE.2011.208
10.1109/JSAC.2012.121206
10.1109/IPDPS.2011.293
10.1109/MCSE.2011.74
10.1016/j.eswa.2007.01.018
10.1109/JPROC.2012.2203090
10.1109/TCE.2006.273155
10.1126/science.1127647
10.1109/CGC.2012.23
10.1109/TEVC.2007.896686
10.1109/TPDS.2011.306
10.1016/j.csda.2011.03.001
10.1016/0270-0255(87)90536-7
10.1109/CLUSTR.2009.5289161
10.1109/4235.585894
10.1109/ICIP.2008.4711716
10.1109/CLOUD.2012.34
10.1162/neco.2006.18.7.1527
10.1109/ICCMS.2010.215
10.1038/nrg2857
10.1109/TNS.2008.924087
10.1038/455047a
10.1109/71.89059
10.1109/TNN.2010.2044244
10.1145/1327452.1327492
10.1109/MC.2009.26
10.1109/TVCG.2008.137
10.1109/TPDS.2003.1255638
10.1109/TNANO.2002.1005425
10.1109/TMAG.1971.1067246
10.1109/ICDE.2012.147
10.1109/TVCG.2007.70582
10.1145/1272996.1273005
10.1109/CloudCom.2011.86
10.1145/1107499.1107504
10.1023/A:1023307812034
10.1109/ITCC.2005.42
10.1145/1559845.1559865
10.1109/TKDE.2011.257
10.1145/1365815.1365816
10.1109/MSP.2010.939038
10.1109/TKDE.2010.248
10.1109/SE.2012.14
10.1109/TPAMI.2007.70776
10.1038/msb4100073
10.1109/AINA.2012.140
10.1109/LDAV.2011.6092313
10.1145/1272998.1273005
10.1109/59.589789
10.1109/IJCNN.2006.247289
10.1016/j.tics.2007.09.004
10.1109/TVCG.2006.107
10.1109/TNNLS.2011.2178560
10.1109/MIC.2011.163
10.1109/TNN.2010.2040291
10.1109/TPAMI.2013.50
10.1109/69.506710
10.1109/TPDS.2011.256
10.1109/WI.2006.61
10.1109/CyberneticsCom.2012.6381635
10.1109/TMM.2011.2174781
10.1109/TKDE.2007.190669
10.1109/ITI.2008.4588381
10.1109/LDAV.2011.6092331
10.1109/TSMCB.2012.2196432
10.1198/004017008000000460
10.1126/science.1200970
10.1109/MPRV.2011.70
10.1109/TSMCB.2004.836890
10.1109/ICMLA.2008.41
10.1109/TITS.2012.2205145
10.1109/TPAMI.2005.77
10.1109/MCSE.2011.77
10.1109/TKDE.2010.34
10.1016/j.patcog.2011.01.004
10.1109/MC.2008.125
10.1109/DEST.2012.6227909
10.1109/TVCG.2012.285
10.1109/TPAMI.2010.142
10.1109/TITS.2011.2158001
10.1016/S0167-739X(02)00082-1
10.1561/2200000006
10.1109/CLOUD.2012.120
10.1109/MCI.2010.938364
10.1109/TFUZZ.2011.2162416
10.1109/WAINA.2011.136
10.1109/INFCOM.2009.5062006
10.1109/3PGCIC.2012.55
10.1007/978-3-642-36883-7_18
10.1109/MCG.2004.41
10.1109/ASRU.2011.6163930
10.1109/51.940042
10.1109/TNN.2007.891203
10.1109/MC.2009.104
10.1109/TSMCB.2011.2124455
10.1109/ICDMW.2010.172
10.1109/5.784240
10.1016/j.ins.2008.02.017
10.1109/ECBS-EERC.2011.34
10.1109/TNNLS.2012.2197827
10.1109/MCI.2012.2188586
10.1109/TNN.2011.2146788
10.1109/ICNIT.2010.5508473
10.1109/MIS.2010.91
10.1109/GCE.2008.4738445
10.1109/NBiS.2010.8
10.1109/TPDS.2010.183
10.1109/TMC.2010.214
10.1109/TITS.2012.2205144
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2014.01.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
Economics
Business
EISSN 1872-6291
EndPage 347
ExternalDocumentID 10_1016_j_ins_2014_01_015
S0020025514000346
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-8a07f0d16e0ef193b637e98269b8ef2e4fb9dfcccb0648d7350c96fe04f095af3
ISICitedReferencesCount 1798
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337199200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Wed Oct 01 12:16:16 EDT 2025
Tue Nov 18 21:58:01 EST 2025
Sat Nov 29 07:58:11 EST 2025
Fri Feb 23 02:23:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Big Data
Cloud computing
Parallel and distributed computing
e-Science
Data-intensive computing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-8a07f0d16e0ef193b637e98269b8ef2e4fb9dfcccb0648d7350c96fe04f095af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629360699
PQPubID 23500
PageCount 34
ParticipantIDs proquest_miscellaneous_1629360699
crossref_primary_10_1016_j_ins_2014_01_015
crossref_citationtrail_10_1016_j_ins_2014_01_015
elsevier_sciencedirect_doi_10_1016_j_ins_2014_01_015
PublicationCentury 2000
PublicationDate 2014-08-10
PublicationDateYYYYMMDD 2014-08-10
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-10
  day: 10
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pavel Bzoch, Jiri Safarik, State of the art in distributed file systems: Increasing performance, in: Engineering of Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on the, 2011, pp. 153–154.
Mistry, Misner (b0600) 2012
Jeff Kelly, Apache drill brings sql-like, ad hoc query capabilities to big data, February 2013.
Furht, Escalante (b0250) 2011
Laney (b0480) 2001
Bringmann, Berlingerio, Bonchi, Gionis (b0135) 2010; 25
Cao, Sun (b0175) 2012; 13
Ted Samson, Splunk Storm Brings Log Management to the Cloud, 2012.
Worlton (b0970) 1971; 7
Bengio, Courville, Vincent (b0105) 2013; 35
Lee, Verleysen (b0490) 2007
Katsunari Shibata, Yusuke Ikeda, Effect of number of hidden neurons on learning in large-scale layered neural networks, in: ICROS-SICE International Joint Conference 2009, 2009, pp. 5008–5013.
Jiawei Yuan, Shucheng Yu, Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing, 2013.
Loughran, Calero, Farrell, Kirschnick, Guijarro (b0540) 2012; 16
Manyika, Chui, Brown, Bughin, Dobbs, Roxburgh, Byers (b0570) 2012
Bingham, Mannila (b0125) 2001
Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu úlfar Erlingsson, Pradeep Kumar Gunda, Jon Currey, Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language, in: 8th USENIX Symposium on Operating Systems Design and Implementation, 2008.
Eric Savitz, Gartner: 10 Critical Tech Trends for the Next Five Years, October 2012.
Jiang, Tung, Chen (b0420) 2011; 23
Abzetdin Adamov. Distributed file system as a basis of data-intensive computing, in: 2012 6th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (October).
Bahga, Madisetti (b0075) 2012; 23
Wang, Wang, Ren, Lou, Li (b0950) 2011; 22
Wang, Zeng, Carley, Mao (b0935) 2007; 22
Porfirio Ishii, Fernandes de Mello (b0385) 2011; 10
Szalay (b0895) 2011; 13
.
Lu, Plataniotis, Venetsanopoulos (b0545) 2011; 44
Hassan, Mahmoud (b0310) 1987; 8
Udo Seiffert, Training of large-scale feed-forward neural networks, in: International Joint Conference on Neural Networks, IJCNN ’06, 2006, pp. 5324–5329.
Hinton, Salakhutdinov (b0350) 2006; 313
Zhang, Wang, Wang, Lin, Xu, Chen (b1015) 2011; 12
Kouzes, Anderson, Elbert, Gorton, Gracio (b0460) 2009; 42
K.P. Lakshmi, C.R.K. Reddy, A survey on different trends in data streams, in: 2010 International Conference on Networking and Information Technology (ICNIT), 2010, pp. 451–455.
Karmasphere Studio and Analyst, 2012.
Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, in: EuroSys ’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 41(3), 2007, pp. 59–72.
Yao, Chen, Zhao, Tooren (b0995) 2012; 23
Peters (b0715) 2011; 19
Hsiao, Chang (b0360) 2008; 34
Lane, Xu, Lu, Campbell, Choudhury, Eisenman (b0475) 2011; 10
Hinton, Osindero, Teh (b0345) 2006; 18
Cai, He, Han (b0165) 2008; 20
Simeonidou, Nejabati, Zervas, Klonidis, Tzanakaki, O Mahony (b0840) 2005; 23
Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber (b0185) 2008; 26
Ahrens, Hendrickson, Long, Miller, Ross, Williams (b0685) 2011; 13
Bryant (b0155) 2011; 13
Garber (b0255) 2012; 45
Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor systems, in: IEEE 13th International Symposium on High Performance Computer Architecture, 2007, HPCA 2007, 2006, pp. 13–24.
http://quantumcomputers.com.
Philippe Pébay, David Thompson, Janine Bennett, Ajith Mascarenhas, Design and performance of a scalable, parallel statistics toolkit, in: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, pp. 1475–1484.
Simoff, Böhlen, Mazeika (b0845) 2008
Zhong Liang, ChiTian He, Zhang Xin, Feature based visualization algorithm for large-scale flow data, in: Second International Conference on Computer Modeling and Simulation, 2010, ICCMS ’10, vol. 1, 2010, pp. 194–197.
Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, Jan Černocký, Strategies for training large scale neural network language models, in: IEEE Workshop on Automatic Speech Recognition and Understanding, 2011.
Brumfiel (b0145) 2011
Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, in: Proceedings of the 2007 Eurosys Conference, 2007.
Sqlstream, 2012.
Brian Proffitt, Big Data Tools and Vendors, 2012.
Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave DeMaagd, Alex Feinberg, Phanindra Ganti, Bhaskar Ghosh Lei Gao, Kishore Gopalakrishna, Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang, Data infrastructure at linkedin, in: 2012 IEEE 28th International Conference on Data Engineering (ICDE), 2012, pp. 1370–1381.
Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008, GCE’08, 2008, pp. 1–10.
Sahimi, Hamzehpour (b0765) 2010; 12
Leong (b0495) 2009; 28
Rui Máximo Esteves, Chunming Rong, Using mahout for clustering wikipedia’s latest articles: a comparison between k-means and fuzzy c-means in the cloud, in: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), 2011, pp. 565–569.
Yan, Liu, Yan, Yang, Fan, Wei, Chen (b0985) 2011; 23
Andrianantoandro, Basu, Karig, Weiss (b0060) 2006; 2
Tadashi Nakano, Biological computing based on living cells and cell communication, in: 2010 13th International Conference on Network-Based Information Systems (NBiS), 2010, pp. 42–47.
Deam, Ghemawat (b0215) 2008; 51
Weiss, Basu, Hooshangi, Kalmbach, Karig, Mehreja, Netravali (b0960) 2003; 2
Barbarossa, Scutari (b0080) 2009; 24
Pedrycz, Andrzej, Kreinovich (b0710) 2008
Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, Michael Franklin, Johannes Gehrke, Laura Haas, Jiawei Han Alon Halevy, H.V. Jagadish, Alexandros Labrinidis, Sam Madden, Yannis Papakon stantinou, Jignesh Patel, Raghu Ramakrishnan, Kenneth Ross, Shahabi Cyrus, Dan Suciu, Shiv Vaithyanathan, Jennifer Widom, Challenges and Opportunities with Big Data, CYBER CENTER TECHNICAL REPORTS, Purdue University, 2011.
Kasavajhala (b0435) 2012
Mühleisen, Dentler (b0620) 2012; 7
Shen, Liao, Choudhary, Memik, Kandemir (b0815) 2003; 14
Dan Gillick, Arlo Faria, John DeNero, Mapreduce: Distributed Computing for Machine Learning, 2006.
Simon (b0850) 1994; 26
Stonebraker, Çtintemel, Zdonik (b0875) 2005; 34
Jason Brooks, Review: Talend Open Studio Makes Quick etl Work of Large Data Sets, 2009.
Chen, Chen, Lu (b0195) 2011; 41
Mao, Wang, Qiu, Lam, Smith (b0575) 2010; 18
Oh, Żak (b0655) 2010; 21
Alina Oprea, Michael K. Reiter, Ke Yang, Space efficient block storage integrity, in: Proc. 12th Ann. Network and Distributed System Security Symp. (NDSS 05), 2005.
Chen, Liu, Wang (b0200) 2013; 14
Sun, Yao (b0885) 2010; 21
Apache Hadoop, Words Count Example, 2012.
Pentaho Business Analytics, 2012.
Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0220) 2008; 12
Vettiger, Cross, Despont, Drechsler, Durig, Gotsmann, Haberle, Lantz, Rothuizen, Stutz, Binnig (b0920) 2002; 1
R.P. Ishii, R.F. de Mello, A history-based heuristic to optimize data access in distributed environments, in: Proc. 21st IASTED International Conf. Parallel and Distributed Computing and Systems, 2009.
Bezdek (b0120) 1981
Jacob, Brown, Fukui, Trivedi (b0400) 2005
Peter Wayner. 7 Top Tools for Taming Big Data, 2012.
Lin, Wu, Wen, Tong, Griffiths-Fisher, Shi, Lubensky (b0520) 2012; 100
Simone Ferlin Oliveira, Karl Fürlinger, Dieter Kranzlmüller, Trends in computation, communication and storage and the consequences for data-intensive science, in: IEEE 14th International Conference on High Performance Computing and Communications, 2012.
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big-data-fact-sheet-final-1.pdf.
Keim, Panse, Sips (b0440) 2004; 24
Sridhar, Dharmaji (b0870) 2013; 2
Sakr, Liu, Batista, Alomari (b0770) 2011; 13
Bongard (b0130) 2009; 42
Yang, Tang, Yao (b0990) 2008; 178
Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari, S4: distributed stream computing platform, in: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia, 2010, pp. 170–177.
Ma, Parker (b0560) 2004; 24
Oracle, Oracle information architecture: an architect’s guide to big data, An Oracle White Paper in Enterprise Architecture, 2012.
Andrew Horne Shvetank Shah, Jaime Capellá, Good Data won’t Guarantee Good Decisions, 2012.
David Thompson, Joshua A. Levine, Janine C. Bennett, Peer-Timo Bremer, Attila Gyulassy, Valerio Pascucci, Philippe P. Pébay, Analysis of large-scale scalar data using hixels, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 23–30.
Nandi, Yu, Bohannon, Ramakrishnan (b0630) 2012; 24
Özsu, Valduriez (b0680) 2011
Liu, Xu, Tsang, Luo (b0530) 2011; 33
Bertone, Gerstein (b0115) 2001; 20
Ciaccio, Coli, Ibanez, Miguel (b0205) 2012
Gokhale, Cohen, Yoo, Marcus Miller (b0275) 2008; 41
Klemens (b0455) 2008
Wei Jiang, Eric Zavesky, Shih-Fu Chang, Alex Loui, Cross-domain learning methods for high-level visual concept classification, in: 15th IEEE International Conference on Image Processing, 2008, ICIP 2008, 2008, pp. 161–164.
Wu, Yuan, Ma (b0975) 2012; 18
Yu, Deng (b1000) 2011; 28
Janine Bennett, Ray Grout, Philippe Pebay, Diana Roe, David Thompson, Numerically stable, single-pass, parallel statistics algorithms, in: IEEE International Conference on Cluster Computing and Workshops, 2009, CLUSTER ’09, 2009, pp. 1–8.
McDermott, Samudrala, Bumgarner, Montgomery (b0585) 2009
10.1016/j.ins.2014.01.015_b0955
10.1016/j.ins.2014.01.015_b0835
Yan (10.1016/j.ins.2014.01.015_b0985) 2011; 23
Chen (10.1016/j.ins.2014.01.015_b0200) 2013; 14
Mitra (10.1016/j.ins.2014.01.015_b0605) 2004; 26
Klemens (10.1016/j.ins.2014.01.015_b0455) 2008
Fey (10.1016/j.ins.2014.01.015_b0225) 2008; 455
Zhou (10.1016/j.ins.2014.01.015_b1025) 2013; PP
10.1016/j.ins.2014.01.015_b0160
Vettiger (10.1016/j.ins.2014.01.015_b0920) 2002; 1
10.1016/j.ins.2014.01.015_b0040
10.1016/j.ins.2014.01.015_b1010
Nandi (10.1016/j.ins.2014.01.015_b0630) 2012; 24
10.1016/j.ins.2014.01.015_b0045
Liu (10.1016/j.ins.2014.01.015_b0525) 2011; 22
Hilbert (10.1016/j.ins.2014.01.015_b0335) 2011; 332
Chang (10.1016/j.ins.2014.01.015_b0185) 2008; 26
Palit (10.1016/j.ins.2014.01.015_b0690) 2012; 20
10.1016/j.ins.2014.01.015_b0290
10.1016/j.ins.2014.01.015_b0295
Pedrycz (10.1016/j.ins.2014.01.015_b0710) 2008
10.1016/j.ins.2014.01.015_b0055
Kasavajhala (10.1016/j.ins.2014.01.015_b0435) 2012
10.1016/j.ins.2014.01.015_b0730
Stonebraker (10.1016/j.ins.2014.01.015_b0875) 2005; 34
Ma (10.1016/j.ins.2014.01.015_b0560) 2004; 24
Ranka (10.1016/j.ins.2014.01.015_b0750) 1991; 2
Bahga (10.1016/j.ins.2014.01.015_b0075) 2012; 23
Jacob (10.1016/j.ins.2014.01.015_b0400) 2005
10.1016/j.ins.2014.01.015_b0380
10.1016/j.ins.2014.01.015_b0260
10.1016/j.ins.2014.01.015_b0140
10.1016/j.ins.2014.01.015_b0020
Ciaccio (10.1016/j.ins.2014.01.015_b0205) 2012
Marz (10.1016/j.ins.2014.01.015_b0580) 2012
Wang (10.1016/j.ins.2014.01.015_b0950) 2011; 22
10.1016/j.ins.2014.01.015_b0025
Nielsen (10.1016/j.ins.2014.01.015_b0645) 2009
10.1016/j.ins.2014.01.015_b0940
Wu (10.1016/j.ins.2014.01.015_b0975) 2012; 18
Kouzes (10.1016/j.ins.2014.01.015_b0460) 2009; 42
Keim (10.1016/j.ins.2014.01.015_b0440) 2004; 24
10.1016/j.ins.2014.01.015_b0945
10.1016/j.ins.2014.01.015_b0825
10.1016/j.ins.2014.01.015_b0705
Loughran (10.1016/j.ins.2014.01.015_b0540) 2012; 16
Mühleisen (10.1016/j.ins.2014.01.015_b0620) 2012; 7
Özsu (10.1016/j.ins.2014.01.015_b0680) 2011
10.1016/j.ins.2014.01.015_b0270
10.1016/j.ins.2014.01.015_b0150
10.1016/j.ins.2014.01.015_b0030
10.1016/j.ins.2014.01.015_b0395
Lu (10.1016/j.ins.2014.01.015_b0545) 2011; 44
10.1016/j.ins.2014.01.015_b0035
Tkacz (10.1016/j.ins.2014.01.015_b0915) 2009
10.1016/j.ins.2014.01.015_b1005
10.1016/j.ins.2014.01.015_b0830
Cireşan (10.1016/j.ins.2014.01.015_b0210) 2012
Henry (10.1016/j.ins.2014.01.015_b0635) 2007; 13
Zhang (10.1016/j.ins.2014.01.015_b1020) 2012; 30
Ahrens (10.1016/j.ins.2014.01.015_b0685) 2011; 13
Wilkinson (10.1016/j.ins.2014.01.015_b0965) 2008; 50
10.1016/j.ins.2014.01.015_b0240
Bengio (10.1016/j.ins.2014.01.015_b0105) 2013; 35
10.1016/j.ins.2014.01.015_b0485
Bengio (10.1016/j.ins.2014.01.015_b0100) 2009; 2
10.1016/j.ins.2014.01.015_b0005
Ahrens (10.1016/j.ins.2014.01.015_b0050) 2001; 21
Laney (10.1016/j.ins.2014.01.015_b0480) 2001
Oh (10.1016/j.ins.2014.01.015_b0655) 2010; 21
10.1016/j.ins.2014.01.015_b0925
Hutchinson (10.1016/j.ins.2014.01.015_b0365) 2012
10.1016/j.ins.2014.01.015_b0805
Hey (10.1016/j.ins.2014.01.015_b0330) 2002; 18
Bingham (10.1016/j.ins.2014.01.015_b0125) 2001
Lloyd (10.1016/j.ins.2014.01.015_b0535) 1982; 28
Shen (10.1016/j.ins.2014.01.015_b0815) 2003; 14
Lee (10.1016/j.ins.2014.01.015_b0490) 2007
Pirovano (10.1016/j.ins.2014.01.015_b0720) 2003
Zhou (10.1016/j.ins.2014.01.015_b1030) 2012; 46
10.1016/j.ins.2014.01.015_b0010
McDermott (10.1016/j.ins.2014.01.015_b0585) 2009
10.1016/j.ins.2014.01.015_b0375
10.1016/j.ins.2014.01.015_b0015
10.1016/j.ins.2014.01.015_b0930
Brumfiel (10.1016/j.ins.2014.01.015_b0145) 2011
Simoff (10.1016/j.ins.2014.01.015_b0845) 2008
Gokhale (10.1016/j.ins.2014.01.015_b0275) 2008; 41
Hey (10.1016/j.ins.2014.01.015_b0325) 2009
Hsiao (10.1016/j.ins.2014.01.015_b0360) 2008; 34
Gulisano (10.1016/j.ins.2014.01.015_b0285) 2012; 23
Szalay (10.1016/j.ins.2014.01.015_b0890) 2006; 440
Tang (10.1016/j.ins.2014.01.015_b0900) 2009; 72
Garber (10.1016/j.ins.2014.01.015_b0255) 2012; 45
Geng (10.1016/j.ins.2014.01.015_b0265) 2012; 14
10.1016/j.ins.2014.01.015_b0465
Capriolo (10.1016/j.ins.2014.01.015_b0180) 2011
Hastie (10.1016/j.ins.2014.01.015_b0315) 2009
Ma (10.1016/j.ins.2014.01.015_b0555) 2012; 24
10.1016/j.ins.2014.01.015_b0905
Barbarossa (10.1016/j.ins.2014.01.015_b0080) 2009; 24
Deam (10.1016/j.ins.2014.01.015_b0215) 2008; 51
Oleg (10.1016/j.ins.2014.01.015_b0660) 2011; 55
Yao (10.1016/j.ins.2014.01.015_b0995) 2012; 23
Mansour (10.1016/j.ins.2014.01.015_b0565) 1997; 12
10.1016/j.ins.2014.01.015_b0590
10.1016/j.ins.2014.01.015_b0470
10.1016/j.ins.2014.01.015_b0230
10.1016/j.ins.2014.01.015_b0110
10.1016/j.ins.2014.01.015_b0595
Oehmen (10.1016/j.ins.2014.01.015_b0650) 2006; 17
Sahimi (10.1016/j.ins.2014.01.015_b0765) 2010; 12
10.1016/j.ins.2014.01.015_b0235
Weiss (10.1016/j.ins.2014.01.015_b0960) 2003; 2
Cai (10.1016/j.ins.2014.01.015_b0165) 2008; 20
10.1016/j.ins.2014.01.015_b0910
Ratner (10.1016/j.ins.2014.01.015_b0755) 2002
Simon (10.1016/j.ins.2014.01.015_b0850) 1994; 26
Bryant (10.1016/j.ins.2014.01.015_b0155) 2011; 13
Manyika (10.1016/j.ins.2014.01.015_b0570) 2012
Radovanović (10.1016/j.ins.2014.01.015_b0735) 2010; 11
Dong (10.1016/j.ins.2014.01.015_b0980) 2005; 27
Schadt (10.1016/j.ins.2014.01.015_b0795) 2010; 11
Hassan (10.1016/j.ins.2014.01.015_b0310) 1987; 8
10.1016/j.ins.2014.01.015_b0445
Arel (10.1016/j.ins.2014.01.015_b0065) 2010; 5
Shen (10.1016/j.ins.2014.01.015_b0820) 2006; 12
Shen (10.1016/j.ins.2014.01.015_b0810) 2011; 10
Lesk (10.1016/j.ins.2014.01.015_b0500) 2008
Raykar (10.1016/j.ins.2014.01.015_b0760) 2008; 30
Han (10.1016/j.ins.2014.01.015_b0305) 2012; PP
10.1016/j.ins.2014.01.015_b0695
Spiliopoulou (10.1016/j.ins.2014.01.015_b0865) 1996; 8
Molchanov (10.1016/j.ins.2014.01.015_b0610) 2005
Heer (10.1016/j.ins.2014.01.015_b0320) 2008; 14
Ingersoll (10.1016/j.ins.2014.01.015_b0370) 2009
Li (10.1016/j.ins.2014.01.015_b0510) 2008; 16
Cao (10.1016/j.ins.2014.01.015_b0175) 2012; 13
Bencivenni (10.1016/j.ins.2014.01.015_b0095) 2008; 55
Simeonidou (10.1016/j.ins.2014.01.015_b0840) 2005; 23
10.1016/j.ins.2014.01.015_b0780
Pearson (10.1016/j.ins.2014.01.015_b0700) 2007; 18
Cannataro (10.1016/j.ins.2014.01.015_b0170) 2004; 34
10.1016/j.ins.2014.01.015_b0300
Porfirio Ishii (10.1016/j.ins.2014.01.015_b0390) 2012; 23
Plugge (10.1016/j.ins.2014.01.015_b0725) 2010
10.1016/j.ins.2014.01.015_b0785
10.1016/j.ins.2014.01.015_b0665
Sun (10.1016/j.ins.2014.01.015_b0885) 2010; 21
Szalay (10.1016/j.ins.2014.01.015_b0895) 2011; 13
10.1016/j.ins.2014.01.015_b0425
Bell (10.1016/j.ins.2014.01.015_b0090) 2009; 323
Jiang (10.1016/j.ins.2014.01.015_b0420) 2011; 23
Mao (10.1016/j.ins.2014.01.015_b0575) 2010; 18
Sipper (10.1016/j.ins.2014.01.015_b0855) 1997; 1
Liu (10.1016/j.ins.2014.01.015_b0530) 2011; 33
Lynch (10.1016/j.ins.2014.01.015_b0550) 2008; 455
Bringmann (10.1016/j.ins.2014.01.015_b0135) 2010; 25
10.1016/j.ins.2014.01.015_b0790
10.1016/j.ins.2014.01.015_b0670
10.1016/j.ins.2014.01.015_b0430
Bezdek (10.1016/j.ins.2014.01.015_b0120) 1981
Sakr (10.1016/j.ins.2014.01.015_b0770) 2011; 13
10.1016/j.ins.2014.01.015_b0675
Zikopoulos (10.1016/j.ins.2014.01.015_b1035) 2011
Yang (10.1016/j.ins.2014.01.015_b0990) 2008; 178
Andrianantoandro (10.1016/j.ins.2014.01.015_b0060) 2006; 2
10.1016/j.ins.2014.01.015_b0515
Seenumani (10.1016/j.ins.2014.01.015_b0800) 2012; 20
Lin (10.1016/j.ins.2014.01.015_b0520) 2012; 100
Hinton (10.1016/j.ins.2014.01.015_b0340) 2007; 11
Valle (10.1016/j.ins.2014.01.015_b0220) 2008; 12
Bekkerman (10.1016/j.ins.2014.01.015_b0085) 2012
Yu (10.1016/j.ins.2014.01.015_b1000) 2011; 28
10.1016/j.ins.2014.01.015_b0640
Jeon (10.1016/j.ins.2014.01.015_b0415) 2006; 52
Worlton (10.1016/j.ins.2014.01.015_b0970) 1971; 7
Zhang (10.1016/j.ins.2014.01.015_b1015) 2011; 12
Hinton (10.1016/j.ins.2014.01.015_b0345) 2006; 18
Hinton (10.1016/j.ins.2014.01.015_b0350) 2006; 313
Guan (10.1016/j.ins.2014.01.015_b0280) 2012; 23
Peters (10.1016/j.ins.2014.01.015_b0715) 2011; 19
Hirota (10.1016/j.ins.2014.01.015_b0355) 1999; 87
10.1016/j.ins.2014.01.015_b0410
10.1016/j.ins.2014.01.015_b0775
Wang (10.1016/j.ins.2014.01.015_b0935) 2007; 22
Jacobs (10.1016/j.ins.2014.01.015_b0405) 2009; 52
Sridhar (10.1016/j.ins.2014.01.015_b0870) 2013; 2
10.1016/j.ins.2014.01.015_b0615
Su (10.1016/j.ins.2014.01.015_b0880) 2011; 19
Fujimoto (10.1016/j.ins.2014.01.015_b0245) 1992; 3
Bongard (10.1016/j.ins.2014.01.015_b0130) 2009; 42
Bertone (10.1016/j.ins.2014.01.015_b0115) 2001; 20
Kim (10.1016/j.ins.2014.01.015_b0450) 2009
Chen (10.1016/j.ins.2014.01.015_b0195) 2011; 41
10.1016/j.ins.2014.01.015_b0860
10.1016/j.ins.2014.01.015_b0740
Lane (10.1016/j.ins.2014.01.015_b0475) 2011; 10
Furht (10.1016/j.ins.2014.01.015_b0250) 2011
Porfirio Ishii (10.1016/j.ins.2014.01.015_b0385) 2011; 10
10.1016/j.ins.2014.01.015_b0745
10.1016/j.ins.2014.01.015_b0625
10.1016/j.ins.2014.01.015_b0505
Mistry (10.1016/j.ins.2014.01.015_b0600) 2012
10.1016/j.ins.2014.01.015_b0190
10.1016/j.ins.2014.01.015_b0070
Leong (10.1016/j.ins.2014.01.015_b0495) 2009; 28
References_xml – reference: Jagmohan Chauhan, Shaiful Alam Chowdhury, Dwight Makaroff, Performance evaluation of yahoo! s4: a first look, in: 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2012, pp. 58–65.
– volume: 10
  start-page: 45
  year: 2011
  end-page: 53
  ident: b0475
  article-title: Exploiting social networks for large-scale human behavior modeling
  publication-title: IEEE Pervasive Comput.
– volume: 20
  start-page: 33
  year: 2001
  end-page: 40
  ident: b0115
  article-title: Integrative data mining: the new direction in bioinformatics
  publication-title: IEEE Eng. Med. Biol. Mag.
– year: 2009
  ident: b0325
  article-title: The fourth paradigm: data-intensive scientific discovery
  publication-title: Microsoft Research
– reference: Chris Anderson, The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, 2008. <
– volume: 14
  start-page: 1262
  year: 2003
  end-page: 1274
  ident: b0815
  article-title: A high-performance application data environment for large-scale scientific computations
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2009
  ident: b0370
  article-title: Introducing apache mahout: scalable, commercial-friendly machine learning for building intelligent applications
  publication-title: IBM Corporation
– volume: 14
  start-page: 1189
  year: 2008
  end-page: 1196
  ident: b0320
  article-title: Graphical histories for visualization: supporting analysis, communication, and evaluation
  publication-title: IEEE Trans. Visual. Comput. Graph.
– reference: Mladen A. Vouk, Cloud computing – issues, research and implementations, in: 30th International Conference on Information Technology Interfaces, 2008, ITI 2008, 2008, pp. 31–40.
– year: 2012
  ident: b0365
  article-title: Solid-state revolution: in-depth on how ssds really work
  publication-title: Ars Technica
– volume: 21
  start-page: 633
  year: 2010
  end-page: 643
  ident: b0655
  article-title: Large-scale pattern storage and retrieval using generalized brain-state-in-a-box neural networks
  publication-title: IEEE Trans. Neural Networks
– year: 2009
  ident: b0645
  article-title: Quantum Computation and Quantum Information
– volume: 27
  start-page: 603
  year: 2005
  end-page: 618
  ident: b0980
  article-title: Fast svm training algorithm with decomposition on very large data sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Brian Proffitt, Big Data Tools and Vendors, 2012. <
– volume: 12
  start-page: 954
  year: 1997
  end-page: 960, 199
  ident: b0565
  article-title: Large scale dynamic security screening and ranking using neural networks
  publication-title: IEEE Trans. Power Syst.
– year: 2012
  ident: b0600
  article-title: Introducing microsoft SQL server 2012
  publication-title: Microsoft
– year: 2008
  ident: b0455
  article-title: Modeling with Data: Tools and Techniques for Statistical Computing
– volume: 18
  start-page: 761
  year: 2010
  end-page: 774
  ident: b0575
  article-title: S4: Small state and small stretch compact routing protocol for large static wireless networks
  publication-title: IEEE/ACM Transactions on Networking
– reference: http://www.whitehouse.gov/sites/default/files/microsites/ostp/big-data-fact-sheet-final-1.pdf.
– volume: 100
  start-page: 2759
  year: 2012
  end-page: 2776
  ident: b0520
  article-title: Social network analysis in enterprise
  publication-title: Proc. IEEE
– year: 2005
  ident: b0400
  article-title: Introduction to Grid Computing
– reference: Alina Oprea, Michael K. Reiter, Ke Yang, Space efficient block storage integrity, in: Proc. 12th Ann. Network and Distributed System Security Symp. (NDSS 05), 2005.
– reference: Qian Wang, Kui Ren, Wenjing Lou, Yanchao Zhang, Dependable and secure sensor data storage with dynamic integrity assurance, in: Proc. IEEE INFOCOM, 2009, pp. 954–962.
– reference: Rui Máximo Esteves, Chunming Rong, Using mahout for clustering wikipedia’s latest articles: a comparison between k-means and fuzzy c-means in the cloud, in: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), 2011, pp. 565–569.
– reference: William Yurcik Larry Brumbaugh Ragib Hasan, Zahid Anwar, Roy H. Campbell, A survey of peer-to-peer storage techniques for distributed file systems, in: International Conference on Information Technology: Coding and Computing, 2005, ITCC 2005, vol. 2, 2005, pp. 205–213.
– year: 2011
  ident: b1035
  article-title: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
– volume: 7
  start-page: 830
  year: 1971
  end-page: 833
  ident: b0970
  article-title: Bulk storage requirements in large-scale scientific calculations
  publication-title: IEEE Trans. Magn.
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: b0065
  article-title: Deep machine learning – a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
– year: 2009
  ident: b0450
  article-title: Parallel clustering algorithms: survey
  publication-title: Parallel Algorithms
– year: 2008
  ident: b0500
  article-title: Introduction to Bioinformatics
– reference: Jason Brooks, Review: Talend Open Studio Makes Quick etl Work of Large Data Sets, 2009. <
– volume: 23
  start-page: 1017
  year: 2012
  end-page: 1029
  ident: b0390
  article-title: An online data access prediction and optimization approach for distributed systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 2
  start-page: 87
  year: 2013
  end-page: 96
  ident: b0870
  article-title: A comparative study on how big data is scaling business intelligence and analytics
  publication-title: Int. J. Enhanced Res. Sci. Technol. Eng.
– volume: 2
  year: 2006
  ident: b0060
  article-title: Synthetic biology: new engineering rules for an emerging discipline
  publication-title: Mol. Syst. Biol.
– reference: Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor systems, in: IEEE 13th International Symposium on High Performance Computer Architecture, 2007, HPCA 2007, 2006, pp. 13–24.
– volume: 16
  start-page: 210
  year: 2008
  end-page: 224
  ident: b0510
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 34
  year: 2011
  end-page: 41
  ident: b0895
  article-title: Extreme data-intensive scientific computing
  publication-title: Comput. Sci. Eng.
– reference: M. Tim Jones, Process Real-Time Big Data with Twitter Storm, 2012. <
– reference: Rui Máximo Esteves, Chunming Rong, Rui Pais, K-means clustering in the cloud – a mahout test, in: 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA), 2011, pp. 514–519.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b0535
  article-title: Least squares quantization in pcm
  publication-title: IEEE Trans. Inf. Theory
– start-page: 245
  year: 2001
  end-page: 250
  ident: b0125
  article-title: Random projection in dimensionality reduction: applications to image and text data
  publication-title: Knowledge Discovery and Data Mining
– volume: 33
  start-page: 1022
  year: 2011
  end-page: 1036
  ident: b0530
  article-title: Textual query of personal photos facilitated by large-scale web data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: David Thompson, Joshua A. Levine, Janine C. Bennett, Peer-Timo Bremer, Attila Gyulassy, Valerio Pascucci, Philippe P. Pébay, Analysis of large-scale scalar data using hixels, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 23–30.
– reference: Andrew Horne Shvetank Shah, Jaime Capellá, Good Data won’t Guarantee Good Decisions, 2012. <
– reference: Jing Han, Haihong E, Guan Le, Jian Du, Survey on nosql database, in: 2011 6th International Conference on Pervasive Computing and Applications (ICPCA), 2011, pp. 363–366.
– volume: 25
  start-page: 26
  year: 2010
  end-page: 35
  ident: b0135
  article-title: Learning and predicting the evolution of social networks
  publication-title: IEEE Intell. Syst.
– reference: K.P. Lakshmi, C.R.K. Reddy, A survey on different trends in data streams, in: 2010 International Conference on Networking and Information Technology (ICNIT), 2010, pp. 451–455.
– reference: Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, Michael Franklin, Johannes Gehrke, Laura Haas, Jiawei Han Alon Halevy, H.V. Jagadish, Alexandros Labrinidis, Sam Madden, Yannis Papakon stantinou, Jignesh Patel, Raghu Ramakrishnan, Kenneth Ross, Shahabi Cyrus, Dan Suciu, Shiv Vaithyanathan, Jennifer Widom, Challenges and Opportunities with Big Data, CYBER CENTER TECHNICAL REPORTS, Purdue University, 2011.
– volume: 20
  start-page: 1
  year: 2008
  end-page: 12
  ident: b0165
  article-title: Srda: an efficient algorithm for large-scale discriminant analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 44
  start-page: 1540
  year: 2011
  end-page: 1551
  ident: b0545
  article-title: A survey of multilinear subspace learning for tensor data
  publication-title: Pattern Recogn.
– year: 2007
  ident: b0490
  article-title: Nonlinear Dimensionality Reduction
– reference: Peter Wayner. 7 Top Tools for Taming Big Data, 2012. <
– volume: 26
  year: 2008
  ident: b0185
  article-title: Bigtable: a distributed storage system for structured data
  publication-title: ACM Trans. Comput. Syst.
– volume: 24
  start-page: 36
  year: 2004
  end-page: 44
  ident: b0560
  article-title: Massively parallel software rendering for visualizing large-scale data sets
  publication-title: IEEE Comput. Graph. Appl.
– volume: 14
  start-page: 22
  year: 2013
  end-page: 33
  ident: b0200
  article-title: Distributed modeling in a mapreduce framework for data-driven traffic flow forecasting
  publication-title: IEEE Trans. Intell. Trans. Syst.
– volume: 16
  start-page: 40
  year: 2012
  end-page: 50
  ident: b0540
  article-title: Dynamic cloud deployment of a mapreduce architecture
  publication-title: IEEE Internet Comput.
– reference: Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave DeMaagd, Alex Feinberg, Phanindra Ganti, Bhaskar Ghosh Lei Gao, Kishore Gopalakrishna, Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang, Data infrastructure at linkedin, in: 2012 IEEE 28th International Conference on Data Engineering (ICDE), 2012, pp. 1370–1381.
– volume: 3
  start-page: 876
  year: 1992
  end-page: 888
  ident: b0245
  article-title: Massively parallel architectures for large scale neural network simulations
  publication-title: IEEE Trans. Neural Networks
– volume: 51
  start-page: 107
  year: 2008
  end-page: 113
  ident: b0215
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
– volume: 1
  start-page: 39
  year: 2002
  end-page: 55
  ident: b0920
  article-title: The millipede – nanotechnology entering data storage
  publication-title: IEEE Trans. Nanotechnol.
– year: 2012
  ident: b0435
  article-title: Solid state drive vs. hard disk drive price and performance study
  publication-title: Dell PowerVault Tech. Mark.
– reference: Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Diane Cerra, second ed., 2000.
– reference: Udo Seiffert, Training of large-scale feed-forward neural networks, in: International Joint Conference on Neural Networks, IJCNN ’06, 2006, pp. 5324–5329.
– volume: 19
  start-page: 1141
  year: 2011
  end-page: 1151
  ident: b0880
  article-title: Radial basis function networks with linear interval regression weights for symbolic interval data
  publication-title: IEEE Trans. Syst. Man Cyber.–Part B: Cyber.
– start-page: 282
  year: 2011
  end-page: 283
  ident: b0145
  article-title: High-energy physics: down the petabyte highway
  publication-title: Nature
– reference: Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff Dean, Andrew Y. Ng, Building high-level features using large scale unsupervised learning, in: Proceedings of the 29th International Conference on Machine Learning, 2012.
– reference: Eric Savitz, Gartner: Top 10 Strategic Technology Trends for 2013, October 2012. <
– volume: 23
  start-page: 1087
  year: 2012
  end-page: 1099
  ident: b0280
  article-title: Online nonnegative matrix factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– reference: Pentaho Business Analytics, 2012. <
– volume: 72
  start-page: 2796
  year: 2009
  end-page: 2805
  ident: b0900
  article-title: Selective negative correlation learning approach to incremental learning
  publication-title: Neurocomputing
– reference: Janine Bennett, Ray Grout, Philippe Pebay, Diana Roe, David Thompson, Numerically stable, single-pass, parallel statistics algorithms, in: IEEE International Conference on Cluster Computing and Workshops, 2009, CLUSTER ’09, 2009, pp. 1–8.
– reference: Dan Gillick, Arlo Faria, John DeNero, Mapreduce: Distributed Computing for Machine Learning, 2006.
– volume: 18
  start-page: 1017
  year: 2002
  end-page: 1031
  ident: b0330
  article-title: The uk e-science core programme and the grid
  publication-title: Future Gener. Comput. Syst.
– year: 2008
  ident: b0710
  article-title: Handbook of Granular Computing
– year: 2009
  ident: b0585
  article-title: Computational Systems Biology
– reference: Storm, 2012. <
– volume: 28
  start-page: 32
  year: 2009
  end-page: 33
  ident: b0495
  article-title: A new revolution in enterprise storage architecture
  publication-title: IEEE Potentials
– reference: Senthilkumar Vijayakumar, Anjani Bhargavi, Uma Praseeda, Syed Azar Ahamed, Optimizing sequence alignment in cloud using hadoop and mpp database, in: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), 2012, pp. 819–827.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0105
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, in: Proceedings of the 2007 Eurosys Conference, 2007.
– volume: 455
  start-page: 28
  year: 2008
  end-page: 29
  ident: b0550
  article-title: Big data: how do your data grow?
  publication-title: Nature
– volume: 23
  start-page: 1299
  year: 2011
  end-page: 1311
  ident: b0420
  article-title: Map-join-reduce: toward scalable and efficient data analysis on large clusters
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Jeff Kelly, Apache drill brings sql-like, ad hoc query capabilities to big data, February 2013. <
– year: 2012
  ident: b0205
  article-title: Advanced Statistical Methods for the Analysis of Large Data-Sets
– volume: 8
  start-page: 34
  year: 1987
  end-page: 36
  ident: b0310
  article-title: An incremental approach for the solution of quadratic problems
  publication-title: Math. Modell.
– volume: 55
  start-page: 1621
  year: 2008
  end-page: 1630
  ident: b0095
  article-title: A comparison of data-access platforms for the computing of large hadron collider experiments
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 34
  start-page: 2451
  year: 2004
  end-page: 2465
  ident: b0170
  article-title: Distributed data mining on grids: services, tools, and applications
  publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber.
– reference: Randal E. Bryant, Data Intensive supercomputing: The Case for Disc. Technical Report CMU-CS-07-128, 2007.
– volume: 30
  start-page: 2136
  year: 2012
  end-page: 2145
  ident: b1020
  article-title: Information production and link formation in social computing systems
  publication-title: IEEE J. Sel. Areas Commun.
– reference: >.
– reference: Christian Molinari, No One Size Fits all Strategy for Big Data, Says ibm, October 2012. <
– year: 2012
  ident: b0085
  article-title: Scaling Up Machine Learning: Parallel and Distributed Approaches
– volume: 22
  start-page: 79
  year: 2007
  end-page: 83
  ident: b0935
  article-title: Social computing: from social informatics to social intelligence
  publication-title: IEEE Intell. Syst.
– volume: 12
  start-page: 1427
  year: 2006
  end-page: 1439
  ident: b0820
  article-title: Visual analysis of large heterogeneous social networks by semantic and structural abstraction
  publication-title: IEEE Trans. Visual. Comput. Graph.
– volume: 323
  start-page: 1297
  year: 2009
  end-page: 1298
  ident: b0090
  article-title: Beyond the data deluge
  publication-title: Science
– reference: Zhong Liang, ChiTian He, Zhang Xin, Feature based visualization algorithm for large-scale flow data, in: Second International Conference on Computer Modeling and Simulation, 2010, ICCMS ’10, vol. 1, 2010, pp. 194–197.
– volume: 1
  start-page: 83
  year: 1997
  end-page: 97
  ident: b0855
  article-title: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems
  publication-title: IEEE Trans. Evol. Comput.
– reference: Pavel Bzoch, Jiri Safarik, State of the art in distributed file systems: Increasing performance, in: Engineering of Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on the, 2011, pp. 153–154.
– year: 2012
  ident: b0570
  article-title: Big data: The Next Frontier for Innovation, Competition, and Productivity
– year: 2008
  ident: b0845
  article-title: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics
– year: 2009
  ident: b0915
  article-title: Internet: Technical Development and Applications
– volume: 178
  start-page: 2985
  year: 2008
  end-page: 2999
  ident: b0990
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Inf. Sci.
– volume: 10
  start-page: 26
  year: 2011
  end-page: 43
  ident: b0385
  article-title: An adaptive and historical approach to optimize data access in grid computing environments
  publication-title: INFOCOMP J. Comput. Sci.
– volume: 26
  start-page: 116
  year: 1994
  end-page: 123
  ident: b0850
  article-title: On the power of quantum computation
  publication-title: SIAM J. Comput.
– volume: 24
  start-page: 36
  year: 2004
  end-page: 44
  ident: b0440
  article-title: Visual data mining in large geospatial point sets
  publication-title: IEEE Comput. Graph. Appl.
– reference: Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, Jan Černocký, Strategies for training large scale neural network language models, in: IEEE Workshop on Automatic Speech Recognition and Understanding, 2011.
– volume: PP
  start-page: 1
  year: 2013
  ident: b1025
  article-title: A collaborative fuzzy clustering algorithm in distributed network environments
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2010
  ident: b0725
  article-title: The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing
– volume: 2
  start-page: 532
  year: 1991
  end-page: 536
  ident: b0750
  article-title: Clustering on a hypercube multicomputer
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0345
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 11
  start-page: 647
  year: 2010
  end-page: 657
  ident: b0795
  article-title: Computational solutions to large-scale data management and analysis
  publication-title: Nat. Rev. Genet.
– volume: 24
  start-page: 1051
  year: 2012
  end-page: 1064
  ident: b0555
  article-title: Mining web graphs for recommendations
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: PP
  start-page: 1
  year: 2012
  end-page: 13
  ident: b0305
  article-title: Efficient skyline computation on big data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 18
  start-page: 2526
  year: 2012
  end-page: 2535
  ident: b0975
  article-title: Visualizing flow of uncertainty through analytical processes
  publication-title: IEEE Trans. Visual. Comput. Graph.
– volume: 11
  start-page: 428
  year: 2007
  end-page: 434
  ident: b0340
  article-title: Learning multiple layers of representation
  publication-title: Trends Cogn. Sci.
– volume: 42
  start-page: 26
  year: 2009
  end-page: 34
  ident: b0460
  article-title: The changing paradigm of data-intensive computing
  publication-title: Computer
– reference: Ted Samson, Splunk Storm Brings Log Management to the Cloud, 2012. <
– year: 1981
  ident: b0120
  article-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– reference: Stephan Kraft, Giuliano Casale, Alin Jula, Peter Kilpatrick, Des Greer, Wiq: work-intensive query scheduling for in-memory database systems, in: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), 2012, pp. 33–40.
– volume: 45
  start-page: 16
  year: 2012
  end-page: 18
  ident: b0255
  article-title: Using in-memory analytics to quickly crunch big data
  publication-title: IEEE Comput. Soc.
– volume: 2
  start-page: 47
  year: 2003
  end-page: 84
  ident: b0960
  article-title: Genetic circuit building blocks for cellular computation, communications, and signal processing
  publication-title: Natural Comput.
– volume: 22
  start-page: 1162
  year: 2011
  end-page: 1167
  ident: b0525
  article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
  publication-title: IEEE Trans. Neural Networks
– reference: http://quantumcomputers.com.
– reference: David Taniar, High performance database processing, in: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (AINA), 2012, pp. 5–6.
– volume: 332
  start-page: 60
  year: 2011
  end-page: 65
  ident: b0335
  article-title: The world’s technological capacity to store, communicate, and compute information
  publication-title: Science
– volume: 19
  start-page: 1141
  year: 2011
  end-page: 1151
  ident: b0715
  article-title: Granular box regression
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2011
  ident: b0680
  article-title: Principles of Distributed Database Systems
– volume: 52
  start-page: 36
  year: 2009
  end-page: 44
  ident: b0405
  article-title: The pathologies of big data
  publication-title: Commun. ACM
– volume: 12
  start-page: 1624
  year: 2011
  end-page: 1639
  ident: b1015
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans. Intell. Trans. Syst.
– year: 2011
  ident: b0250
  article-title: Handbook of Cloud Computing
– volume: 34
  start-page: 1599
  year: 2008
  end-page: 1608
  ident: b0360
  article-title: An incremental cluster-based approach to spam filtering
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 2463
  year: 2011
  end-page: 2476
  ident: b0660
  article-title: A segmentation-based algorithm for large-scale partially ordered monotonic regression
  publication-title: Comput. Stat. Data Anal.
– reference: Diana Samuels, Skytree: Machine Learning Meets Big Data, February 2012. <
– reference: Weiya Shi, Yue-Fei Guo, Cheng Jin, Xiangyang Xue, An improved generalized discriminant analysis for large-scale data set, in: Seventh International Conference on Machine Learning and Applications, 2008, 2008, pp. 769–772.
– year: 2005
  ident: b0610
  article-title: Theory of Random Sets
– reference: Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari, S4: distributed stream computing platform, in: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia, 2010, pp. 170–177.
– volume: 11
  start-page: 2487
  year: 2010
  end-page: 2531
  ident: b0735
  article-title: Hubs in space: popular nearest neighbors in high-dimensional data
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 1158
  year: 2008
  end-page: 1170, 200
  ident: b0760
  article-title: A fast algorithm for learning a ranking function from large-scale data sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b0100
  article-title: Learning deep architectures for ai
  publication-title: Found. Trends Mach. Learn.
– reference: Matthew Smith, Christian Szongott, Benjamin Henne, Gabriele von Voigt, Big data privacy issues in public social media, in: 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST), 2012, pp. 1–6.
– volume: 50
  start-page: 418
  year: 2008
  end-page: 435
  ident: b0965
  article-title: The future of statistical computing
  publication-title: Technometrics
– volume: 455
  start-page: 47
  year: 2008
  end-page: 50
  ident: b0225
  article-title: Big data: the future of biocuration
  publication-title: Nature
– reference: Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu úlfar Erlingsson, Pradeep Kumar Gunda, Jon Currey, Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language, in: 8th USENIX Symposium on Operating Systems Design and Implementation, 2008.
– reference: Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, in: EuroSys ’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 41(3), 2007, pp. 59–72.
– year: 2001
  ident: b0480
  article-title: 3d Data managment: controlling data volume, velocity and variety
  publication-title: Appl. Delivery Strategies Meta Group
– reference: A.O. García, S. Bourov, A. Hammad, V. Hartmann, T. Jejkal, J.C. Otte, S. Pfeiffer, T. Schenker, C. Schmidt, P. Neuberger, R. Stotzka, J. van Wezel, B. Neumair, A. Streit, Data-intensive analysis for scientific experiments at the large scale data facility, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 125–126.
– volume: 13
  start-page: 14
  year: 2011
  end-page: 24
  ident: b0685
  article-title: Data-intensive science in the us doe: case studies and future challenges
  publication-title: Comput. Sci. Eng.
– reference: Eric Savitz, Gartner: 10 Critical Tech Trends for the Next Five Years, October 2012. <
– volume: 20
  start-page: 232
  year: 2012
  end-page: 240
  ident: b0800
  article-title: Real-time power management of integrated power systems in all electric ships leveraging multi time scale property
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 24
  start-page: 95
  year: 2009
  end-page: 98
  ident: b0080
  article-title: Bio-inspired sensor network design
  publication-title: IEEE Signal Process. Mag.
– volume: 28
  start-page: 145
  year: 2011
  end-page: 154
  ident: b1000
  article-title: Deep learning and its applications to signal and information processing
  publication-title: IEEE Signal Process. Mag.
– volume: 22
  start-page: 847
  year: 2011
  end-page: 859
  ident: b0950
  article-title: Enabling public auditability and data dynamics for storage security in cloud computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– reference: Oracle, Oracle information architecture: an architect’s guide to big data, An Oracle White Paper in Enterprise Architecture, 2012.
– reference: Byungik Ahn, Neuron machine: Parallel and pipelined digital neurocomputing architecture, in: 2012 IEEE International Conference on Computational Intelligence and Cybernetics (CyberneticsCom), 2012, pp. 143–147.
– volume: 87
  start-page: 575
  year: 1999
  end-page: 1600
  ident: b0355
  article-title: Fuzzy computing for data mining
  publication-title: Proc. IEEE
– volume: 52
  start-page: 1348
  year: 2006
  end-page: 1355
  ident: b0415
  article-title: Rough sets attributes reduction based expert system in interlaced video sequences
  publication-title: IEEE Trans. Consum. Electr.
– reference: Abzetdin Adamov. Distributed file system as a basis of data-intensive computing, in: 2012 6th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (October).
– volume: 23
  start-page: 1831
  year: 2012
  end-page: 1843
  ident: b0075
  article-title: Analyzing massive machine maintenance data in a computing cloud
  publication-title: IEEE Trans Parallel Distrib. Syst.
– start-page: 29.6.1
  year: 2003
  end-page: 29.6.4
  ident: b0720
  article-title: Scaling analysis of phase-change memory technology
  publication-title: IEEE Int. Electron Dev. Meeting
– volume: 21
  start-page: 34
  year: 2001
  end-page: 41
  ident: b0050
  article-title: Large-scale data visualization using parallel data streaming
  publication-title: IEEE Comput. Graph. Appl.
– volume: 7
  start-page: 32
  year: 2012
  end-page: 44
  ident: b0620
  article-title: Large-scale storage and reasoning for semantic data using swarms
  publication-title: IEEE Comput. Intell. Mag.
– volume: 26
  start-page: 603
  year: 2004
  end-page: 618
  ident: b0605
  article-title: A probabilistic active support vector learning algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 13
  start-page: 311
  year: 2011
  end-page: 336
  ident: b0770
  article-title: A survey of large scale data management approaches in cloud environments
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 46
  start-page: 1608
  year: 2012
  end-page: 1619
  ident: b1030
  article-title: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems
  publication-title: IEEE Trans. Syst. Man Cyber Part B: Cyber
– volume: 13
  start-page: 1855
  year: 2012
  end-page: 1864
  ident: b0175
  article-title: A parallel computing framework for large-scale air traffic flow optimization
  publication-title: IEEE Trans. Intell. Trans. Syst.
– volume: 14
  start-page: 55
  year: 2012
  end-page: 65
  ident: b0265
  article-title: Parallel lasso for large-scale video concept detection
  publication-title: IEEE Trans. Multimedia
– year: 2012
  ident: b0210
  article-title: Multi-column deep neural networks for image classification
  publication-title: IEEE Conf. Comput. Vision Pattern Recognit.
– reference: Tadashi Nakano, Biological computing based on living cells and cell communication, in: 2010 13th International Conference on Network-Based Information Systems (NBiS), 2010, pp. 42–47.
– year: 2002
  ident: b0755
  article-title: Nanotechnology: A Gentle Introduction to the Next Big Idea
– volume: 12
  start-page: 74
  year: 2010
  end-page: 83
  ident: b0765
  article-title: Efficient computational strategies for solving global optimization problems
  publication-title: Comput. Sci. Eng.
– reference: Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis, Dremel: interactive analysis of webscale datasets, in: Proc. of the 36th Int’l Conf. on Very Large Data Bases (2010), vol. 3(1), 2010, pp. 330–339.
– volume: 8
  start-page: 429
  year: 1996
  end-page: 445
  ident: b0865
  article-title: Parallel optimization of large join queries with set operators and aggregates in a parallel environment supporting pipeline
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0350
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 42
  start-page: 95
  year: 2009
  end-page: 98
  ident: b0130
  article-title: Biologically inspired computing
  publication-title: Computer
– reference: R.P. Ishii, R.F. de Mello, A history-based heuristic to optimize data access in distributed environments, in: Proc. 21st IASTED International Conf. Parallel and Distributed Computing and Systems, 2009.
– reference: Hui Li, Geoffrey Fox, Judy Qiu, Performance model for parallel matrix multiplication with dryad: dataflow graph runtime, in: 2012 Second International Conference on Cloud and Green Computing, 2012, pp. 675–683.
– volume: 17
  start-page: 740
  year: 2006
  end-page: 749
  ident: b0650
  article-title: Scalablast: a scalable implementation of blast for high-performance data-intensive bioinformatics analysis
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 41
  start-page: 1263
  year: 2011
  end-page: 1274
  ident: b0195
  article-title: A multiple-kernel fuzzy c-means algorithm for image segmentation
  publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber.
– reference: Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Michael Stonebraker, A comparison of approaches to large-scale data analysis, in: SIGMOD ’09 Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 2009, pp. 165–178.
– volume: 20
  start-page: 1904
  year: 2012
  end-page: 1916
  ident: b0690
  article-title: Scalable and parallel boosting with mapreduce
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: b0220
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 2351
  year: 2012
  end-page: 2365
  ident: b0285
  article-title: Streamcloud: an elastic and scalable data streaming system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 21
  start-page: 883
  year: 2010
  end-page: 894
  ident: b0885
  article-title: Sparse approximation through boosting for learning large scale kernel machines
  publication-title: IEEE Trans. Neural Networks
– reference: Mohsen Jamali, Hassan Abolhassani, Different aspects of social network analysis, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2006, WI 2006, 2006, pp. 66–72.
– volume: 10
  start-page: 982
  year: 2011
  end-page: 996
  ident: b0810
  article-title: A distributed spatial-temporal similarity data storage scheme in wireless sensor networks
  publication-title: IEEE Trans. Mobile Comput.
– volume: 23
  start-page: 247
  year: 2012
  end-page: 259
  ident: b0995
  article-title: Concurrent subspace width optimization method for rbf neural network modeling
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 440
  start-page: 23
  year: 2006
  end-page: 24
  ident: b0890
  article-title: Science in an exponential world
  publication-title: Nature
– reference: Katsunari Shibata, Yusuke Ikeda, Effect of number of hidden neurons on learning in large-scale layered neural networks, in: ICROS-SICE International Joint Conference 2009, 2009, pp. 5008–5013.
– reference: Apache Hadoop, Words Count Example, 2012. <
– reference: Simone Ferlin Oliveira, Karl Fürlinger, Dieter Kranzlmüller, Trends in computation, communication and storage and the consequences for data-intensive science, in: IEEE 14th International Conference on High Performance Computing and Communications, 2012.
– reference: Jiawei Yuan, Shucheng Yu, Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing, 2013.
– reference: Wei Jiang, Eric Zavesky, Shih-Fu Chang, Alex Loui, Cross-domain learning methods for high-level visual concept classification, in: 15th IEEE International Conference on Image Processing, 2008, ICIP 2008, 2008, pp. 161–164.
– volume: 34
  start-page: 42
  year: 2005
  end-page: 47
  ident: b0875
  article-title: The 8 requirements of real-time stream processing
  publication-title: SIGMOD Rec.
– reference: Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008, GCE’08, 2008, pp. 1–10.
– year: 2009
  ident: b0315
  article-title: The Elements of Statistical, Learning: Data Mining Inference and Prediction
– volume: 23
  start-page: 1103
  year: 2011
  end-page: 1117
  ident: b0985
  article-title: Trace-oriented feature analysis for large-scale text data dimension reduction
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 13
  start-page: 1302
  year: 2007
  end-page: 1309
  ident: b0635
  article-title: Nodetrix: a hybrid visualization of social network
  publication-title: IEEE Trans. Visual. Comput. Graph.
– volume: 13
  start-page: 25
  year: 2011
  end-page: 33
  ident: b0155
  article-title: Data-intensive scalable computing for scientific applications
  publication-title: Comput. Sci. Eng.
– volume: 41
  start-page: 60
  year: 2008
  end-page: 68
  ident: b0275
  article-title: Hardware technologies for high-performance data-intensive computing
  publication-title: Computer
– year: 2012
  ident: b0580
  article-title: Big data: principles and best practices of scalable realtime data systems
  publication-title: Manning
– volume: 18
  start-page: 1472
  year: 2007
  end-page: 1487
  ident: b0700
  article-title: Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated fpga approach
  publication-title: IEEE Trans. Neural Networks
– volume: 24
  start-page: 1747
  year: 2012
  end-page: 1759
  ident: b0630
  article-title: Data cube materialization and mining over mapreduce
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Philippe Pébay, David Thompson, Janine Bennett, Ajith Mascarenhas, Design and performance of a scalable, parallel statistics toolkit, in: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, pp. 1475–1484.
– year: 2011
  ident: b0180
  article-title: Cassandra High Performance Cookbook
– reference: Karmasphere Studio and Analyst, 2012. <
– reference: Lijuan Wang, Jun Shen, Towards bio-inspired cost minimisation for data-intensive service provision, in: 2012 IEEE First International Conference on Services Economics (SE), 2012, pp. 16–23.
– volume: 23
  start-page: 3347
  year: 2005
  end-page: 3357
  ident: b0840
  article-title: Dynamic optical-network architectures and technologies for existing and emerging grid services
  publication-title: J. Lightwave Technol.
– reference: Sqlstream, 2012. <
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0450
  article-title: Parallel clustering algorithms: survey
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0325
  article-title: The fourth paradigm: data-intensive scientific discovery
  publication-title: Microsoft Research
– ident: 10.1016/j.ins.2014.01.015_b0020
– volume: 26
  start-page: 603
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2014.01.015_b0605
  article-title: A probabilistic active support vector learning algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262340
– ident: 10.1016/j.ins.2014.01.015_b0290
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0205
– volume: 13
  start-page: 311
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0770
  article-title: A survey of large scale data management approaches in cloud environments
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/SURV.2011.032211.00087
– year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0250
– volume: 13
  start-page: 25
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0155
  article-title: Data-intensive scalable computing for scientific applications
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.73
– year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0680
– ident: 10.1016/j.ins.2014.01.015_b0035
  doi: 10.1109/ICAICT.2012.6398484
– volume: 323
  start-page: 1297
  issue: 5919
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0090
  article-title: Beyond the data deluge
  publication-title: Science
  doi: 10.1126/science.1170411
– volume: 23
  start-page: 2351
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0285
  article-title: Streamcloud: an elastic and scalable data streaming system
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2012.24
– volume: 18
  start-page: 761
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0575
  article-title: S4: Small state and small stretch compact routing protocol for large static wireless networks
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2010.2046645
– volume: 17
  start-page: 740
  issue: 8
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0650
  article-title: Scalablast: a scalable implementation of blast for high-performance data-intensive bioinformatics analysis
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2006.112
– ident: 10.1016/j.ins.2014.01.015_b0745
  doi: 10.1109/HPCA.2007.346181
– volume: 12
  start-page: 74
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0765
  article-title: Efficient computational strategies for solving global optimization problems
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2010.85
– volume: 440
  start-page: 23
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0890
  article-title: Science in an exponential world
  publication-title: Nature
  doi: 10.1038/440413a
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.ins.2014.01.015_b0535
  article-title: Least squares quantization in pcm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 455
  start-page: 28
  issue: 7209
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0550
  article-title: Big data: how do your data grow?
  publication-title: Nature
  doi: 10.1038/455028a
– year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0455
– volume: 72
  start-page: 2796
  issue: 13-15
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0900
  article-title: Selective negative correlation learning approach to incremental learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.022
– volume: 21
  start-page: 34
  issue: 4
  year: 2001
  ident: 10.1016/j.ins.2014.01.015_b0050
  article-title: Large-scale data visualization using parallel data streaming
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.933522
– start-page: 282
  issue: 469
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0145
  article-title: High-energy physics: down the petabyte highway
  publication-title: Nature
– ident: 10.1016/j.ins.2014.01.015_b0025
– ident: 10.1016/j.ins.2014.01.015_b0730
– volume: 24
  start-page: 1051
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0555
  article-title: Mining web graphs for recommendations
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.18
– volume: 45
  start-page: 16
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0255
  article-title: Using in-memory analytics to quickly crunch big data
  publication-title: IEEE Comput. Soc.
  doi: 10.1109/MC.2012.358
– year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0710
– volume: 23
  start-page: 3347
  issue: 5
  year: 2005
  ident: 10.1016/j.ins.2014.01.015_b0840
  article-title: Dynamic optical-network architectures and technologies for existing and emerging grid services
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2005.856254
– ident: 10.1016/j.ins.2014.01.015_b0300
  doi: 10.1109/ICPCA.2011.6106531
– volume: 3
  start-page: 876
  issue: 6
  year: 1992
  ident: 10.1016/j.ins.2014.01.015_b0245
  article-title: Massively parallel architectures for large scale neural network simulations
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.165590
– volume: 28
  start-page: 32
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0495
  article-title: A new revolution in enterprise storage architecture
  publication-title: IEEE Potentials
  doi: 10.1109/MPOT.2009.934894
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0315
– year: 1981
  ident: 10.1016/j.ins.2014.01.015_b0120
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0370
  article-title: Introducing apache mahout: scalable, commercial-friendly machine learning for building intelligent applications
  publication-title: IBM Corporation
– year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0725
– volume: 22
  start-page: 79
  issue: 2
  year: 2007
  ident: 10.1016/j.ins.2014.01.015_b0935
  article-title: Social computing: from social informatics to social intelligence
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.41
– volume: 52
  start-page: 36
  issue: 8
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0405
  article-title: The pathologies of big data
  publication-title: Commun. ACM
  doi: 10.1145/1536616.1536632
– ident: 10.1016/j.ins.2014.01.015_b0665
  doi: 10.1109/HPCC.2012.83
– volume: 20
  start-page: 1904
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0690
  article-title: Scalable and parallel boosting with mapreduce
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.208
– volume: 30
  start-page: 2136
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b1020
  article-title: Information production and link formation in social computing systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2012.121206
– ident: 10.1016/j.ins.2014.01.015_b0705
  doi: 10.1109/IPDPS.2011.293
– volume: 2
  start-page: 87
  issue: 8
  year: 2013
  ident: 10.1016/j.ins.2014.01.015_b0870
  article-title: A comparative study on how big data is scaling business intelligence and analytics
  publication-title: Int. J. Enhanced Res. Sci. Technol. Eng.
– ident: 10.1016/j.ins.2014.01.015_b0790
– volume: 13
  start-page: 34
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0895
  article-title: Extreme data-intensive scientific computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.74
– ident: 10.1016/j.ins.2014.01.015_b0675
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0915
– volume: 34
  start-page: 1599
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0360
  article-title: An incremental cluster-based approach to spam filtering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.018
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0365
  article-title: Solid-state revolution: in-depth on how ssds really work
  publication-title: Ars Technica
– volume: 100
  start-page: 2759
  issue: 9
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0520
  article-title: Social network analysis in enterprise
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2203090
– volume: 52
  start-page: 1348
  issue: 4
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0415
  article-title: Rough sets attributes reduction based expert system in interlaced video sequences
  publication-title: IEEE Trans. Consum. Electr.
  doi: 10.1109/TCE.2006.273155
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0350
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.ins.2014.01.015_b0505
  doi: 10.1109/CGC.2012.23
– ident: 10.1016/j.ins.2014.01.015_b0030
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0220
  article-title: Particle swarm optimization: basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0500
– volume: 11
  start-page: 2487
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0735
  article-title: Hubs in space: popular nearest neighbors in high-dimensional data
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1831
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0075
  article-title: Analyzing massive machine maintenance data in a computing cloud
  publication-title: IEEE Trans Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2011.306
– volume: 55
  start-page: 2463
  issue: 8
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0660
  article-title: A segmentation-based algorithm for large-scale partially ordered monotonic regression
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.03.001
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0435
  article-title: Solid state drive vs. hard disk drive price and performance study
  publication-title: Dell PowerVault Tech. Mark.
– ident: 10.1016/j.ins.2014.01.015_b0395
– ident: 10.1016/j.ins.2014.01.015_b0670
– volume: 8
  start-page: 34
  year: 1987
  ident: 10.1016/j.ins.2014.01.015_b0310
  article-title: An incremental approach for the solution of quadratic problems
  publication-title: Math. Modell.
  doi: 10.1016/0270-0255(87)90536-7
– ident: 10.1016/j.ins.2014.01.015_b0110
  doi: 10.1109/CLUSTR.2009.5289161
– volume: 1
  start-page: 83
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2014.01.015_b0855
  article-title: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585894
– ident: 10.1016/j.ins.2014.01.015_b0425
  doi: 10.1109/ICIP.2008.4711716
– ident: 10.1016/j.ins.2014.01.015_b0925
  doi: 10.1109/CLOUD.2012.34
– ident: 10.1016/j.ins.2014.01.015_b0140
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0345
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.ins.2014.01.015_b0515
  doi: 10.1109/ICCMS.2010.215
– volume: 11
  start-page: 647
  issue: 9
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0795
  article-title: Computational solutions to large-scale data management and analysis
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2857
– volume: 55
  start-page: 1621
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0095
  article-title: A comparison of data-access platforms for the computing of large hadron collider experiments
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2008.924087
– volume: 455
  start-page: 47
  issue: 7209
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0225
  article-title: Big data: the future of biocuration
  publication-title: Nature
  doi: 10.1038/455047a
– volume: 2
  start-page: 532
  issue: 2
  year: 1991
  ident: 10.1016/j.ins.2014.01.015_b0750
  article-title: Clustering on a hypercube multicomputer
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.89059
– volume: 21
  start-page: 883
  issue: 6
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0885
  article-title: Sparse approximation through boosting for learning large scale kernel machines
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2044244
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0215
  article-title: Mapreduce: simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 42
  start-page: 26
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0460
  article-title: The changing paradigm of data-intensive computing
  publication-title: Computer
  doi: 10.1109/MC.2009.26
– volume: 14
  start-page: 1189
  issue: 6
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0320
  article-title: Graphical histories for visualization: supporting analysis, communication, and evaluation
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2008.137
– volume: 10
  start-page: 26
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0385
  article-title: An adaptive and historical approach to optimize data access in grid computing environments
  publication-title: INFOCOMP J. Comput. Sci.
– volume: 14
  start-page: 1262
  issue: 12
  year: 2003
  ident: 10.1016/j.ins.2014.01.015_b0815
  article-title: A high-performance application data environment for large-scale scientific computations
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2003.1255638
– ident: 10.1016/j.ins.2014.01.015_b0785
– volume: 1
  start-page: 39
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2014.01.015_b0920
  article-title: The millipede – nanotechnology entering data storage
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2002.1005425
– year: 2011
  ident: 10.1016/j.ins.2014.01.015_b1035
– volume: 7
  start-page: 830
  issue: 4
  year: 1971
  ident: 10.1016/j.ins.2014.01.015_b0970
  article-title: Bulk storage requirements in large-scale scientific calculations
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1971.1067246
– ident: 10.1016/j.ins.2014.01.015_b0070
  doi: 10.1109/ICDE.2012.147
– volume: PP
  start-page: 1
  issue: 99
  year: 2013
  ident: 10.1016/j.ins.2014.01.015_b1025
  article-title: A collaborative fuzzy clustering algorithm in distributed network environments
  publication-title: IEEE Trans. Fuzzy Syst.
– ident: 10.1016/j.ins.2014.01.015_b0955
– volume: 13
  start-page: 1302
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2014.01.015_b0635
  article-title: Nodetrix: a hybrid visualization of social network
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2007.70582
– ident: 10.1016/j.ins.2014.01.015_b0380
  doi: 10.1145/1272996.1273005
– ident: 10.1016/j.ins.2014.01.015_b0230
  doi: 10.1109/CloudCom.2011.86
– ident: 10.1016/j.ins.2014.01.015_b0295
– ident: 10.1016/j.ins.2014.01.015_b0270
– volume: 34
  start-page: 42
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2014.01.015_b0875
  article-title: The 8 requirements of real-time stream processing
  publication-title: SIGMOD Rec.
  doi: 10.1145/1107499.1107504
– volume: 2
  start-page: 47
  year: 2003
  ident: 10.1016/j.ins.2014.01.015_b0960
  article-title: Genetic circuit building blocks for cellular computation, communications, and signal processing
  publication-title: Natural Comput.
  doi: 10.1023/A:1023307812034
– ident: 10.1016/j.ins.2014.01.015_b0780
– ident: 10.1016/j.ins.2014.01.015_b0740
  doi: 10.1109/ITCC.2005.42
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0570
– ident: 10.1016/j.ins.2014.01.015_b0430
– volume: 16
  start-page: 210
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0510
  article-title: Cooperatively coevolving particle swarms for large scale optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0645
– ident: 10.1016/j.ins.2014.01.015_b0695
  doi: 10.1145/1559845.1559865
– volume: 24
  start-page: 1747
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0630
  article-title: Data cube materialization and mining over mapreduce
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.257
– volume: 19
  start-page: 1141
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0880
  article-title: Radial basis function networks with linear interval regression weights for symbolic interval data
  publication-title: IEEE Trans. Syst. Man Cyber.–Part B: Cyber.
– start-page: 245
  year: 2001
  ident: 10.1016/j.ins.2014.01.015_b0125
  article-title: Random projection in dimensionality reduction: applications to image and text data
– volume: 26
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0185
  article-title: Bigtable: a distributed storage system for structured data
  publication-title: ACM Trans. Comput. Syst.
  doi: 10.1145/1365815.1365816
– volume: 28
  start-page: 145
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b1000
  article-title: Deep learning and its applications to signal and information processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939038
– volume: 23
  start-page: 1299
  issue: 9
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0420
  article-title: Map-join-reduce: toward scalable and efficient data analysis on large clusters
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.248
– ident: 10.1016/j.ins.2014.01.015_b0940
  doi: 10.1109/SE.2012.14
– year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0180
– volume: 30
  start-page: 1158
  issue: 7
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0760
  article-title: A fast algorithm for learning a ranking function from large-scale data sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70776
– volume: 2
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0060
  article-title: Synthetic biology: new engineering rules for an emerging discipline
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100073
– ident: 10.1016/j.ins.2014.01.015_b0905
  doi: 10.1109/AINA.2012.140
– ident: 10.1016/j.ins.2014.01.015_b0910
  doi: 10.1109/LDAV.2011.6092313
– year: 2007
  ident: 10.1016/j.ins.2014.01.015_b0490
– ident: 10.1016/j.ins.2014.01.015_b0040
– ident: 10.1016/j.ins.2014.01.015_b0005
– ident: 10.1016/j.ins.2014.01.015_b0375
  doi: 10.1145/1272998.1273005
– volume: 12
  start-page: 954
  issue: 2
  year: 1997
  ident: 10.1016/j.ins.2014.01.015_b0565
  article-title: Large scale dynamic security screening and ranking using neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.589789
– ident: 10.1016/j.ins.2014.01.015_b0805
  doi: 10.1109/IJCNN.2006.247289
– volume: 11
  start-page: 428
  year: 2007
  ident: 10.1016/j.ins.2014.01.015_b0340
  article-title: Learning multiple layers of representation
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.09.004
– volume: 12
  start-page: 1427
  issue: 6
  year: 2006
  ident: 10.1016/j.ins.2014.01.015_b0820
  article-title: Visual analysis of large heterogeneous social networks by semantic and structural abstraction
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2006.107
– volume: 23
  start-page: 247
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0995
  article-title: Concurrent subspace width optimization method for rbf neural network modeling
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178560
– volume: 16
  start-page: 40
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0540
  article-title: Dynamic cloud deployment of a mapreduce architecture
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2011.163
– year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0585
– volume: PP
  start-page: 1
  issue: 99
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0305
  article-title: Efficient skyline computation on big data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 21
  start-page: 633
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0655
  article-title: Large-scale pattern storage and retrieval using generalized brain-state-in-a-box neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2040291
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.ins.2014.01.015_b0105
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0085
– volume: 8
  start-page: 429
  issue: 3
  year: 1996
  ident: 10.1016/j.ins.2014.01.015_b0865
  article-title: Parallel optimization of large join queries with set operators and aggregates in a parallel environment supporting pipeline
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.506710
– volume: 23
  start-page: 1017
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0390
  article-title: An online data access prediction and optimization approach for distributed systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2011.256
– ident: 10.1016/j.ins.2014.01.015_b0410
  doi: 10.1109/WI.2006.61
– ident: 10.1016/j.ins.2014.01.015_b1005
– ident: 10.1016/j.ins.2014.01.015_b0045
  doi: 10.1109/CyberneticsCom.2012.6381635
– ident: 10.1016/j.ins.2014.01.015_b0150
– volume: 14
  start-page: 55
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0265
  article-title: Parallel lasso for large-scale video concept detection
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2011.2174781
– volume: 20
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0165
  article-title: Srda: an efficient algorithm for large-scale discriminant analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.190669
– ident: 10.1016/j.ins.2014.01.015_b0930
  doi: 10.1109/ITI.2008.4588381
– ident: 10.1016/j.ins.2014.01.015_b0260
  doi: 10.1109/LDAV.2011.6092331
– volume: 24
  start-page: 95
  issue: 3
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0080
  article-title: Bio-inspired sensor network design
  publication-title: IEEE Signal Process. Mag.
– volume: 46
  start-page: 1608
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b1030
  article-title: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems
  publication-title: IEEE Trans. Syst. Man Cyber Part B: Cyber
  doi: 10.1109/TSMCB.2012.2196432
– volume: 20
  start-page: 232
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0800
  article-title: Real-time power management of integrated power systems in all electric ships leveraging multi time scale property
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 50
  start-page: 418
  issue: 4
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0965
  article-title: The future of statistical computing
  publication-title: Technometrics
  doi: 10.1198/004017008000000460
– volume: 332
  start-page: 60
  issue: 6025
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0335
  article-title: The world’s technological capacity to store, communicate, and compute information
  publication-title: Science
  doi: 10.1126/science.1200970
– volume: 10
  start-page: 45
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0475
  article-title: Exploiting social networks for large-scale human behavior modeling
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2011.70
– volume: 34
  start-page: 2451
  issue: 6
  year: 2004
  ident: 10.1016/j.ins.2014.01.015_b0170
  article-title: Distributed data mining on grids: services, tools, and applications
  publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber.
  doi: 10.1109/TSMCB.2004.836890
– ident: 10.1016/j.ins.2014.01.015_b0775
– ident: 10.1016/j.ins.2014.01.015_b0825
  doi: 10.1109/ICMLA.2008.41
– volume: 13
  start-page: 1855
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0175
  article-title: A parallel computing framework for large-scale air traffic flow optimization
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2012.2205145
– volume: 27
  start-page: 603
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2014.01.015_b0980
  article-title: Fast svm training algorithm with decomposition on very large data sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.77
– issue: 949
  year: 2001
  ident: 10.1016/j.ins.2014.01.015_b0480
  article-title: 3d Data managment: controlling data volume, velocity and variety
  publication-title: Appl. Delivery Strategies Meta Group
– volume: 13
  start-page: 14
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0685
  article-title: Data-intensive science in the us doe: case studies and future challenges
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.77
– volume: 23
  start-page: 1103
  issue: 7
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0985
  article-title: Trace-oriented feature analysis for large-scale text data dimension reduction
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.34
– volume: 44
  start-page: 1540
  issue: 7
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0545
  article-title: A survey of multilinear subspace learning for tensor data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.01.004
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0600
  article-title: Introducing microsoft SQL server 2012
  publication-title: Microsoft
– volume: 41
  start-page: 60
  issue: 4
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0275
  article-title: Hardware technologies for high-performance data-intensive computing
  publication-title: Computer
  doi: 10.1109/MC.2008.125
– ident: 10.1016/j.ins.2014.01.015_b0860
  doi: 10.1109/DEST.2012.6227909
– volume: 18
  start-page: 2526
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0975
  article-title: Visualizing flow of uncertainty through analytical processes
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2012.285
– ident: 10.1016/j.ins.2014.01.015_b0835
– volume: 33
  start-page: 1022
  issue: 5
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0530
  article-title: Textual query of personal photos facilitated by large-scale web data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.142
– volume: 12
  start-page: 1624
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b1015
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2011.2158001
– year: 2005
  ident: 10.1016/j.ins.2014.01.015_b0610
– volume: 18
  start-page: 1017
  issue: 8
  year: 2002
  ident: 10.1016/j.ins.2014.01.015_b0330
  article-title: The uk e-science core programme and the grid
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/S0167-739X(02)00082-1
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0100
  article-title: Learning deep architectures for ai
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 24
  start-page: 36
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2014.01.015_b0560
  article-title: Massively parallel software rendering for visualizing large-scale data sets
  publication-title: IEEE Comput. Graph. Appl.
– ident: 10.1016/j.ins.2014.01.015_b0465
  doi: 10.1109/CLOUD.2012.120
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0065
  article-title: Deep machine learning – a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.938364
– volume: 19
  start-page: 1141
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0715
  article-title: Granular box regression
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2162416
– ident: 10.1016/j.ins.2014.01.015_b0235
  doi: 10.1109/WAINA.2011.136
– ident: 10.1016/j.ins.2014.01.015_b0945
  doi: 10.1109/INFCOM.2009.5062006
– ident: 10.1016/j.ins.2014.01.015_b0190
  doi: 10.1109/3PGCIC.2012.55
– start-page: 29.6.1
  year: 2003
  ident: 10.1016/j.ins.2014.01.015_b0720
  article-title: Scaling analysis of phase-change memory technology
  publication-title: IEEE Int. Electron Dev. Meeting
– ident: 10.1016/j.ins.2014.01.015_b0830
– ident: 10.1016/j.ins.2014.01.015_b1010
  doi: 10.1007/978-3-642-36883-7_18
– volume: 24
  start-page: 36
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2014.01.015_b0440
  article-title: Visual data mining in large geospatial point sets
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2004.41
– ident: 10.1016/j.ins.2014.01.015_b0595
  doi: 10.1109/ASRU.2011.6163930
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0580
  article-title: Big data: principles and best practices of scalable realtime data systems
  publication-title: Manning
– year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0210
  article-title: Multi-column deep neural networks for image classification
  publication-title: IEEE Conf. Comput. Vision Pattern Recognit.
– volume: 20
  start-page: 33
  issue: 4
  year: 2001
  ident: 10.1016/j.ins.2014.01.015_b0115
  article-title: Integrative data mining: the new direction in bioinformatics
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.940042
– volume: 26
  start-page: 116
  year: 1994
  ident: 10.1016/j.ins.2014.01.015_b0850
  article-title: On the power of quantum computation
  publication-title: SIAM J. Comput.
– year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0845
– ident: 10.1016/j.ins.2014.01.015_b0615
– volume: 18
  start-page: 1472
  issue: 5
  year: 2007
  ident: 10.1016/j.ins.2014.01.015_b0700
  article-title: Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated fpga approach
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2007.891203
– ident: 10.1016/j.ins.2014.01.015_b0590
– volume: 42
  start-page: 95
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2014.01.015_b0130
  article-title: Biologically inspired computing
  publication-title: Computer
  doi: 10.1109/MC.2009.104
– ident: 10.1016/j.ins.2014.01.015_b0445
– ident: 10.1016/j.ins.2014.01.015_b0015
– volume: 41
  start-page: 1263
  issue: 5
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0195
  article-title: A multiple-kernel fuzzy c-means algorithm for image segmentation
  publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber.
  doi: 10.1109/TSMCB.2011.2124455
– ident: 10.1016/j.ins.2014.01.015_b0640
  doi: 10.1109/ICDMW.2010.172
– volume: 87
  start-page: 575
  issue: 9
  year: 1999
  ident: 10.1016/j.ins.2014.01.015_b0355
  article-title: Fuzzy computing for data mining
  publication-title: Proc. IEEE
  doi: 10.1109/5.784240
– volume: 178
  start-page: 2985
  issue: 15
  year: 2008
  ident: 10.1016/j.ins.2014.01.015_b0990
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.02.017
– ident: 10.1016/j.ins.2014.01.015_b0055
– ident: 10.1016/j.ins.2014.01.015_b0160
  doi: 10.1109/ECBS-EERC.2011.34
– year: 2005
  ident: 10.1016/j.ins.2014.01.015_b0400
– volume: 23
  start-page: 1087
  issue: 7
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0280
  article-title: Online nonnegative matrix factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2012.2197827
– ident: 10.1016/j.ins.2014.01.015_b0485
– volume: 7
  start-page: 32
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2014.01.015_b0620
  article-title: Large-scale storage and reasoning for semantic data using swarms
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2012.2188586
– volume: 22
  start-page: 1162
  issue: 7
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0525
  article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2011.2146788
– year: 2002
  ident: 10.1016/j.ins.2014.01.015_b0755
– ident: 10.1016/j.ins.2014.01.015_b0470
  doi: 10.1109/ICNIT.2010.5508473
– volume: 25
  start-page: 26
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2014.01.015_b0135
  article-title: Learning and predicting the evolution of social networks
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2010.91
– ident: 10.1016/j.ins.2014.01.015_b0240
  doi: 10.1109/GCE.2008.4738445
– ident: 10.1016/j.ins.2014.01.015_b0625
  doi: 10.1109/NBiS.2010.8
– volume: 22
  start-page: 847
  issue: 5
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0950
  article-title: Enabling public auditability and data dynamics for storage security in cloud computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2010.183
– volume: 10
  start-page: 982
  issue: 7
  year: 2011
  ident: 10.1016/j.ins.2014.01.015_b0810
  article-title: A distributed spatial-temporal similarity data storage scheme in wireless sensor networks
  publication-title: IEEE Trans. Mobile Comput.
  doi: 10.1109/TMC.2010.214
– ident: 10.1016/j.ins.2014.01.015_b0010
– volume: 14
  start-page: 22
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2014.01.015_b0200
  article-title: Distributed modeling in a mapreduce framework for data-driven traffic flow forecasting
  publication-title: IEEE Trans. Intell. Trans. Syst.
  doi: 10.1109/TITS.2012.2205144
SSID ssj0004766
Score 2.656568
Snippet It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 314
SubjectTerms Big Data
Business
Cloud computing
Computation
Data storage
Data visualization
Data-intensive computing
e-Science
Economics
Evolutionary
Parallel and distributed computing
Policies
Productivity
Title Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
URI https://dx.doi.org/10.1016/j.ins.2014.01.015
https://www.proquest.com/docview/1629360699
Volume 275
WOSCitedRecordID wos000337199200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9QwHA-6-aAPolNx6iSC-OAto23SJvHtvE1UZPgw4fSlpGmiN6Qbd72xP99vmqTtNhwqCEe5ljYp_X7y_ZXvD4ReCmVoVtucpAUsN5YoRoSpOOFUKmGBKzNuu2YT_PBQzOfycwgbW3XtBHjTiPNzefpfSQ3XgNgudfYvyN0PChfgPxAdjkB2OP4R4fdVq8iij0wf71C776lj95TurC_h6ks1t9HRvvChctPJar08A7YBGHm7-D7Z95lsvTobkpk6DAVZ2uvo3lUzmYX0j9nep70rXurZj3VDvqogPYPzIWWkKwY7eMRiVsyFoE2nghJnq3gZ4xmr4BkpMt-ZK3LejOcj3kl9NmkQw9QX4rzC4b2z4RjMEldsPWVd0dU0H8RZH2To9qE7kwlsSFeGp7iJNmFGCbxvc_rhYP5xyJ_lfk87vnfc_e7iAC9N9Dv95ZIk79STo3vobrAr8NTj4T66YZotdGdUbXIL7YQcFfwKj-iGA3d_gL5dRA4eI2cXD7jZxQNqMKAGj1HzBk-xxwyGsQEz2I36EH15d3A0e09C6w2iKU1aIlTCbVKnhUmMBR2_Kig3EkxRWQljM8NsJWurta5ApRU1p3miZWFNwizo7MrSR2ijOWnMY4SrmmnF6lQB72e1YMqCQadyDZqogrmybZTED1rqUJfetUf5WcYAxOMSaFA6GpRJCr98G73uHzn1RVmuu5lFKpVhJXhtsQRIXffYi0jREjiu20ZTjTlZr8oUYEzB7pfyyb8N_RTdHtbSM7TRLtdmB93SZ-1itXwewPkLSL6mJA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-intensive+applications%2C+challenges%2C+techniques+and+technologies%3A+A+survey+on+Big+Data&rft.jtitle=Information+sciences&rft.au=Philip+Chen%2C+C.L.&rft.au=Zhang%2C+Chun-Yang&rft.date=2014-08-10&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=275&rft.spage=314&rft.epage=347&rft_id=info:doi/10.1016%2Fj.ins.2014.01.015&rft.externalDocID=S0020025514000346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon