Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore’s Law at the beginning of this new century, excessive data is making great troubles to human...
Uloženo v:
| Vydáno v: | Information sciences Ročník 275; s. 314 - 347 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
10.08.2014
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore’s Law at the beginning of this new century, excessive data is making great troubles to human beings. However, there are so much potential and highly useful values hidden in the huge volume of data. A new scientific paradigm is born as data-intensive scientific discovery (DISD), also known as Big Data problems. A large number of fields and sectors, ranging from economic and business activities to public administration, from national security to scientific researches in many areas, involve with Big Data problems. On the one hand, Big Data is extremely valuable to produce productivity in businesses and evolutionary breakthroughs in scientific disciplines, which give us a lot of opportunities to make great progresses in many fields. There is no doubt that the future competitions in business productivity and technologies will surely converge into the Big Data explorations. On the other hand, Big Data also arises with many challenges, such as difficulties in data capture, data storage, data analysis and data visualization. This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies we currently adopt to deal with the Big Data problems. We also discuss several underlying methodologies to handle the data deluge, for example, granular computing, cloud computing, bio-inspired computing, and quantum computing. |
|---|---|
| AbstractList | It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises. As the speed of information growth exceeds Moore's Law at the beginning of this new century, excessive data is making great troubles to human beings. However, there are so much potential and highly useful values hidden in the huge volume of data. A new scientific paradigm is born as data-intensive scientific discovery (DISD), also known as Big Data problems. A large number of fields and sectors, ranging from economic and business activities to public administration, from national security to scientific researches in many areas, involve with Big Data problems. On the one hand, Big Data is extremely valuable to produce productivity in businesses and evolutionary breakthroughs in scientific disciplines, which give us a lot of opportunities to make great progresses in many fields. There is no doubt that the future competitions in business productivity and technologies will surely converge into the Big Data explorations. On the other hand, Big Data also arises with many challenges, such as difficulties in data capture, data storage, data analysis and data visualization. This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies we currently adopt to deal with the Big Data problems. We also discuss several underlying methodologies to handle the data deluge, for example, granular computing, cloud computing, bio-inspired computing, and quantum computing. |
| Author | Philip Chen, C.L. Zhang, Chun-Yang |
| Author_xml | – sequence: 1 givenname: C.L. surname: Philip Chen fullname: Philip Chen, C.L. email: Philip.Chen@ieee.org – sequence: 2 givenname: Chun-Yang surname: Zhang fullname: Zhang, Chun-Yang email: cyzhangfst@gmail.com |
| BookMark | eNp9kDtPAzEMgCMEEm3hB7DdyMAdzj1yF5hKeUqVWGBhidKc06a6JiVJK_Xfc6VMDJUs2Zb8WfY3JKfWWSTkikJGgbLbZWZsyHKgZQa0j-qEDGhT5ynLOT0lA4AcUsir6pwMQ1gCQFkzNiBfjzLK1NiINpgtJnK97oyS0TgbbhK1kF2Hdo59HVEtrPneYEikbQ-t69zcYLhLxknY-C3uEmeTBzNP9lsvyJmWXcDLvzwin89PH5PXdPr-8jYZT1NVFBDTRkKtoaUMATXlxYwVNfImZ3zWoM6x1DPeaqXUDFjZtHVRgeJMI5QaeCV1MSLXh71r7_bnRbEyQWHXSYtuEwTtFRQMGOf9KD2MKu9C8KjF2puV9DtBQew9iqXoPYq9RwG0j6pn6n-MMvFXUPTSdEfJ-wOJ_fdbg14EZdAqbI1HFUXrzBH6B8wvkBY |
| CitedBy_id | crossref_primary_10_3390_a17110502 crossref_primary_10_1016_j_gexplo_2021_106872 crossref_primary_10_3233_JIFS_220171 crossref_primary_10_1108_IJOPM_05_2017_0268 crossref_primary_10_3390_s22103615 crossref_primary_10_1109_TFUZZ_2015_2406889 crossref_primary_10_1016_j_rser_2021_111459 crossref_primary_10_1016_j_rtbm_2020_100429 crossref_primary_10_1108_info_04_2016_0016 crossref_primary_10_1016_j_procs_2016_09_211 crossref_primary_10_1080_17445760_2019_1585848 crossref_primary_10_1145_3079759 crossref_primary_10_1016_j_future_2014_10_029 crossref_primary_10_2139_ssrn_5113169 crossref_primary_10_1063_1_5113650 crossref_primary_10_3390_app8112269 crossref_primary_10_1002_cpe_4517 crossref_primary_10_3390_su17051924 crossref_primary_10_1007_s11187_019_00205_1 crossref_primary_10_1007_s11042_018_5733_y crossref_primary_10_1080_14479338_2021_1894942 crossref_primary_10_1007_s10916_017_0832_2 crossref_primary_10_1016_j_eswa_2021_114840 crossref_primary_10_3390_app10186355 crossref_primary_10_1080_13662716_2022_2109455 crossref_primary_10_1016_j_rcim_2015_09_016 crossref_primary_10_1140_epjds_s13688_018_0165_5 crossref_primary_10_1016_j_ipm_2017_03_006 crossref_primary_10_1108_JKM_03_2024_0262 crossref_primary_10_1080_10095020_2023_2182236 crossref_primary_10_3390_app10228052 crossref_primary_10_1016_j_ijinfomgt_2017_09_007 crossref_primary_10_1016_j_jbusres_2019_01_044 crossref_primary_10_3390_electronics12204232 crossref_primary_10_1007_s12145_023_01207_0 crossref_primary_10_1109_ACCESS_2020_2964413 crossref_primary_10_1109_TCYB_2018_2816657 crossref_primary_10_4028_www_scientific_net_AMR_1022_253 crossref_primary_10_1016_j_procs_2015_09_147 crossref_primary_10_1088_2515_7639_ad467b crossref_primary_10_1108_SCM_05_2019_0196 crossref_primary_10_1007_s42488_019_00001_2 crossref_primary_10_1007_s13198_016_0455_x crossref_primary_10_1016_j_eswa_2017_12_044 crossref_primary_10_1108_BPMJ_09_2016_0188 crossref_primary_10_3390_math12040506 crossref_primary_10_1109_ACCESS_2021_3079207 crossref_primary_10_1016_j_eswa_2017_12_026 crossref_primary_10_1109_MNET_2016_1500104NM crossref_primary_10_1007_s11749_019_00651_9 crossref_primary_10_1155_2021_9988318 crossref_primary_10_1007_s40305_015_0109_8 crossref_primary_10_1016_j_ins_2017_12_040 crossref_primary_10_3390_su14074098 crossref_primary_10_1016_j_knosys_2018_05_006 crossref_primary_10_1080_14760584_2018_1493928 crossref_primary_10_3390_computers14070276 crossref_primary_10_1109_MCSE_2018_042781329 crossref_primary_10_1016_j_neucom_2017_01_126 crossref_primary_10_3389_fphys_2021_712649 crossref_primary_10_1016_j_orgel_2019_07_028 crossref_primary_10_3389_fenvs_2019_00121 crossref_primary_10_1016_j_ijinfomgt_2018_12_011 crossref_primary_10_4018_IRMJ_2019070101 crossref_primary_10_1109_ACCESS_2022_3205118 crossref_primary_10_1111_cobi_13044 crossref_primary_10_1111_exsy_12403 crossref_primary_10_1016_j_bdr_2021_100290 crossref_primary_10_1109_TII_2019_2916689 crossref_primary_10_1186_s43067_023_00090_5 crossref_primary_10_1007_s11227_017_2210_8 crossref_primary_10_1016_j_bdr_2017_10_002 crossref_primary_10_1016_j_knosys_2016_11_008 crossref_primary_10_1080_1206212X_2017_1417768 crossref_primary_10_1016_j_ecoinf_2022_101876 crossref_primary_10_1186_s12889_024_20316_z crossref_primary_10_1155_2018_8058670 crossref_primary_10_1007_s00500_021_05760_y crossref_primary_10_1016_j_procs_2014_09_098 crossref_primary_10_1016_j_future_2016_06_005 crossref_primary_10_1080_17517575_2018_1462404 crossref_primary_10_1017_dap_2023_13 crossref_primary_10_3233_JIFS_200366 crossref_primary_10_1016_j_future_2018_08_015 crossref_primary_10_1109_ACCESS_2020_3017636 crossref_primary_10_1007_s10922_018_9481_0 crossref_primary_10_1145_2788402_2788410 crossref_primary_10_1007_s10207_024_00853_9 crossref_primary_10_1016_j_procs_2018_05_107 crossref_primary_10_1109_ACCESS_2017_2689040 crossref_primary_10_1002_asia_202401477 crossref_primary_10_1007_s10586_022_03568_5 crossref_primary_10_1057_s41270_019_00054_7 crossref_primary_10_1186_s40537_022_00659_3 crossref_primary_10_3390_info11120569 crossref_primary_10_1111_poms_12833 crossref_primary_10_2478_cait_2018_0031 crossref_primary_10_1016_j_hydres_2024_03_002 crossref_primary_10_1109_TITS_2014_2345663 crossref_primary_10_1111_poms_12838 crossref_primary_10_12973_eurasia_2017_00951a crossref_primary_10_1155_2018_3702808 crossref_primary_10_3390_data6020016 crossref_primary_10_1177_00368504221124004 crossref_primary_10_1016_j_neucom_2016_05_112 crossref_primary_10_1016_j_indmarman_2020_03_015 crossref_primary_10_1016_j_jocs_2017_05_023 crossref_primary_10_1016_j_envsoft_2024_106255 crossref_primary_10_1109_ACCESS_2018_2832175 crossref_primary_10_1109_TSMC_2018_2854904 crossref_primary_10_1155_2015_834217 crossref_primary_10_1016_j_compind_2018_03_018 crossref_primary_10_1186_s13638_018_1254_7 crossref_primary_10_3390_rs10111678 crossref_primary_10_1080_19942060_2018_1452296 crossref_primary_10_1007_s11227_016_1677_z crossref_primary_10_1002_ila2_70009 crossref_primary_10_1109_TSMC_2016_2531674 crossref_primary_10_1142_S0219649223500600 crossref_primary_10_1155_2021_3740476 crossref_primary_10_1016_j_ijpe_2019_107599 crossref_primary_10_1049_iet_ifs_2015_0545 crossref_primary_10_1080_18756891_2016_1175811 crossref_primary_10_1109_TSMC_2018_2881018 crossref_primary_10_1002_poi3_258 crossref_primary_10_4018_IJITWE_2018040104 crossref_primary_10_1016_j_iimb_2022_07_001 crossref_primary_10_1016_j_emj_2020_10_006 crossref_primary_10_1016_j_ins_2016_09_005 crossref_primary_10_2166_hydro_2017_092 crossref_primary_10_1016_j_sigpro_2018_04_014 crossref_primary_10_1016_j_clinthera_2015_12_001 crossref_primary_10_1016_j_jss_2023_111744 crossref_primary_10_1016_j_compchemeng_2023_108306 crossref_primary_10_1080_13675567_2017_1369501 crossref_primary_10_1016_j_ejor_2018_09_018 crossref_primary_10_1109_TDSC_2017_2731844 crossref_primary_10_1109_ACCESS_2018_2815629 crossref_primary_10_1007_s13042_018_00904_3 crossref_primary_10_1016_j_compeleceng_2017_08_002 crossref_primary_10_1088_2631_7990_ad2e13 crossref_primary_10_1016_j_compenvurbsys_2016_10_010 crossref_primary_10_1109_TNSE_2024_3493053 crossref_primary_10_1016_j_bdr_2015_01_001 crossref_primary_10_1088_1757_899X_439_3_032083 crossref_primary_10_1108_MEQ_09_2024_0392 crossref_primary_10_1109_TFUZZ_2017_2762285 crossref_primary_10_3390_s23177580 crossref_primary_10_1007_s10479_017_2607_z crossref_primary_10_3233_JIFS_189284 crossref_primary_10_1109_TCOMM_2018_2840717 crossref_primary_10_1016_j_procs_2019_02_101 crossref_primary_10_3390_su11184864 crossref_primary_10_3390_app13063725 crossref_primary_10_1016_j_cie_2016_09_023 crossref_primary_10_1016_j_jclepro_2020_124126 crossref_primary_10_3389_frma_2023_1279376 crossref_primary_10_1007_s40843_021_2029_y crossref_primary_10_1088_1757_899X_225_1_012148 crossref_primary_10_1016_j_bdr_2019_100121 crossref_primary_10_1016_j_tre_2017_08_013 crossref_primary_10_1155_2016_9175418 crossref_primary_10_3390_app11156993 crossref_primary_10_1016_j_knosys_2016_12_002 crossref_primary_10_1007_s10586_016_0715_1 crossref_primary_10_1016_j_techfore_2018_06_007 crossref_primary_10_1186_s40537_024_00914_9 crossref_primary_10_1016_j_neucom_2015_04_049 crossref_primary_10_1108_JEIM_02_2020_0080 crossref_primary_10_1007_s10115_017_1034_4 crossref_primary_10_1007_s11227_017_2182_8 crossref_primary_10_1007_s12652_019_01361_8 crossref_primary_10_1016_j_arcontrol_2018_09_003 crossref_primary_10_1108_INTR_04_2021_0231 crossref_primary_10_1088_1742_6596_1988_1_012111 crossref_primary_10_3390_sym13040573 crossref_primary_10_1109_ACCESS_2020_2987934 crossref_primary_10_1007_s10618_019_00643_1 crossref_primary_10_1109_TC_2020_2993561 crossref_primary_10_1016_j_giq_2019_101401 crossref_primary_10_1109_COMST_2021_3094993 crossref_primary_10_1080_12460125_2023_2263676 crossref_primary_10_1109_TIT_2021_3062614 crossref_primary_10_70315_uloap_ulete_2025_0201002 crossref_primary_10_1016_j_ins_2014_07_029 crossref_primary_10_1145_3132088 crossref_primary_10_1109_TETCI_2019_2915813 crossref_primary_10_1007_s10257_017_0362_y crossref_primary_10_1016_j_ins_2014_08_065 crossref_primary_10_1007_s10479_024_06054_w crossref_primary_10_1016_j_knosys_2018_04_037 crossref_primary_10_1016_j_matpr_2020_10_273 crossref_primary_10_1016_j_ins_2017_05_001 crossref_primary_10_1016_j_procs_2018_05_167 crossref_primary_10_3390_e21080774 crossref_primary_10_3390_app10020724 crossref_primary_10_1016_j_procs_2014_05_044 crossref_primary_10_1108_MEDAR_04_2018_0325 crossref_primary_10_1016_j_eswa_2016_08_008 crossref_primary_10_1109_JIOT_2017_2695535 crossref_primary_10_1002_cpe_4927 crossref_primary_10_1007_s11227_021_03661_3 crossref_primary_10_3390_molecules27248888 crossref_primary_10_1016_j_egypro_2017_08_267 crossref_primary_10_1002_aelm_201800418 crossref_primary_10_1016_j_entcom_2024_100792 crossref_primary_10_4018_IJOCI_2017070105 crossref_primary_10_1155_2019_4184708 crossref_primary_10_1109_TSUSC_2018_2817043 crossref_primary_10_1016_j_neucom_2015_04_090 crossref_primary_10_32604_EE_2022_014877 crossref_primary_10_1002_jnm_2844 crossref_primary_10_1016_j_jss_2019_04_058 crossref_primary_10_1002_inf2_12659 crossref_primary_10_1080_17538947_2016_1239771 crossref_primary_10_2196_publichealth_8726 crossref_primary_10_1016_j_cities_2025_106214 crossref_primary_10_1016_j_im_2019_05_004 crossref_primary_10_1016_j_techfore_2024_123225 crossref_primary_10_3390_electronics9111771 crossref_primary_10_52255_smarttourism_2022_2_1_3 crossref_primary_10_1109_ACCESS_2020_2997791 crossref_primary_10_1007_s00607_019_00732_5 crossref_primary_10_1016_j_ins_2020_02_070 crossref_primary_10_1109_ACCESS_2019_2924075 crossref_primary_10_1007_s10619_020_07317_8 crossref_primary_10_1007_s42524_020_0092_6 crossref_primary_10_1016_j_techfore_2016_04_028 crossref_primary_10_3390_su11184821 crossref_primary_10_1007_s00521_018_3666_z crossref_primary_10_1155_2019_4592902 crossref_primary_10_1007_s11042_021_11283_3 crossref_primary_10_1186_s40537_016_0048_1 crossref_primary_10_1016_j_tra_2018_07_011 crossref_primary_10_1109_TNNLS_2024_3392583 crossref_primary_10_3390_fi14010019 crossref_primary_10_1016_j_ins_2017_12_059 crossref_primary_10_1016_j_autcon_2021_104118 crossref_primary_10_1007_s00500_023_08539_5 crossref_primary_10_1108_IJPPM_09_2020_0481 crossref_primary_10_1016_j_ins_2021_02_060 crossref_primary_10_1016_j_knosys_2017_09_021 crossref_primary_10_1080_00207543_2019_1634847 crossref_primary_10_1002_app_55998 crossref_primary_10_3390_rs14030521 crossref_primary_10_1145_3718364 crossref_primary_10_1016_j_ins_2017_11_043 crossref_primary_10_1007_s11227_018_2426_2 crossref_primary_10_1080_23270012_2016_1186578 crossref_primary_10_3390_sym12081274 crossref_primary_10_1080_00207543_2017_1349946 crossref_primary_10_3390_app11219820 crossref_primary_10_3390_ijgi14040143 crossref_primary_10_1016_j_ijinfomgt_2016_03_006 crossref_primary_10_26634_jfet_19_4_20913 crossref_primary_10_3390_technologies13010022 crossref_primary_10_1007_s40747_022_00798_3 crossref_primary_10_4018_IJAPUC_2018040102 crossref_primary_10_1007_s00500_017_2989_5 crossref_primary_10_1109_TFUZZ_2020_2975152 crossref_primary_10_47909_ijsmc_153 crossref_primary_10_3390_systems13090832 crossref_primary_10_1080_17509653_2016_1162968 crossref_primary_10_1109_TGRS_2021_3100601 crossref_primary_10_1177_2394901517696606 crossref_primary_10_3390_s19071565 crossref_primary_10_1016_j_neucom_2017_06_059 crossref_primary_10_1186_s13677_023_00520_9 crossref_primary_10_1007_s00500_018_03722_5 crossref_primary_10_1016_j_socscimed_2019_112533 crossref_primary_10_1016_j_swevo_2018_08_009 crossref_primary_10_33889_IJMEMS_2016_1_2_006 crossref_primary_10_1007_s10115_018_1248_0 crossref_primary_10_1007_s13369_023_08172_2 crossref_primary_10_1109_ACCESS_2019_2908856 crossref_primary_10_1007_s13042_018_0791_z crossref_primary_10_1109_ACCESS_2019_2905101 crossref_primary_10_1016_j_hcc_2023_100124 crossref_primary_10_1007_s11227_024_06085_x crossref_primary_10_1007_s10107_017_1156_1 crossref_primary_10_1108_JKM_06_2015_0238 crossref_primary_10_1007_s10586_017_1029_7 crossref_primary_10_1007_s11761_019_00262_0 crossref_primary_10_1016_j_enbuild_2020_109776 crossref_primary_10_1016_j_ipm_2018_01_010 crossref_primary_10_1007_s10586_018_2201_4 crossref_primary_10_1016_j_ifacol_2017_08_2038 crossref_primary_10_1155_2018_8467413 crossref_primary_10_1109_MNET_2016_7389825 crossref_primary_10_4018_IJWLTT_2020040103 crossref_primary_10_1002_pol_20230909 crossref_primary_10_3390_app15115841 crossref_primary_10_1002_widm_1134 crossref_primary_10_1109_ACCESS_2020_2972975 crossref_primary_10_1109_TCYB_2020_3027415 crossref_primary_10_1002_int_22425 crossref_primary_10_1007_s40747_017_0037_9 crossref_primary_10_1016_j_jenvman_2020_110238 crossref_primary_10_1109_TPDS_2021_3134336 crossref_primary_10_1016_j_ins_2017_08_043 crossref_primary_10_1080_01426397_2021_1970123 crossref_primary_10_1109_TBDATA_2017_2757942 crossref_primary_10_1109_TCOMM_2018_2877391 crossref_primary_10_1016_j_ijinfomgt_2015_09_005 crossref_primary_10_3390_info11020069 crossref_primary_10_1016_j_ipm_2018_01_004 crossref_primary_10_3390_app8040582 crossref_primary_10_1039_C7CC09956H crossref_primary_10_3390_math8111908 crossref_primary_10_1007_s00170_015_7756_0 crossref_primary_10_1016_j_comcom_2021_03_021 crossref_primary_10_1108_REGE_03_2020_0014 crossref_primary_10_1108_IJLSS_06_2024_0128 crossref_primary_10_1186_s40537_017_0068_5 crossref_primary_10_1016_j_procs_2018_10_453 crossref_primary_10_1016_j_suscom_2020_100420 crossref_primary_10_1038_s41598_022_07368_0 crossref_primary_10_3233_JIFS_191090 crossref_primary_10_1016_j_eswa_2022_117965 crossref_primary_10_1007_s10664_022_10271_x crossref_primary_10_1016_j_apenergy_2022_119775 crossref_primary_10_1080_02522667_2017_1372130 crossref_primary_10_3390_data5030080 crossref_primary_10_52711_2321_581X_2023_00001 crossref_primary_10_1007_s12083_020_00978_3 crossref_primary_10_1016_j_asoc_2019_105806 crossref_primary_10_1111_1467_8551_12343 crossref_primary_10_3390_buildings11010030 crossref_primary_10_3390_app12020651 crossref_primary_10_1016_j_inffus_2015_07_004 crossref_primary_10_1186_s12859_016_0990_0 crossref_primary_10_21078_JSSI_2021_175_17 crossref_primary_10_1142_S179300572550053X crossref_primary_10_3390_ijgi5060081 crossref_primary_10_3390_pr5040064 crossref_primary_10_1016_j_future_2018_07_060 crossref_primary_10_1002_net_21628 crossref_primary_10_1016_j_chemolab_2019_05_009 crossref_primary_10_3390_bdcc4020004 crossref_primary_10_1007_s13167_020_00213_2 crossref_primary_10_1080_08874417_2017_1418631 crossref_primary_10_1109_JSTARS_2016_2547020 crossref_primary_10_1007_s11704_020_9159_0 crossref_primary_10_1016_j_future_2016_02_002 crossref_primary_10_1016_j_future_2015_07_019 crossref_primary_10_1155_2017_2306458 crossref_primary_10_1039_D3RA08820K crossref_primary_10_1111_1467_8551_12333 crossref_primary_10_1007_s00779_020_01461_9 crossref_primary_10_1016_j_techfore_2018_01_014 crossref_primary_10_1016_j_procs_2020_10_060 crossref_primary_10_1186_s13742_016_0117_6 crossref_primary_10_1007_s11042_017_4685_y crossref_primary_10_3390_su12083386 crossref_primary_10_1016_j_knosys_2015_05_027 crossref_primary_10_1002_aelm_202101356 crossref_primary_10_1016_j_jnca_2021_103025 crossref_primary_10_3390_info11010017 crossref_primary_10_1002_widm_1387 crossref_primary_10_1016_j_jfds_2018_04_001 crossref_primary_10_1089_big_2020_0383 crossref_primary_10_1142_S0217595917400012 crossref_primary_10_1080_10496505_2019_1638264 crossref_primary_10_1109_TC_2016_2636840 crossref_primary_10_12688_f1000research_73269_3 crossref_primary_10_12688_f1000research_73269_2 crossref_primary_10_1002_inf2_12120 crossref_primary_10_1007_s10462_024_10744_z crossref_primary_10_1007_s10586_021_03442_w crossref_primary_10_1016_j_agwat_2020_106357 crossref_primary_10_12688_f1000research_73269_4 crossref_primary_10_1007_s13740_018_0086_2 crossref_primary_10_1016_j_procs_2015_04_027 crossref_primary_10_1109_ACCESS_2019_2901118 crossref_primary_10_1108_ECAM_12_2019_0717 crossref_primary_10_1109_TEM_2021_3091661 crossref_primary_10_1016_j_rcim_2019_101851 crossref_primary_10_1155_2020_5471849 crossref_primary_10_1016_j_scib_2019_07_004 crossref_primary_10_1007_s11042_019_07793_w crossref_primary_10_1016_j_ins_2015_03_026 crossref_primary_10_3390_sym9110284 crossref_primary_10_1007_s11042_016_4026_6 crossref_primary_10_1016_j_cor_2016_09_018 crossref_primary_10_1002_stvr_70003 crossref_primary_10_1515_amcs_2017_0046 crossref_primary_10_1145_3460201 crossref_primary_10_2478_sbe_2018_0027 crossref_primary_10_1016_j_ssci_2018_11_003 crossref_primary_10_3390_su11071961 crossref_primary_10_1016_j_procs_2021_01_004 crossref_primary_10_1109_TII_2016_2547584 crossref_primary_10_1007_s40747_021_00532_5 crossref_primary_10_1109_TPDS_2020_3005572 crossref_primary_10_1016_j_simpat_2016_01_010 crossref_primary_10_1111_deci_12451 crossref_primary_10_3390_s16111813 crossref_primary_10_3390_s22010066 crossref_primary_10_1007_s41066_016_0032_3 crossref_primary_10_1007_s10586_023_04074_y crossref_primary_10_1109_TSMC_2018_2876455 crossref_primary_10_3390_app10020474 crossref_primary_10_1007_s12039_023_02163_4 crossref_primary_10_1080_09537287_2020_1810764 crossref_primary_10_4018_IRMJ_2018010102 crossref_primary_10_1007_s00187_020_00294_0 crossref_primary_10_1109_ACCESS_2021_3067815 crossref_primary_10_2478_picbe_2023_0182 crossref_primary_10_1007_s13042_022_01521_x crossref_primary_10_1631_FITEE_1500441 crossref_primary_10_1007_s10707_017_0309_y crossref_primary_10_1016_j_ecolind_2017_02_040 crossref_primary_10_1108_info_03_2016_0012 crossref_primary_10_1016_j_sysarc_2021_101996 crossref_primary_10_1016_j_future_2019_02_041 crossref_primary_10_1016_j_procs_2018_10_201 crossref_primary_10_1007_s40171_024_00428_6 crossref_primary_10_1016_j_jocs_2020_101180 crossref_primary_10_1016_j_neucom_2018_01_056 crossref_primary_10_1089_big_2018_0017 crossref_primary_10_1108_ITSE_10_2021_0192 crossref_primary_10_2166_wcc_2018_197 crossref_primary_10_1109_TBDATA_2020_3036813 crossref_primary_10_1016_j_procs_2019_04_177 crossref_primary_10_1007_s11664_024_11393_2 crossref_primary_10_1007_s11227_017_1963_4 crossref_primary_10_1007_s12553_017_0191_5 crossref_primary_10_1007_s40846_015_0091_y crossref_primary_10_1080_23742917_2019_1601889 crossref_primary_10_1177_0735633119845694 crossref_primary_10_1109_ACCESS_2022_3206805 crossref_primary_10_1007_s10586_014_0406_8 crossref_primary_10_1016_j_jnca_2018_12_013 crossref_primary_10_1016_j_micpro_2015_08_013 crossref_primary_10_1108_IJM_05_2022_0247 crossref_primary_10_1007_s40692_022_00250_y crossref_primary_10_32604_cmc_2021_014330 crossref_primary_10_1016_j_jmsy_2018_01_003 crossref_primary_10_1051_shsconf_20208301006 crossref_primary_10_1002_nem_1978 crossref_primary_10_1016_j_compind_2019_06_006 crossref_primary_10_1016_j_inffus_2017_10_006 crossref_primary_10_1016_j_clscn_2022_100074 crossref_primary_10_1016_j_inffus_2017_10_001 crossref_primary_10_1007_s11227_024_05997_y crossref_primary_10_1109_TITS_2024_3392959 crossref_primary_10_3390_nano12010012 crossref_primary_10_1007_s12652_019_01443_7 crossref_primary_10_1109_TCYB_2017_2750481 crossref_primary_10_1016_j_asoc_2023_110154 crossref_primary_10_1109_JSTARS_2016_2574810 crossref_primary_10_1109_TETC_2017_2760927 crossref_primary_10_3390_ijerph17155330 crossref_primary_10_3390_electronics12010053 crossref_primary_10_1016_j_indmarman_2019_08_004 crossref_primary_10_1109_TPDS_2022_3170574 crossref_primary_10_1057_s41264_023_00235_7 crossref_primary_10_1007_s11265_016_1185_7 crossref_primary_10_1016_j_ins_2019_10_030 crossref_primary_10_1007_s13042_022_01634_3 crossref_primary_10_1002_sres_2985 crossref_primary_10_1016_j_bspc_2016_09_006 crossref_primary_10_1007_s42488_024_00132_1 crossref_primary_10_1108_JEIM_08_2019_0222 crossref_primary_10_1016_j_jpdc_2017_12_002 crossref_primary_10_1007_s00500_020_05544_w crossref_primary_10_1016_j_cirp_2019_03_009 crossref_primary_10_1109_JIOT_2016_2557487 crossref_primary_10_1109_TII_2017_2766885 crossref_primary_10_1016_j_future_2020_02_020 crossref_primary_10_1016_j_jclepro_2020_121863 crossref_primary_10_1088_2632_2153_abe193 crossref_primary_10_1007_s11760_022_02341_w crossref_primary_10_1007_s12652_015_0259_x crossref_primary_10_1007_s11831_021_09616_4 crossref_primary_10_1007_s11113_018_9464_6 crossref_primary_10_1371_journal_pone_0250229 crossref_primary_10_1016_j_ins_2016_01_075 crossref_primary_10_1016_j_neunet_2019_09_039 crossref_primary_10_1016_j_asr_2015_10_038 crossref_primary_10_1016_j_ijhm_2019_01_003 crossref_primary_10_1016_j_datak_2024_102310 crossref_primary_10_1155_2020_5186870 crossref_primary_10_1002_cpe_5212 crossref_primary_10_1109_TEMC_2025_3583673 crossref_primary_10_1007_s11227_022_04399_2 crossref_primary_10_1016_j_ijinfomgt_2019_11_002 crossref_primary_10_1016_j_im_2018_12_003 crossref_primary_10_1016_j_knosys_2018_12_028 crossref_primary_10_1007_s13222_018_0275_z crossref_primary_10_1007_s10462_024_10811_5 crossref_primary_10_1016_j_mtadv_2025_100571 crossref_primary_10_1016_j_petrol_2022_111296 crossref_primary_10_1016_j_ins_2019_11_039 crossref_primary_10_1142_S0217595917400097 crossref_primary_10_1007_s11192_016_1945_y crossref_primary_10_1155_2015_748681 crossref_primary_10_1007_s40708_014_0001_z crossref_primary_10_3390_su15043482 crossref_primary_10_1109_TFUZZ_2019_2947231 crossref_primary_10_3390_su13116230 crossref_primary_10_1016_j_ins_2015_07_040 crossref_primary_10_1016_j_asoc_2024_112261 crossref_primary_10_1016_j_jii_2018_02_002 crossref_primary_10_1016_j_bdr_2024_100454 crossref_primary_10_1016_j_tele_2020_101529 crossref_primary_10_1016_j_future_2018_07_042 crossref_primary_10_1108_JEIM_01_2024_0059 crossref_primary_10_1080_00207543_2020_1868599 crossref_primary_10_3390_informatics9010012 crossref_primary_10_7717_peerj_cs_276 crossref_primary_10_1016_j_datak_2024_102333 crossref_primary_10_1109_MCI_2015_2405316 crossref_primary_10_1016_j_jnca_2016_09_008 crossref_primary_10_1016_j_ins_2018_02_053 crossref_primary_10_1016_j_ijinfomgt_2020_102167 crossref_primary_10_1109_ACCESS_2022_3188117 crossref_primary_10_1016_j_procs_2022_12_277 crossref_primary_10_1007_s10699_019_09588_6 crossref_primary_10_1016_j_future_2018_07_056 crossref_primary_10_1002_aisy_202200353 crossref_primary_10_1080_12460125_2020_1869432 crossref_primary_10_1002_jcph_1141 crossref_primary_10_1016_S2095_3119_17_61859_8 crossref_primary_10_1016_j_cosrev_2020_100313 crossref_primary_10_1016_j_procir_2022_09_098 crossref_primary_10_1155_2018_5418679 crossref_primary_10_1002_aisy_202000055 crossref_primary_10_1002_cpe_6968 crossref_primary_10_1016_j_ins_2019_10_069 crossref_primary_10_1007_s10664_017_9503_7 crossref_primary_10_3390_w12102796 crossref_primary_10_3390_su162310772 crossref_primary_10_1108_IJQRM_07_2021_0224 crossref_primary_10_1111_coin_12246 crossref_primary_10_1109_ACCESS_2019_2946884 crossref_primary_10_1016_j_neucom_2018_02_020 crossref_primary_10_1016_j_fss_2019_05_009 crossref_primary_10_1016_j_materresbull_2023_112634 crossref_primary_10_1108_JEIM_10_2015_0099 crossref_primary_10_2139_ssrn_5051526 crossref_primary_10_1109_ACCESS_2020_3046132 crossref_primary_10_1080_23729333_2019_1637488 crossref_primary_10_1016_j_future_2016_03_018 crossref_primary_10_1177_1550147719839014 crossref_primary_10_1016_j_jksuci_2017_12_007 crossref_primary_10_1061__ASCE_CP_1943_5487_0000682 crossref_primary_10_1109_TNNLS_2022_3184120 crossref_primary_10_1080_08874417_2016_1183977 crossref_primary_10_1007_s10792_022_02279_5 crossref_primary_10_1080_19479832_2017_1391336 crossref_primary_10_1007_s10479_022_04772_7 crossref_primary_10_3233_IDA_194663 crossref_primary_10_1007_s10796_017_9822_7 crossref_primary_10_1016_j_techfore_2023_122884 crossref_primary_10_3390_buildings14113635 crossref_primary_10_1109_ACCESS_2018_2882240 crossref_primary_10_12677_ecl_2024_1341727 crossref_primary_10_1016_j_inffus_2018_10_005 crossref_primary_10_1080_02664763_2024_2307535 crossref_primary_10_1186_s40537_019_0241_0 crossref_primary_10_1016_j_ijhm_2020_102853 crossref_primary_10_1016_j_ijinfomgt_2016_07_009 crossref_primary_10_1016_j_pce_2025_104063 crossref_primary_10_1109_TIT_2020_2999909 crossref_primary_10_3390_bdcc3010012 crossref_primary_10_1007_s13132_020_00703_8 crossref_primary_10_1177_2053951720906849 crossref_primary_10_1007_s11276_020_02321_3 crossref_primary_10_1016_j_foreco_2020_118104 crossref_primary_10_1016_j_ins_2016_10_012 crossref_primary_10_1080_00207543_2019_1598599 crossref_primary_10_1007_s10791_025_09518_0 crossref_primary_10_1016_j_artmed_2018_09_002 crossref_primary_10_1016_j_iot_2022_100658 crossref_primary_10_1007_s10270_019_00730_3 crossref_primary_10_1016_j_swevo_2024_101751 crossref_primary_10_1080_08839514_2019_1665262 crossref_primary_10_1007_s11707_019_0748_x crossref_primary_10_1016_j_omega_2018_07_008 crossref_primary_10_1080_09537287_2020_1834126 crossref_primary_10_1108_AEAT_12_2020_0318 crossref_primary_10_1155_2019_5235706 crossref_primary_10_1109_TSMC_2015_2391262 crossref_primary_10_1016_j_gpb_2018_11_005 crossref_primary_10_1109_ACCESS_2020_3007763 crossref_primary_10_1016_j_envsoft_2015_12_015 crossref_primary_10_1111_exsy_12331 crossref_primary_10_1017_dap_2024_19 crossref_primary_10_1016_j_ins_2016_02_029 crossref_primary_10_1109_TKDE_2018_2866149 crossref_primary_10_1080_13683500_2018_1564739 crossref_primary_10_1016_j_asoc_2022_109843 crossref_primary_10_1016_j_jii_2023_100483 crossref_primary_10_3233_IP_190156 crossref_primary_10_1007_s00607_021_00999_7 crossref_primary_10_1016_j_cie_2018_04_013 crossref_primary_10_1109_TSMC_2017_2667703 crossref_primary_10_1111_trf_16939 crossref_primary_10_1016_j_procir_2016_08_036 crossref_primary_10_3102_0013189X251318346 crossref_primary_10_1007_s00778_020_00614_9 crossref_primary_10_1109_TCDS_2022_3192536 crossref_primary_10_1016_j_techfore_2017_10_005 crossref_primary_10_1016_j_giq_2021_101617 crossref_primary_10_1364_AO_454422 crossref_primary_10_3390_bdcc2040032 crossref_primary_10_1016_j_econmod_2017_02_014 crossref_primary_10_1108_BPMJ_01_2016_0017 crossref_primary_10_1109_ACCESS_2020_3018667 crossref_primary_10_1080_15567036_2019_1631410 crossref_primary_10_1109_TDSC_2022_3149544 crossref_primary_10_1140_epjst_e2020_000261_8 crossref_primary_10_1007_s00146_021_01166_4 crossref_primary_10_1080_21681724_2024_2444654 crossref_primary_10_1093_comjnl_bxad017 crossref_primary_10_1080_17517575_2024_2415568 crossref_primary_10_1108_ECAM_11_2024_1502 crossref_primary_10_3390_ijgi7090371 crossref_primary_10_1007_s11831_024_10156_w crossref_primary_10_1109_TCSVT_2016_2565918 crossref_primary_10_1016_j_ijinfomgt_2019_05_006 crossref_primary_10_1108_TG_09_2019_0085 crossref_primary_10_1109_TBDATA_2021_3139069 crossref_primary_10_1016_j_im_2022_103743 crossref_primary_10_1016_j_parco_2021_102751 crossref_primary_10_1007_s11227_017_1991_0 crossref_primary_10_1007_s41870_018_0243_8 crossref_primary_10_1016_j_ijinfomgt_2019_05_003 crossref_primary_10_3389_fpsyg_2020_580820 crossref_primary_10_1016_j_infsof_2017_06_001 crossref_primary_10_1049_htl_2018_5046 crossref_primary_10_3390_su9112139 crossref_primary_10_1109_ACCESS_2018_2889122 crossref_primary_10_1109_ACCESS_2019_2944641 crossref_primary_10_1109_JLT_2024_3481628 crossref_primary_10_1051_itmconf_20213802005 crossref_primary_10_1145_3442696 crossref_primary_10_1007_s10586_018_2821_8 crossref_primary_10_1016_j_future_2018_01_026 crossref_primary_10_1080_12460125_2018_1437654 crossref_primary_10_1108_IJCHM_03_2019_0279 crossref_primary_10_1186_s40537_020_00337_2 crossref_primary_10_1016_j_scitotenv_2018_09_349 crossref_primary_10_3389_frma_2021_678554 crossref_primary_10_1007_s10462_019_09685_9 crossref_primary_10_1016_j_inffus_2018_11_009 crossref_primary_10_1007_s00607_017_0563_8 crossref_primary_10_1108_EJIM_05_2021_0256 crossref_primary_10_1108_MD_07_2018_0833 crossref_primary_10_3390_math11173767 crossref_primary_10_3390_smartcities7030061 crossref_primary_10_1016_j_eswa_2019_112869 crossref_primary_10_1007_s00500_019_04384_7 crossref_primary_10_1016_j_ins_2016_02_056 crossref_primary_10_1007_s10586_018_2186_z crossref_primary_10_1109_ACCESS_2020_2968969 crossref_primary_10_1177_0340035220931882 crossref_primary_10_1007_s12599_023_00826_7 crossref_primary_10_1016_j_physa_2018_04_089 crossref_primary_10_1016_j_cirp_2020_05_002 crossref_primary_10_1007_s13132_024_02037_1 crossref_primary_10_3390_app10228137 crossref_primary_10_1016_j_procs_2015_09_023 crossref_primary_10_1007_s12652_020_02287_2 crossref_primary_10_1002_pssa_202000655 crossref_primary_10_1016_j_ejor_2021_11_003 crossref_primary_10_1109_JIOT_2018_2844296 crossref_primary_10_1016_j_measurement_2020_107735 crossref_primary_10_1186_s40537_018_0166_z crossref_primary_10_1007_s10639_023_11940_0 crossref_primary_10_1108_DPRG_01_2022_0005 crossref_primary_10_1177_09610006241259495 crossref_primary_10_1016_j_ins_2016_11_002 crossref_primary_10_1371_journal_pone_0141229 crossref_primary_10_1007_s10730_019_09377_5 crossref_primary_10_1016_j_future_2015_10_003 crossref_primary_10_1007_s10586_020_03155_6 crossref_primary_10_1080_10618600_2022_2084404 crossref_primary_10_1108_ITP_06_2019_0286 crossref_primary_10_1108_BIJ_03_2021_0127 crossref_primary_10_1109_TKDE_2024_3381192 crossref_primary_10_3390_e22101084 crossref_primary_10_3390_electronics10091062 crossref_primary_10_1109_EMR_2018_2810069 crossref_primary_10_1016_j_cie_2018_04_055 crossref_primary_10_1109_TNSM_2023_3291890 crossref_primary_10_3389_fpsyg_2022_948764 crossref_primary_10_3390_su14105854 crossref_primary_10_1016_j_tre_2017_04_001 crossref_primary_10_1016_j_jisa_2019_102362 crossref_primary_10_1007_s10878_017_0240_z crossref_primary_10_1016_j_isci_2024_111327 crossref_primary_10_1016_j_jbusres_2019_07_006 crossref_primary_10_1016_j_ins_2016_11_012 crossref_primary_10_1111_mice_12381 crossref_primary_10_1007_s40815_023_01534_w crossref_primary_10_1108_TQM_02_2021_0051 crossref_primary_10_1080_08839514_2021_1936423 crossref_primary_10_1016_j_eswa_2021_114741 crossref_primary_10_3390_app112211033 crossref_primary_10_1108_JBIM_10_2020_0464 crossref_primary_10_1016_j_jbusres_2019_09_062 crossref_primary_10_1109_ACCESS_2018_2804623 crossref_primary_10_1109_TSMC_2015_2464787 crossref_primary_10_1007_s10586_021_03296_2 crossref_primary_10_1007_s00500_023_08279_6 crossref_primary_10_1016_j_csi_2017_03_006 crossref_primary_10_1108_JEIM_03_2022_0074 crossref_primary_10_5937_ekonomika2501039M crossref_primary_10_1016_j_neucom_2018_09_028 crossref_primary_10_1109_ACCESS_2021_3078269 crossref_primary_10_1007_s11203_018_9190_z crossref_primary_10_1016_j_matpr_2022_05_117 crossref_primary_10_3390_app14051963 crossref_primary_10_1007_s10796_018_9872_5 crossref_primary_10_1016_j_jclepro_2020_123142 crossref_primary_10_1016_j_future_2018_05_085 crossref_primary_10_1007_s11042_017_5078_y crossref_primary_10_1109_TNNLS_2016_2638321 crossref_primary_10_3390_su141610002 crossref_primary_10_1007_s11432_017_9421_3 crossref_primary_10_1016_j_jclepro_2018_12_199 crossref_primary_10_1108_BFJ_04_2021_0444 crossref_primary_10_1108_MEDAR_10_2017_0225 crossref_primary_10_1038_s41467_019_13166_6 crossref_primary_10_1016_j_future_2018_04_031 crossref_primary_10_1007_s11573_022_01095_8 crossref_primary_10_1007_s41870_020_00559_w crossref_primary_10_1016_j_future_2018_04_032 crossref_primary_10_1108_BPMJ_03_2024_0171 crossref_primary_10_1016_j_jss_2019_01_051 crossref_primary_10_1080_17517575_2019_1612098 crossref_primary_10_3390_electronics8050546 crossref_primary_10_1016_j_procs_2018_05_020 crossref_primary_10_1016_j_eswa_2021_115898 crossref_primary_10_1016_j_jpdc_2019_04_011 crossref_primary_10_1016_j_patcog_2018_01_033 crossref_primary_10_1016_j_compag_2018_06_008 crossref_primary_10_1016_j_envsoft_2021_105049 crossref_primary_10_1108_FS_10_2022_0114 crossref_primary_10_3390_info12110480 crossref_primary_10_1108_JOSM_06_2019_0173 crossref_primary_10_1016_j_chb_2021_106778 crossref_primary_10_1109_TSC_2015_2501300 crossref_primary_10_1080_23270012_2016_1141332 crossref_primary_10_1016_j_jtice_2018_05_020 crossref_primary_10_1016_j_chb_2021_106777 crossref_primary_10_1016_j_jii_2019_100105 crossref_primary_10_1109_TPDS_2018_2879603 crossref_primary_10_1016_j_ins_2018_11_007 crossref_primary_10_1016_j_adhoc_2015_07_012 crossref_primary_10_3390_a9010013 crossref_primary_10_3390_bdcc3030042 crossref_primary_10_1061__ASCE_IS_1943_555X_0000549 crossref_primary_10_1007_s10479_016_2386_y crossref_primary_10_1002_int_21960 crossref_primary_10_1002_bse_2942 crossref_primary_10_1080_09720529_2020_1721869 crossref_primary_10_1016_j_knosys_2014_12_033 crossref_primary_10_1002_aelm_202100432 crossref_primary_10_1007_s10586_018_2184_1 crossref_primary_10_1016_j_cie_2018_06_019 crossref_primary_10_1108_LHT_11_2016_0134 crossref_primary_10_2478_fiqf_2025_0004 crossref_primary_10_1007_s11277_021_09213_5 crossref_primary_10_1186_s40537_019_0196_1 crossref_primary_10_1016_j_isatra_2022_01_030 crossref_primary_10_1007_s40009_018_0771_6 crossref_primary_10_1016_j_procir_2017_03_019 crossref_primary_10_1007_s00521_021_06332_9 crossref_primary_10_1007_s11227_015_1501_1 crossref_primary_10_1108_IJPDLM_11_2017_0341 crossref_primary_10_3390_app11167547 crossref_primary_10_1007_s10479_016_2264_7 crossref_primary_10_1088_1742_6596_2089_1_012007 crossref_primary_10_1016_j_techfore_2017_04_023 crossref_primary_10_1016_j_jbusres_2016_08_001 crossref_primary_10_32628_IJSRST52310228 crossref_primary_10_1007_s00500_023_08516_y crossref_primary_10_1007_s10462_021_09994_y crossref_primary_10_1016_j_ins_2018_12_055 crossref_primary_10_1016_j_giq_2020_101550 crossref_primary_10_1007_s00521_017_3000_1 crossref_primary_10_1109_ACCESS_2020_2970143 crossref_primary_10_1007_s10626_024_00407_0 crossref_primary_10_1007_s11042_017_5161_4 crossref_primary_10_7202_1042308ar crossref_primary_10_1007_s00187_025_00400_0 crossref_primary_10_1016_j_scs_2020_102233 crossref_primary_10_1109_ACCESS_2022_3170038 crossref_primary_10_1108_IMDS_11_2018_0532 crossref_primary_10_1109_TCYB_2021_3071110 crossref_primary_10_3390_s23062952 crossref_primary_10_1016_j_eap_2024_12_036 crossref_primary_10_1007_s13042_022_01728_y crossref_primary_10_1109_RITA_2016_2589480 crossref_primary_10_1007_s11423_023_10224_1 crossref_primary_10_1080_10618600_2021_2000419 crossref_primary_10_1002_pol_20230273 crossref_primary_10_1002_cpe_3909 crossref_primary_10_1016_j_cor_2021_105641 crossref_primary_10_4018_IJKBO_2017100104 crossref_primary_10_1007_s11241_016_9257_0 crossref_primary_10_1109_TSC_2014_2358213 crossref_primary_10_1016_j_cor_2017_07_004 crossref_primary_10_1109_TSMC_2020_3043147 crossref_primary_10_1007_s10479_021_04263_1 crossref_primary_10_1080_02642069_2024_2374990 crossref_primary_10_1016_j_elerap_2017_02_002 crossref_primary_10_1108_DTA_05_2019_0076 crossref_primary_10_1038_s41467_023_37472_2 crossref_primary_10_1109_ACCESS_2018_2871827 crossref_primary_10_1186_s40537_017_0081_8 crossref_primary_10_1002_adma_202004178 crossref_primary_10_3390_info11040210 crossref_primary_10_1108_BPMJ_09_2024_0886 crossref_primary_10_1007_s13278_018_0507_0 crossref_primary_10_1080_10580530_2020_1696551 crossref_primary_10_1145_3711858 crossref_primary_10_3390_ijgi8020054 crossref_primary_10_1016_j_ins_2016_10_048 crossref_primary_10_1016_j_jisa_2020_102634 crossref_primary_10_1080_10494820_2020_1712427 crossref_primary_10_1016_j_techfore_2017_06_029 crossref_primary_10_1080_13504851_2024_2339376 crossref_primary_10_1016_j_ins_2016_10_044 crossref_primary_10_1109_ACCESS_2018_2809456 crossref_primary_10_1109_ACCESS_2020_3030562 crossref_primary_10_3390_app122312265 crossref_primary_10_2478_amns_2024_3649 crossref_primary_10_1002_ajs4_135 crossref_primary_10_1007_s10586_023_04209_1 crossref_primary_10_4018_IRMJ_2018100101 crossref_primary_10_1016_j_patrec_2019_08_017 crossref_primary_10_1016_j_csi_2018_02_002 crossref_primary_10_3390_ijgi7020050 crossref_primary_10_1016_j_measurement_2024_116543 crossref_primary_10_1016_j_proeng_2017_01_279 crossref_primary_10_1111_radm_12727 crossref_primary_10_1145_3427476 crossref_primary_10_1080_13614533_2020_1764071 crossref_primary_10_1007_s12293_016_0188_z crossref_primary_10_1016_j_ejor_2020_06_045 crossref_primary_10_1016_j_ijinfomgt_2016_04_014 crossref_primary_10_1016_j_ins_2016_03_041 crossref_primary_10_1080_03031853_2016_1243060 crossref_primary_10_1016_j_enbuild_2018_03_021 crossref_primary_10_1016_j_ins_2018_12_002 crossref_primary_10_1016_j_jnca_2016_04_008 crossref_primary_10_1109_TKDE_2018_2876848 crossref_primary_10_1111_tgis_12558 crossref_primary_10_1093_logcom_exac046 crossref_primary_10_1016_j_csi_2017_01_004 crossref_primary_10_1109_TFUZZ_2024_3494243 crossref_primary_10_1109_ACCESS_2020_2971264 crossref_primary_10_3390_digital1020009 crossref_primary_10_1155_2021_9800114 crossref_primary_10_1109_MSMC_2016_2557479 crossref_primary_10_1109_TAI_2021_3110500 crossref_primary_10_1680_jinam_21_00004 crossref_primary_10_3390_app13020960 crossref_primary_10_1016_j_geoforum_2019_12_019 crossref_primary_10_1002_ett_5019 crossref_primary_10_1016_j_biosystems_2016_04_002 crossref_primary_10_1515_iwp_2024_2005 crossref_primary_10_1016_j_bdr_2018_04_004 crossref_primary_10_1109_ACCESS_2019_2907885 crossref_primary_10_1088_1742_6596_1712_1_012002 crossref_primary_10_1145_3511918 crossref_primary_10_1108_JQME_08_2021_0064 crossref_primary_10_1109_MNET_001_1800540 crossref_primary_10_3390_met12111884 crossref_primary_10_4018_IJSKD_2019070101 crossref_primary_10_1109_TDSC_2016_2536601 crossref_primary_10_4018_JGIM_384084 crossref_primary_10_1016_j_techfore_2020_120039 crossref_primary_10_1155_2022_2288321 crossref_primary_10_2196_jmir_9366 crossref_primary_10_1109_TDSC_2018_2864748 crossref_primary_10_3390_su132111587 crossref_primary_10_1016_j_ins_2020_07_026 crossref_primary_10_28925_2312_5829_2025_1_5 crossref_primary_10_1016_j_ins_2016_06_036 crossref_primary_10_1088_1757_899X_928_3_032013 crossref_primary_10_1016_j_ijinfomgt_2018_07_005 crossref_primary_10_4271_2021_01_0010 crossref_primary_10_1016_j_jclepro_2018_04_113 crossref_primary_10_1111_bjet_12595 crossref_primary_10_1016_j_knosys_2016_06_012 crossref_primary_10_1108_IDD_06_2020_0071 crossref_primary_10_1631_FITEE_1700061 crossref_primary_10_3389_fninf_2015_00024 crossref_primary_10_1016_j_ijar_2017_05_001 crossref_primary_10_1155_2014_243921 crossref_primary_10_3390_su13042273 crossref_primary_10_1371_journal_pone_0141980 crossref_primary_10_1016_j_eap_2024_03_020 crossref_primary_10_1080_0194262X_2023_2185919 crossref_primary_10_1017_S0033583515000190 crossref_primary_10_1016_j_iot_2018_08_009 crossref_primary_10_1109_TPDS_2019_2930992 crossref_primary_10_1016_j_jbusres_2021_10_042 crossref_primary_10_1109_ACCESS_2019_2926518 crossref_primary_10_1007_s10796_018_9839_6 crossref_primary_10_1109_TC_2021_3068577 crossref_primary_10_1016_j_trc_2016_12_008 crossref_primary_10_1111_jace_14948 crossref_primary_10_3390_app9112331 crossref_primary_10_1002_inf2_12473 crossref_primary_10_1007_s11634_016_0260_z crossref_primary_10_1016_j_matpr_2021_04_324 crossref_primary_10_1080_00207543_2019_1677961 crossref_primary_10_1007_s10796_016_9637_y crossref_primary_10_1108_JAAR_10_2017_0114 crossref_primary_10_1016_j_compind_2016_02_004 crossref_primary_10_1108_JIABR_03_2022_0067 crossref_primary_10_1044_2018_AJA_IMIA3_18_0003 crossref_primary_10_61969_jai_1394542 crossref_primary_10_1108_JICES_04_2016_0011 crossref_primary_10_1002_cpe_8205 crossref_primary_10_4018_IJISSS_2019100101 crossref_primary_10_1016_j_aca_2023_341129 crossref_primary_10_1016_j_jag_2024_103832 crossref_primary_10_1109_TCBB_2016_2576459 crossref_primary_10_3390_app11041913 crossref_primary_10_1007_s11227_018_2605_1 crossref_primary_10_3233_JIFS_169361 crossref_primary_10_1080_13662716_2024_2320765 crossref_primary_10_1007_s10115_017_1092_7 crossref_primary_10_1016_j_neucom_2015_09_129 crossref_primary_10_1108_IJQRM_09_2019_0304 crossref_primary_10_1016_j_technovation_2022_102688 crossref_primary_10_1080_0144929X_2021_1936176 crossref_primary_10_1016_j_apenergy_2019_02_002 crossref_primary_10_3390_en11030596 crossref_primary_10_1109_TCSI_2022_3180199 crossref_primary_10_1016_j_procs_2017_11_096 crossref_primary_10_1016_j_ijinfomgt_2019_01_020 crossref_primary_10_1016_j_jjimei_2025_100321 crossref_primary_10_1109_ACCESS_2018_2885440 crossref_primary_10_3390_s19122772 crossref_primary_10_1016_j_jnca_2017_10_011 crossref_primary_10_1016_j_ssci_2018_05_012 crossref_primary_10_1061_JMENEA_MEENG_6296 crossref_primary_10_1080_23270012_2016_1265906 crossref_primary_10_1007_s10586_018_1863_2 crossref_primary_10_1016_j_future_2017_03_033 crossref_primary_10_1016_j_im_2018_05_003 crossref_primary_10_1109_TSMC_2016_2606159 crossref_primary_10_1108_IJLM_07_2021_0352 crossref_primary_10_1007_s13198_017_0592_x crossref_primary_10_1007_s11042_022_13929_2 crossref_primary_10_1108_IJLM_02_2018_0026 crossref_primary_10_3233_JIFS_169116 crossref_primary_10_1109_TNNLS_2022_3184846 crossref_primary_10_1109_TCAD_2020_3012880 crossref_primary_10_3390_e25050782 crossref_primary_10_1136_bmjopen_2024_091883 crossref_primary_10_1007_s11192_017_2383_1 crossref_primary_10_1109_TEM_2020_2977222 crossref_primary_10_1016_j_omega_2021_102452 crossref_primary_10_1109_TSMC_2018_2878789 crossref_primary_10_3390_bdcc6040158 crossref_primary_10_1108_RAUSP_06_2023_0099 crossref_primary_10_1002_spe_3065 crossref_primary_10_1007_s12083_019_00813_4 crossref_primary_10_1016_j_automatica_2019_01_036 crossref_primary_10_1016_j_jairtraman_2020_101940 crossref_primary_10_1145_3150226 crossref_primary_10_3141_2477_10 crossref_primary_10_1016_j_ceramint_2022_04_171 crossref_primary_10_1016_j_ins_2020_07_054 crossref_primary_10_1002_widm_1289 crossref_primary_10_24136_oc_2021_009 crossref_primary_10_3233_RFT_171671 crossref_primary_10_1177_0952076716687355 crossref_primary_10_1155_2018_2691759 crossref_primary_10_1002_lol2_10084 crossref_primary_10_1007_s40747_025_02041_1 crossref_primary_10_1109_TFUZZ_2019_2956917 crossref_primary_10_1002_dac_5378 crossref_primary_10_1007_s43939_021_00012_0 crossref_primary_10_1016_j_knosys_2018_08_009 crossref_primary_10_1038_s41575_019_0102_5 crossref_primary_10_1108_LHT_06_2017_0131 crossref_primary_10_1155_2020_8884926 crossref_primary_10_1016_j_ufug_2022_127828 crossref_primary_10_1016_j_ijpe_2024_109461 crossref_primary_10_1007_s41060_025_00750_x crossref_primary_10_1016_j_ins_2016_04_009 crossref_primary_10_1016_j_ins_2019_05_013 crossref_primary_10_1108_BL_11_2020_0071 crossref_primary_10_1039_D4NR04865B crossref_primary_10_1016_j_jnca_2017_08_011 crossref_primary_10_1109_ACCESS_2019_2917841 crossref_primary_10_1002_aelm_202400212 crossref_primary_10_1016_j_emj_2020_04_001 crossref_primary_10_1016_j_ins_2016_04_002 crossref_primary_10_1109_ACCESS_2019_2899578 crossref_primary_10_1016_j_ssci_2017_08_012 crossref_primary_10_1007_s10462_021_10053_9 crossref_primary_10_1016_j_ins_2018_11_052 crossref_primary_10_1016_j_infsof_2024_107410 crossref_primary_10_1002_aelm_202200172 crossref_primary_10_1016_j_im_2019_02_001 crossref_primary_10_1109_ACCESS_2019_2922199 crossref_primary_10_1109_ACCESS_2017_2696365 crossref_primary_10_1016_j_njas_2019_100313 crossref_primary_10_1016_j_solener_2020_01_061 crossref_primary_10_1186_s40537_018_0126_7 crossref_primary_10_3390_app12189174 crossref_primary_10_1109_ACCESS_2020_3009482 crossref_primary_10_1109_TITS_2018_2868852 crossref_primary_10_1109_ACCESS_2021_3083175 crossref_primary_10_1002_admt_202401589 crossref_primary_10_1007_s10796_021_10155_3 crossref_primary_10_1016_j_acalib_2024_102856 crossref_primary_10_3390_computers10020023 crossref_primary_10_1109_TNNLS_2017_2716952 crossref_primary_10_3390_su10082709 crossref_primary_10_1177_1460458219854603 crossref_primary_10_1016_j_techsoc_2022_102139 crossref_primary_10_1016_j_simpat_2017_03_001 crossref_primary_10_1038_s41598_018_23886_2 crossref_primary_10_1186_s40537_021_00468_0 crossref_primary_10_1109_TNNLS_2019_2920903 crossref_primary_10_3390_su15043562 crossref_primary_10_1016_j_emj_2022_07_001 crossref_primary_10_1080_08874417_2016_1220239 crossref_primary_10_1109_TCC_2020_3018089 crossref_primary_10_1007_s11227_017_2163_y crossref_primary_10_1049_cim2_12046 crossref_primary_10_1007_s10639_021_10614_z crossref_primary_10_1016_j_ins_2019_02_022 crossref_primary_10_1155_2018_5232543 crossref_primary_10_1162_qss_a_00220 crossref_primary_10_4102_sajip_v49i0_2033 crossref_primary_10_1109_TCYB_2021_3079311 crossref_primary_10_1007_s11042_017_5247_z crossref_primary_10_1007_s10723_018_9431_9 crossref_primary_10_1002_cpe_4234 crossref_primary_10_1021_acs_cgd_5c00572 crossref_primary_10_1186_s40537_015_0028_x crossref_primary_10_3390_ijerph22030362 crossref_primary_10_1016_j_ins_2019_07_085 crossref_primary_10_1186_s13638_018_1255_6 crossref_primary_10_1007_s11227_020_03289_9 crossref_primary_10_3389_fpsyg_2023_1009459 crossref_primary_10_1108_MD_07_2018_0754 crossref_primary_10_1016_j_ins_2016_07_007 crossref_primary_10_3390_app10093309 crossref_primary_10_1007_s10115_015_0830_y crossref_primary_10_1108_EL_01_2020_0004 crossref_primary_10_4018_IJBAN_2017100102 crossref_primary_10_1016_j_jallcom_2025_181079 crossref_primary_10_1007_s10916_016_0565_7 crossref_primary_10_1108_IJLM_05_2017_0115 crossref_primary_10_1109_ACCESS_2020_2967436 crossref_primary_10_1109_TII_2017_2650204 crossref_primary_10_1080_23311975_2022_2043535 crossref_primary_10_1016_j_ijpe_2016_03_014 crossref_primary_10_1108_EL_02_2024_0045 crossref_primary_10_1108_K_07_2017_0274 crossref_primary_10_1016_j_ibusrev_2021_101967 crossref_primary_10_1007_s41060_019_00176_2 crossref_primary_10_1109_TNNLS_2018_2872974 crossref_primary_10_1145_3383464 crossref_primary_10_1080_17517575_2019_1691268 crossref_primary_10_1155_2022_9515181 crossref_primary_10_1007_s13042_021_01438_x crossref_primary_10_1155_2020_2390941 crossref_primary_10_1108_ECAM_11_2024_1595 crossref_primary_10_1016_j_ijpvp_2023_105061 crossref_primary_10_1016_j_giq_2018_01_004 crossref_primary_10_1038_s41467_021_22243_8 crossref_primary_10_1103_PRXQuantum_4_030332 crossref_primary_10_1145_3332301 crossref_primary_10_1108_OIR_12_2016_0361 crossref_primary_10_1016_j_is_2017_09_002 crossref_primary_10_1155_2022_3672905 crossref_primary_10_1016_j_asoc_2020_106164 crossref_primary_10_3390_ijgi9110632 crossref_primary_10_1016_j_eswa_2023_122071 crossref_primary_10_1007_s10489_020_01952_5 crossref_primary_10_1080_14783363_2018_1442715 crossref_primary_10_1186_s40537_021_00553_4 crossref_primary_10_1109_TSMC_2019_2958382 crossref_primary_10_1016_j_cie_2018_08_004 crossref_primary_10_1016_j_envsoft_2020_104955 crossref_primary_10_1109_JSTSP_2018_2818649 crossref_primary_10_1016_j_procs_2018_10_514 crossref_primary_10_3389_fdata_2024_1441869 crossref_primary_10_1002_sdr_1587 crossref_primary_10_1080_01605682_2019_1630328 crossref_primary_10_1108_EL_06_2016_0134 crossref_primary_10_3390_computation8030080 crossref_primary_10_1007_s10479_016_2214_4 crossref_primary_10_3390_su11133748 crossref_primary_10_1002_adfm_202423800 crossref_primary_10_1016_j_yofte_2025_104344 crossref_primary_10_1088_1742_6596_1228_1_012003 crossref_primary_10_1016_j_acalib_2021_102320 crossref_primary_10_1177_1473871618756584 crossref_primary_10_1002_widm_1206 crossref_primary_10_1007_s11227_019_02907_5 crossref_primary_10_1155_2022_6967158 crossref_primary_10_1002_widm_1450 crossref_primary_10_1007_s10586_017_1320_7 crossref_primary_10_1016_j_future_2019_09_051 crossref_primary_10_1002_cpe_3589 crossref_primary_10_1016_j_ins_2016_08_086 crossref_primary_10_1007_s11442_022_2040_3 crossref_primary_10_1038_s41598_020_61853_y crossref_primary_10_1108_JAMR_02_2024_0059 crossref_primary_10_1002_spe_2374 crossref_primary_10_1145_3012286 crossref_primary_10_1016_j_future_2017_04_006 crossref_primary_10_1016_j_ins_2016_06_009 crossref_primary_10_1016_j_bdr_2015_04_001 crossref_primary_10_1016_j_apenergy_2021_116969 crossref_primary_10_1016_j_enbuild_2017_07_089 crossref_primary_10_3390_app10010182 crossref_primary_10_1108_JEDT_12_2021_0739 crossref_primary_10_1016_j_future_2017_05_042 crossref_primary_10_1002_spy2_13 crossref_primary_10_1016_j_ecoinf_2021_101361 crossref_primary_10_1016_j_ins_2019_03_035 crossref_primary_10_1108_EL_11_2015_0235 crossref_primary_10_1016_j_scitotenv_2020_144530 crossref_primary_10_1111_jse_12270 crossref_primary_10_1016_j_jksuci_2017_06_001 crossref_primary_10_1016_j_iedeen_2017_06_002 crossref_primary_10_1515_geo_2017_0047 crossref_primary_10_1038_s41538_025_00394_y crossref_primary_10_1109_TED_2024_3376312 crossref_primary_10_1080_2331186X_2022_2162697 crossref_primary_10_3390_polym15224374 crossref_primary_10_1016_j_technovation_2024_103026 crossref_primary_10_1007_s13042_020_01243_y crossref_primary_10_1007_s42044_018_0019_0 crossref_primary_10_1080_19368623_2021_1937434 crossref_primary_10_1007_s13042_022_01524_8 crossref_primary_10_1016_j_jfranklin_2016_11_024 crossref_primary_10_1016_j_bdr_2017_07_001 crossref_primary_10_1016_j_telpol_2017_10_004 crossref_primary_10_1186_s40854_024_00634_2 crossref_primary_10_1016_j_eswa_2017_05_031 crossref_primary_10_1007_s11269_016_1283_0 crossref_primary_10_3390_risks11060106 crossref_primary_10_1007_s13132_024_02001_z crossref_primary_10_1109_TC_2020_2976996 crossref_primary_10_1016_j_ijinfomgt_2019_102055 crossref_primary_10_4102_sajbm_v56i1_4766 crossref_primary_10_1007_s10479_020_03912_1 crossref_primary_10_1016_j_ins_2015_12_030 crossref_primary_10_1186_s40537_019_0236_x crossref_primary_10_1016_j_ijar_2022_12_004 crossref_primary_10_1080_0960085X_2021_1940324 crossref_primary_10_1155_2021_2888673 crossref_primary_10_1007_s13127_019_00397_0 crossref_primary_10_1080_00207543_2020_1832273 crossref_primary_10_1109_ACCESS_2018_2806881 crossref_primary_10_1007_s11227_023_05668_4 |
| Cites_doi | 10.1109/TPAMI.2004.1262340 10.1109/SURV.2011.032211.00087 10.1109/MCSE.2011.73 10.1109/ICAICT.2012.6398484 10.1126/science.1170411 10.1109/TPDS.2012.24 10.1109/TNET.2010.2046645 10.1109/TPDS.2006.112 10.1109/HPCA.2007.346181 10.1109/MCSE.2010.85 10.1038/440413a 10.1109/TIT.1982.1056489 10.1038/455028a 10.1016/j.neucom.2008.09.022 10.1109/38.933522 10.1109/TKDE.2011.18 10.1109/MC.2012.358 10.1109/JLT.2005.856254 10.1109/ICPCA.2011.6106531 10.1109/72.165590 10.1109/MPOT.2009.934894 10.1109/MIS.2007.41 10.1145/1536616.1536632 10.1109/HPCC.2012.83 10.1109/TKDE.2011.208 10.1109/JSAC.2012.121206 10.1109/IPDPS.2011.293 10.1109/MCSE.2011.74 10.1016/j.eswa.2007.01.018 10.1109/JPROC.2012.2203090 10.1109/TCE.2006.273155 10.1126/science.1127647 10.1109/CGC.2012.23 10.1109/TEVC.2007.896686 10.1109/TPDS.2011.306 10.1016/j.csda.2011.03.001 10.1016/0270-0255(87)90536-7 10.1109/CLUSTR.2009.5289161 10.1109/4235.585894 10.1109/ICIP.2008.4711716 10.1109/CLOUD.2012.34 10.1162/neco.2006.18.7.1527 10.1109/ICCMS.2010.215 10.1038/nrg2857 10.1109/TNS.2008.924087 10.1038/455047a 10.1109/71.89059 10.1109/TNN.2010.2044244 10.1145/1327452.1327492 10.1109/MC.2009.26 10.1109/TVCG.2008.137 10.1109/TPDS.2003.1255638 10.1109/TNANO.2002.1005425 10.1109/TMAG.1971.1067246 10.1109/ICDE.2012.147 10.1109/TVCG.2007.70582 10.1145/1272996.1273005 10.1109/CloudCom.2011.86 10.1145/1107499.1107504 10.1023/A:1023307812034 10.1109/ITCC.2005.42 10.1145/1559845.1559865 10.1109/TKDE.2011.257 10.1145/1365815.1365816 10.1109/MSP.2010.939038 10.1109/TKDE.2010.248 10.1109/SE.2012.14 10.1109/TPAMI.2007.70776 10.1038/msb4100073 10.1109/AINA.2012.140 10.1109/LDAV.2011.6092313 10.1145/1272998.1273005 10.1109/59.589789 10.1109/IJCNN.2006.247289 10.1016/j.tics.2007.09.004 10.1109/TVCG.2006.107 10.1109/TNNLS.2011.2178560 10.1109/MIC.2011.163 10.1109/TNN.2010.2040291 10.1109/TPAMI.2013.50 10.1109/69.506710 10.1109/TPDS.2011.256 10.1109/WI.2006.61 10.1109/CyberneticsCom.2012.6381635 10.1109/TMM.2011.2174781 10.1109/TKDE.2007.190669 10.1109/ITI.2008.4588381 10.1109/LDAV.2011.6092331 10.1109/TSMCB.2012.2196432 10.1198/004017008000000460 10.1126/science.1200970 10.1109/MPRV.2011.70 10.1109/TSMCB.2004.836890 10.1109/ICMLA.2008.41 10.1109/TITS.2012.2205145 10.1109/TPAMI.2005.77 10.1109/MCSE.2011.77 10.1109/TKDE.2010.34 10.1016/j.patcog.2011.01.004 10.1109/MC.2008.125 10.1109/DEST.2012.6227909 10.1109/TVCG.2012.285 10.1109/TPAMI.2010.142 10.1109/TITS.2011.2158001 10.1016/S0167-739X(02)00082-1 10.1561/2200000006 10.1109/CLOUD.2012.120 10.1109/MCI.2010.938364 10.1109/TFUZZ.2011.2162416 10.1109/WAINA.2011.136 10.1109/INFCOM.2009.5062006 10.1109/3PGCIC.2012.55 10.1007/978-3-642-36883-7_18 10.1109/MCG.2004.41 10.1109/ASRU.2011.6163930 10.1109/51.940042 10.1109/TNN.2007.891203 10.1109/MC.2009.104 10.1109/TSMCB.2011.2124455 10.1109/ICDMW.2010.172 10.1109/5.784240 10.1016/j.ins.2008.02.017 10.1109/ECBS-EERC.2011.34 10.1109/TNNLS.2012.2197827 10.1109/MCI.2012.2188586 10.1109/TNN.2011.2146788 10.1109/ICNIT.2010.5508473 10.1109/MIS.2010.91 10.1109/GCE.2008.4738445 10.1109/NBiS.2010.8 10.1109/TPDS.2010.183 10.1109/TMC.2010.214 10.1109/TITS.2012.2205144 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. |
| Copyright_xml | – notice: 2014 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2014.01.015 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science Economics Business |
| EISSN | 1872-6291 |
| EndPage | 347 |
| ExternalDocumentID | 10_1016_j_ins_2014_01_015 S0020025514000346 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-8a07f0d16e0ef193b637e98269b8ef2e4fb9dfcccb0648d7350c96fe04f095af3 |
| ISICitedReferencesCount | 1798 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337199200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Wed Oct 01 12:16:16 EDT 2025 Tue Nov 18 21:58:01 EST 2025 Sat Nov 29 07:58:11 EST 2025 Fri Feb 23 02:23:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Big Data Cloud computing Parallel and distributed computing e-Science Data-intensive computing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-8a07f0d16e0ef193b637e98269b8ef2e4fb9dfcccb0648d7350c96fe04f095af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1629360699 |
| PQPubID | 23500 |
| PageCount | 34 |
| ParticipantIDs | proquest_miscellaneous_1629360699 crossref_primary_10_1016_j_ins_2014_01_015 crossref_citationtrail_10_1016_j_ins_2014_01_015 elsevier_sciencedirect_doi_10_1016_j_ins_2014_01_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-10 |
| PublicationDateYYYYMMDD | 2014-08-10 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Pavel Bzoch, Jiri Safarik, State of the art in distributed file systems: Increasing performance, in: Engineering of Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on the, 2011, pp. 153–154. Mistry, Misner (b0600) 2012 Jeff Kelly, Apache drill brings sql-like, ad hoc query capabilities to big data, February 2013. Furht, Escalante (b0250) 2011 Laney (b0480) 2001 Bringmann, Berlingerio, Bonchi, Gionis (b0135) 2010; 25 Cao, Sun (b0175) 2012; 13 Ted Samson, Splunk Storm Brings Log Management to the Cloud, 2012. Worlton (b0970) 1971; 7 Bengio, Courville, Vincent (b0105) 2013; 35 Lee, Verleysen (b0490) 2007 Katsunari Shibata, Yusuke Ikeda, Effect of number of hidden neurons on learning in large-scale layered neural networks, in: ICROS-SICE International Joint Conference 2009, 2009, pp. 5008–5013. Jiawei Yuan, Shucheng Yu, Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing, 2013. Loughran, Calero, Farrell, Kirschnick, Guijarro (b0540) 2012; 16 Manyika, Chui, Brown, Bughin, Dobbs, Roxburgh, Byers (b0570) 2012 Bingham, Mannila (b0125) 2001 Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu úlfar Erlingsson, Pradeep Kumar Gunda, Jon Currey, Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language, in: 8th USENIX Symposium on Operating Systems Design and Implementation, 2008. Eric Savitz, Gartner: 10 Critical Tech Trends for the Next Five Years, October 2012. Jiang, Tung, Chen (b0420) 2011; 23 Abzetdin Adamov. Distributed file system as a basis of data-intensive computing, in: 2012 6th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (October). Bahga, Madisetti (b0075) 2012; 23 Wang, Wang, Ren, Lou, Li (b0950) 2011; 22 Wang, Zeng, Carley, Mao (b0935) 2007; 22 Porfirio Ishii, Fernandes de Mello (b0385) 2011; 10 Szalay (b0895) 2011; 13 . Lu, Plataniotis, Venetsanopoulos (b0545) 2011; 44 Hassan, Mahmoud (b0310) 1987; 8 Udo Seiffert, Training of large-scale feed-forward neural networks, in: International Joint Conference on Neural Networks, IJCNN ’06, 2006, pp. 5324–5329. Hinton, Salakhutdinov (b0350) 2006; 313 Zhang, Wang, Wang, Lin, Xu, Chen (b1015) 2011; 12 Kouzes, Anderson, Elbert, Gorton, Gracio (b0460) 2009; 42 K.P. Lakshmi, C.R.K. Reddy, A survey on different trends in data streams, in: 2010 International Conference on Networking and Information Technology (ICNIT), 2010, pp. 451–455. Karmasphere Studio and Analyst, 2012. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, in: EuroSys ’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 41(3), 2007, pp. 59–72. Yao, Chen, Zhao, Tooren (b0995) 2012; 23 Peters (b0715) 2011; 19 Hsiao, Chang (b0360) 2008; 34 Lane, Xu, Lu, Campbell, Choudhury, Eisenman (b0475) 2011; 10 Hinton, Osindero, Teh (b0345) 2006; 18 Cai, He, Han (b0165) 2008; 20 Simeonidou, Nejabati, Zervas, Klonidis, Tzanakaki, O Mahony (b0840) 2005; 23 Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber (b0185) 2008; 26 Ahrens, Hendrickson, Long, Miller, Ross, Williams (b0685) 2011; 13 Bryant (b0155) 2011; 13 Garber (b0255) 2012; 45 Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor systems, in: IEEE 13th International Symposium on High Performance Computer Architecture, 2007, HPCA 2007, 2006, pp. 13–24. http://quantumcomputers.com. Philippe Pébay, David Thompson, Janine Bennett, Ajith Mascarenhas, Design and performance of a scalable, parallel statistics toolkit, in: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, pp. 1475–1484. Simoff, Böhlen, Mazeika (b0845) 2008 Zhong Liang, ChiTian He, Zhang Xin, Feature based visualization algorithm for large-scale flow data, in: Second International Conference on Computer Modeling and Simulation, 2010, ICCMS ’10, vol. 1, 2010, pp. 194–197. Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, Jan Černocký, Strategies for training large scale neural network language models, in: IEEE Workshop on Automatic Speech Recognition and Understanding, 2011. Brumfiel (b0145) 2011 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, in: Proceedings of the 2007 Eurosys Conference, 2007. Sqlstream, 2012. Brian Proffitt, Big Data Tools and Vendors, 2012. Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave DeMaagd, Alex Feinberg, Phanindra Ganti, Bhaskar Ghosh Lei Gao, Kishore Gopalakrishna, Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang, Data infrastructure at linkedin, in: 2012 IEEE 28th International Conference on Data Engineering (ICDE), 2012, pp. 1370–1381. Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008, GCE’08, 2008, pp. 1–10. Sahimi, Hamzehpour (b0765) 2010; 12 Leong (b0495) 2009; 28 Rui Máximo Esteves, Chunming Rong, Using mahout for clustering wikipedia’s latest articles: a comparison between k-means and fuzzy c-means in the cloud, in: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), 2011, pp. 565–569. Yan, Liu, Yan, Yang, Fan, Wei, Chen (b0985) 2011; 23 Andrianantoandro, Basu, Karig, Weiss (b0060) 2006; 2 Tadashi Nakano, Biological computing based on living cells and cell communication, in: 2010 13th International Conference on Network-Based Information Systems (NBiS), 2010, pp. 42–47. Deam, Ghemawat (b0215) 2008; 51 Weiss, Basu, Hooshangi, Kalmbach, Karig, Mehreja, Netravali (b0960) 2003; 2 Barbarossa, Scutari (b0080) 2009; 24 Pedrycz, Andrzej, Kreinovich (b0710) 2008 Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, Michael Franklin, Johannes Gehrke, Laura Haas, Jiawei Han Alon Halevy, H.V. Jagadish, Alexandros Labrinidis, Sam Madden, Yannis Papakon stantinou, Jignesh Patel, Raghu Ramakrishnan, Kenneth Ross, Shahabi Cyrus, Dan Suciu, Shiv Vaithyanathan, Jennifer Widom, Challenges and Opportunities with Big Data, CYBER CENTER TECHNICAL REPORTS, Purdue University, 2011. Kasavajhala (b0435) 2012 Mühleisen, Dentler (b0620) 2012; 7 Shen, Liao, Choudhary, Memik, Kandemir (b0815) 2003; 14 Dan Gillick, Arlo Faria, John DeNero, Mapreduce: Distributed Computing for Machine Learning, 2006. Simon (b0850) 1994; 26 Stonebraker, Çtintemel, Zdonik (b0875) 2005; 34 Jason Brooks, Review: Talend Open Studio Makes Quick etl Work of Large Data Sets, 2009. Chen, Chen, Lu (b0195) 2011; 41 Mao, Wang, Qiu, Lam, Smith (b0575) 2010; 18 Oh, Żak (b0655) 2010; 21 Alina Oprea, Michael K. Reiter, Ke Yang, Space efficient block storage integrity, in: Proc. 12th Ann. Network and Distributed System Security Symp. (NDSS 05), 2005. Chen, Liu, Wang (b0200) 2013; 14 Sun, Yao (b0885) 2010; 21 Apache Hadoop, Words Count Example, 2012. Pentaho Business Analytics, 2012. Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b0220) 2008; 12 Vettiger, Cross, Despont, Drechsler, Durig, Gotsmann, Haberle, Lantz, Rothuizen, Stutz, Binnig (b0920) 2002; 1 R.P. Ishii, R.F. de Mello, A history-based heuristic to optimize data access in distributed environments, in: Proc. 21st IASTED International Conf. Parallel and Distributed Computing and Systems, 2009. Bezdek (b0120) 1981 Jacob, Brown, Fukui, Trivedi (b0400) 2005 Peter Wayner. 7 Top Tools for Taming Big Data, 2012. Lin, Wu, Wen, Tong, Griffiths-Fisher, Shi, Lubensky (b0520) 2012; 100 Simone Ferlin Oliveira, Karl Fürlinger, Dieter Kranzlmüller, Trends in computation, communication and storage and the consequences for data-intensive science, in: IEEE 14th International Conference on High Performance Computing and Communications, 2012. http://www.whitehouse.gov/sites/default/files/microsites/ostp/big-data-fact-sheet-final-1.pdf. Keim, Panse, Sips (b0440) 2004; 24 Sridhar, Dharmaji (b0870) 2013; 2 Sakr, Liu, Batista, Alomari (b0770) 2011; 13 Bongard (b0130) 2009; 42 Yang, Tang, Yao (b0990) 2008; 178 Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari, S4: distributed stream computing platform, in: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia, 2010, pp. 170–177. Ma, Parker (b0560) 2004; 24 Oracle, Oracle information architecture: an architect’s guide to big data, An Oracle White Paper in Enterprise Architecture, 2012. Andrew Horne Shvetank Shah, Jaime Capellá, Good Data won’t Guarantee Good Decisions, 2012. David Thompson, Joshua A. Levine, Janine C. Bennett, Peer-Timo Bremer, Attila Gyulassy, Valerio Pascucci, Philippe P. Pébay, Analysis of large-scale scalar data using hixels, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 23–30. Nandi, Yu, Bohannon, Ramakrishnan (b0630) 2012; 24 Özsu, Valduriez (b0680) 2011 Liu, Xu, Tsang, Luo (b0530) 2011; 33 Bertone, Gerstein (b0115) 2001; 20 Ciaccio, Coli, Ibanez, Miguel (b0205) 2012 Gokhale, Cohen, Yoo, Marcus Miller (b0275) 2008; 41 Klemens (b0455) 2008 Wei Jiang, Eric Zavesky, Shih-Fu Chang, Alex Loui, Cross-domain learning methods for high-level visual concept classification, in: 15th IEEE International Conference on Image Processing, 2008, ICIP 2008, 2008, pp. 161–164. Wu, Yuan, Ma (b0975) 2012; 18 Yu, Deng (b1000) 2011; 28 Janine Bennett, Ray Grout, Philippe Pebay, Diana Roe, David Thompson, Numerically stable, single-pass, parallel statistics algorithms, in: IEEE International Conference on Cluster Computing and Workshops, 2009, CLUSTER ’09, 2009, pp. 1–8. McDermott, Samudrala, Bumgarner, Montgomery (b0585) 2009 10.1016/j.ins.2014.01.015_b0955 10.1016/j.ins.2014.01.015_b0835 Yan (10.1016/j.ins.2014.01.015_b0985) 2011; 23 Chen (10.1016/j.ins.2014.01.015_b0200) 2013; 14 Mitra (10.1016/j.ins.2014.01.015_b0605) 2004; 26 Klemens (10.1016/j.ins.2014.01.015_b0455) 2008 Fey (10.1016/j.ins.2014.01.015_b0225) 2008; 455 Zhou (10.1016/j.ins.2014.01.015_b1025) 2013; PP 10.1016/j.ins.2014.01.015_b0160 Vettiger (10.1016/j.ins.2014.01.015_b0920) 2002; 1 10.1016/j.ins.2014.01.015_b0040 10.1016/j.ins.2014.01.015_b1010 Nandi (10.1016/j.ins.2014.01.015_b0630) 2012; 24 10.1016/j.ins.2014.01.015_b0045 Liu (10.1016/j.ins.2014.01.015_b0525) 2011; 22 Hilbert (10.1016/j.ins.2014.01.015_b0335) 2011; 332 Chang (10.1016/j.ins.2014.01.015_b0185) 2008; 26 Palit (10.1016/j.ins.2014.01.015_b0690) 2012; 20 10.1016/j.ins.2014.01.015_b0290 10.1016/j.ins.2014.01.015_b0295 Pedrycz (10.1016/j.ins.2014.01.015_b0710) 2008 10.1016/j.ins.2014.01.015_b0055 Kasavajhala (10.1016/j.ins.2014.01.015_b0435) 2012 10.1016/j.ins.2014.01.015_b0730 Stonebraker (10.1016/j.ins.2014.01.015_b0875) 2005; 34 Ma (10.1016/j.ins.2014.01.015_b0560) 2004; 24 Ranka (10.1016/j.ins.2014.01.015_b0750) 1991; 2 Bahga (10.1016/j.ins.2014.01.015_b0075) 2012; 23 Jacob (10.1016/j.ins.2014.01.015_b0400) 2005 10.1016/j.ins.2014.01.015_b0380 10.1016/j.ins.2014.01.015_b0260 10.1016/j.ins.2014.01.015_b0140 10.1016/j.ins.2014.01.015_b0020 Ciaccio (10.1016/j.ins.2014.01.015_b0205) 2012 Marz (10.1016/j.ins.2014.01.015_b0580) 2012 Wang (10.1016/j.ins.2014.01.015_b0950) 2011; 22 10.1016/j.ins.2014.01.015_b0025 Nielsen (10.1016/j.ins.2014.01.015_b0645) 2009 10.1016/j.ins.2014.01.015_b0940 Wu (10.1016/j.ins.2014.01.015_b0975) 2012; 18 Kouzes (10.1016/j.ins.2014.01.015_b0460) 2009; 42 Keim (10.1016/j.ins.2014.01.015_b0440) 2004; 24 10.1016/j.ins.2014.01.015_b0945 10.1016/j.ins.2014.01.015_b0825 10.1016/j.ins.2014.01.015_b0705 Loughran (10.1016/j.ins.2014.01.015_b0540) 2012; 16 Mühleisen (10.1016/j.ins.2014.01.015_b0620) 2012; 7 Özsu (10.1016/j.ins.2014.01.015_b0680) 2011 10.1016/j.ins.2014.01.015_b0270 10.1016/j.ins.2014.01.015_b0150 10.1016/j.ins.2014.01.015_b0030 10.1016/j.ins.2014.01.015_b0395 Lu (10.1016/j.ins.2014.01.015_b0545) 2011; 44 10.1016/j.ins.2014.01.015_b0035 Tkacz (10.1016/j.ins.2014.01.015_b0915) 2009 10.1016/j.ins.2014.01.015_b1005 10.1016/j.ins.2014.01.015_b0830 Cireşan (10.1016/j.ins.2014.01.015_b0210) 2012 Henry (10.1016/j.ins.2014.01.015_b0635) 2007; 13 Zhang (10.1016/j.ins.2014.01.015_b1020) 2012; 30 Ahrens (10.1016/j.ins.2014.01.015_b0685) 2011; 13 Wilkinson (10.1016/j.ins.2014.01.015_b0965) 2008; 50 10.1016/j.ins.2014.01.015_b0240 Bengio (10.1016/j.ins.2014.01.015_b0105) 2013; 35 10.1016/j.ins.2014.01.015_b0485 Bengio (10.1016/j.ins.2014.01.015_b0100) 2009; 2 10.1016/j.ins.2014.01.015_b0005 Ahrens (10.1016/j.ins.2014.01.015_b0050) 2001; 21 Laney (10.1016/j.ins.2014.01.015_b0480) 2001 Oh (10.1016/j.ins.2014.01.015_b0655) 2010; 21 10.1016/j.ins.2014.01.015_b0925 Hutchinson (10.1016/j.ins.2014.01.015_b0365) 2012 10.1016/j.ins.2014.01.015_b0805 Hey (10.1016/j.ins.2014.01.015_b0330) 2002; 18 Bingham (10.1016/j.ins.2014.01.015_b0125) 2001 Lloyd (10.1016/j.ins.2014.01.015_b0535) 1982; 28 Shen (10.1016/j.ins.2014.01.015_b0815) 2003; 14 Lee (10.1016/j.ins.2014.01.015_b0490) 2007 Pirovano (10.1016/j.ins.2014.01.015_b0720) 2003 Zhou (10.1016/j.ins.2014.01.015_b1030) 2012; 46 10.1016/j.ins.2014.01.015_b0010 McDermott (10.1016/j.ins.2014.01.015_b0585) 2009 10.1016/j.ins.2014.01.015_b0375 10.1016/j.ins.2014.01.015_b0015 10.1016/j.ins.2014.01.015_b0930 Brumfiel (10.1016/j.ins.2014.01.015_b0145) 2011 Simoff (10.1016/j.ins.2014.01.015_b0845) 2008 Gokhale (10.1016/j.ins.2014.01.015_b0275) 2008; 41 Hey (10.1016/j.ins.2014.01.015_b0325) 2009 Hsiao (10.1016/j.ins.2014.01.015_b0360) 2008; 34 Gulisano (10.1016/j.ins.2014.01.015_b0285) 2012; 23 Szalay (10.1016/j.ins.2014.01.015_b0890) 2006; 440 Tang (10.1016/j.ins.2014.01.015_b0900) 2009; 72 Garber (10.1016/j.ins.2014.01.015_b0255) 2012; 45 Geng (10.1016/j.ins.2014.01.015_b0265) 2012; 14 10.1016/j.ins.2014.01.015_b0465 Capriolo (10.1016/j.ins.2014.01.015_b0180) 2011 Hastie (10.1016/j.ins.2014.01.015_b0315) 2009 Ma (10.1016/j.ins.2014.01.015_b0555) 2012; 24 10.1016/j.ins.2014.01.015_b0905 Barbarossa (10.1016/j.ins.2014.01.015_b0080) 2009; 24 Deam (10.1016/j.ins.2014.01.015_b0215) 2008; 51 Oleg (10.1016/j.ins.2014.01.015_b0660) 2011; 55 Yao (10.1016/j.ins.2014.01.015_b0995) 2012; 23 Mansour (10.1016/j.ins.2014.01.015_b0565) 1997; 12 10.1016/j.ins.2014.01.015_b0590 10.1016/j.ins.2014.01.015_b0470 10.1016/j.ins.2014.01.015_b0230 10.1016/j.ins.2014.01.015_b0110 10.1016/j.ins.2014.01.015_b0595 Oehmen (10.1016/j.ins.2014.01.015_b0650) 2006; 17 Sahimi (10.1016/j.ins.2014.01.015_b0765) 2010; 12 10.1016/j.ins.2014.01.015_b0235 Weiss (10.1016/j.ins.2014.01.015_b0960) 2003; 2 Cai (10.1016/j.ins.2014.01.015_b0165) 2008; 20 10.1016/j.ins.2014.01.015_b0910 Ratner (10.1016/j.ins.2014.01.015_b0755) 2002 Simon (10.1016/j.ins.2014.01.015_b0850) 1994; 26 Bryant (10.1016/j.ins.2014.01.015_b0155) 2011; 13 Manyika (10.1016/j.ins.2014.01.015_b0570) 2012 Radovanović (10.1016/j.ins.2014.01.015_b0735) 2010; 11 Dong (10.1016/j.ins.2014.01.015_b0980) 2005; 27 Schadt (10.1016/j.ins.2014.01.015_b0795) 2010; 11 Hassan (10.1016/j.ins.2014.01.015_b0310) 1987; 8 10.1016/j.ins.2014.01.015_b0445 Arel (10.1016/j.ins.2014.01.015_b0065) 2010; 5 Shen (10.1016/j.ins.2014.01.015_b0820) 2006; 12 Shen (10.1016/j.ins.2014.01.015_b0810) 2011; 10 Lesk (10.1016/j.ins.2014.01.015_b0500) 2008 Raykar (10.1016/j.ins.2014.01.015_b0760) 2008; 30 Han (10.1016/j.ins.2014.01.015_b0305) 2012; PP 10.1016/j.ins.2014.01.015_b0695 Spiliopoulou (10.1016/j.ins.2014.01.015_b0865) 1996; 8 Molchanov (10.1016/j.ins.2014.01.015_b0610) 2005 Heer (10.1016/j.ins.2014.01.015_b0320) 2008; 14 Ingersoll (10.1016/j.ins.2014.01.015_b0370) 2009 Li (10.1016/j.ins.2014.01.015_b0510) 2008; 16 Cao (10.1016/j.ins.2014.01.015_b0175) 2012; 13 Bencivenni (10.1016/j.ins.2014.01.015_b0095) 2008; 55 Simeonidou (10.1016/j.ins.2014.01.015_b0840) 2005; 23 10.1016/j.ins.2014.01.015_b0780 Pearson (10.1016/j.ins.2014.01.015_b0700) 2007; 18 Cannataro (10.1016/j.ins.2014.01.015_b0170) 2004; 34 10.1016/j.ins.2014.01.015_b0300 Porfirio Ishii (10.1016/j.ins.2014.01.015_b0390) 2012; 23 Plugge (10.1016/j.ins.2014.01.015_b0725) 2010 10.1016/j.ins.2014.01.015_b0785 10.1016/j.ins.2014.01.015_b0665 Sun (10.1016/j.ins.2014.01.015_b0885) 2010; 21 Szalay (10.1016/j.ins.2014.01.015_b0895) 2011; 13 10.1016/j.ins.2014.01.015_b0425 Bell (10.1016/j.ins.2014.01.015_b0090) 2009; 323 Jiang (10.1016/j.ins.2014.01.015_b0420) 2011; 23 Mao (10.1016/j.ins.2014.01.015_b0575) 2010; 18 Sipper (10.1016/j.ins.2014.01.015_b0855) 1997; 1 Liu (10.1016/j.ins.2014.01.015_b0530) 2011; 33 Lynch (10.1016/j.ins.2014.01.015_b0550) 2008; 455 Bringmann (10.1016/j.ins.2014.01.015_b0135) 2010; 25 10.1016/j.ins.2014.01.015_b0790 10.1016/j.ins.2014.01.015_b0670 10.1016/j.ins.2014.01.015_b0430 Bezdek (10.1016/j.ins.2014.01.015_b0120) 1981 Sakr (10.1016/j.ins.2014.01.015_b0770) 2011; 13 10.1016/j.ins.2014.01.015_b0675 Zikopoulos (10.1016/j.ins.2014.01.015_b1035) 2011 Yang (10.1016/j.ins.2014.01.015_b0990) 2008; 178 Andrianantoandro (10.1016/j.ins.2014.01.015_b0060) 2006; 2 10.1016/j.ins.2014.01.015_b0515 Seenumani (10.1016/j.ins.2014.01.015_b0800) 2012; 20 Lin (10.1016/j.ins.2014.01.015_b0520) 2012; 100 Hinton (10.1016/j.ins.2014.01.015_b0340) 2007; 11 Valle (10.1016/j.ins.2014.01.015_b0220) 2008; 12 Bekkerman (10.1016/j.ins.2014.01.015_b0085) 2012 Yu (10.1016/j.ins.2014.01.015_b1000) 2011; 28 10.1016/j.ins.2014.01.015_b0640 Jeon (10.1016/j.ins.2014.01.015_b0415) 2006; 52 Worlton (10.1016/j.ins.2014.01.015_b0970) 1971; 7 Zhang (10.1016/j.ins.2014.01.015_b1015) 2011; 12 Hinton (10.1016/j.ins.2014.01.015_b0345) 2006; 18 Hinton (10.1016/j.ins.2014.01.015_b0350) 2006; 313 Guan (10.1016/j.ins.2014.01.015_b0280) 2012; 23 Peters (10.1016/j.ins.2014.01.015_b0715) 2011; 19 Hirota (10.1016/j.ins.2014.01.015_b0355) 1999; 87 10.1016/j.ins.2014.01.015_b0410 10.1016/j.ins.2014.01.015_b0775 Wang (10.1016/j.ins.2014.01.015_b0935) 2007; 22 Jacobs (10.1016/j.ins.2014.01.015_b0405) 2009; 52 Sridhar (10.1016/j.ins.2014.01.015_b0870) 2013; 2 10.1016/j.ins.2014.01.015_b0615 Su (10.1016/j.ins.2014.01.015_b0880) 2011; 19 Fujimoto (10.1016/j.ins.2014.01.015_b0245) 1992; 3 Bongard (10.1016/j.ins.2014.01.015_b0130) 2009; 42 Bertone (10.1016/j.ins.2014.01.015_b0115) 2001; 20 Kim (10.1016/j.ins.2014.01.015_b0450) 2009 Chen (10.1016/j.ins.2014.01.015_b0195) 2011; 41 10.1016/j.ins.2014.01.015_b0860 10.1016/j.ins.2014.01.015_b0740 Lane (10.1016/j.ins.2014.01.015_b0475) 2011; 10 Furht (10.1016/j.ins.2014.01.015_b0250) 2011 Porfirio Ishii (10.1016/j.ins.2014.01.015_b0385) 2011; 10 10.1016/j.ins.2014.01.015_b0745 10.1016/j.ins.2014.01.015_b0625 10.1016/j.ins.2014.01.015_b0505 Mistry (10.1016/j.ins.2014.01.015_b0600) 2012 10.1016/j.ins.2014.01.015_b0190 10.1016/j.ins.2014.01.015_b0070 Leong (10.1016/j.ins.2014.01.015_b0495) 2009; 28 |
| References_xml | – reference: Jagmohan Chauhan, Shaiful Alam Chowdhury, Dwight Makaroff, Performance evaluation of yahoo! s4: a first look, in: 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2012, pp. 58–65. – volume: 10 start-page: 45 year: 2011 end-page: 53 ident: b0475 article-title: Exploiting social networks for large-scale human behavior modeling publication-title: IEEE Pervasive Comput. – volume: 20 start-page: 33 year: 2001 end-page: 40 ident: b0115 article-title: Integrative data mining: the new direction in bioinformatics publication-title: IEEE Eng. Med. Biol. Mag. – year: 2009 ident: b0325 article-title: The fourth paradigm: data-intensive scientific discovery publication-title: Microsoft Research – reference: Chris Anderson, The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, 2008. < – volume: 14 start-page: 1262 year: 2003 end-page: 1274 ident: b0815 article-title: A high-performance application data environment for large-scale scientific computations publication-title: IEEE Trans. Parallel Distrib. Syst. – year: 2009 ident: b0370 article-title: Introducing apache mahout: scalable, commercial-friendly machine learning for building intelligent applications publication-title: IBM Corporation – volume: 14 start-page: 1189 year: 2008 end-page: 1196 ident: b0320 article-title: Graphical histories for visualization: supporting analysis, communication, and evaluation publication-title: IEEE Trans. Visual. Comput. Graph. – reference: Mladen A. Vouk, Cloud computing – issues, research and implementations, in: 30th International Conference on Information Technology Interfaces, 2008, ITI 2008, 2008, pp. 31–40. – year: 2012 ident: b0365 article-title: Solid-state revolution: in-depth on how ssds really work publication-title: Ars Technica – volume: 21 start-page: 633 year: 2010 end-page: 643 ident: b0655 article-title: Large-scale pattern storage and retrieval using generalized brain-state-in-a-box neural networks publication-title: IEEE Trans. Neural Networks – year: 2009 ident: b0645 article-title: Quantum Computation and Quantum Information – volume: 27 start-page: 603 year: 2005 end-page: 618 ident: b0980 article-title: Fast svm training algorithm with decomposition on very large data sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Brian Proffitt, Big Data Tools and Vendors, 2012. < – volume: 12 start-page: 954 year: 1997 end-page: 960, 199 ident: b0565 article-title: Large scale dynamic security screening and ranking using neural networks publication-title: IEEE Trans. Power Syst. – year: 2012 ident: b0600 article-title: Introducing microsoft SQL server 2012 publication-title: Microsoft – year: 2008 ident: b0455 article-title: Modeling with Data: Tools and Techniques for Statistical Computing – volume: 18 start-page: 761 year: 2010 end-page: 774 ident: b0575 article-title: S4: Small state and small stretch compact routing protocol for large static wireless networks publication-title: IEEE/ACM Transactions on Networking – reference: http://www.whitehouse.gov/sites/default/files/microsites/ostp/big-data-fact-sheet-final-1.pdf. – volume: 100 start-page: 2759 year: 2012 end-page: 2776 ident: b0520 article-title: Social network analysis in enterprise publication-title: Proc. IEEE – year: 2005 ident: b0400 article-title: Introduction to Grid Computing – reference: Alina Oprea, Michael K. Reiter, Ke Yang, Space efficient block storage integrity, in: Proc. 12th Ann. Network and Distributed System Security Symp. (NDSS 05), 2005. – reference: Qian Wang, Kui Ren, Wenjing Lou, Yanchao Zhang, Dependable and secure sensor data storage with dynamic integrity assurance, in: Proc. IEEE INFOCOM, 2009, pp. 954–962. – reference: Rui Máximo Esteves, Chunming Rong, Using mahout for clustering wikipedia’s latest articles: a comparison between k-means and fuzzy c-means in the cloud, in: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), 2011, pp. 565–569. – reference: William Yurcik Larry Brumbaugh Ragib Hasan, Zahid Anwar, Roy H. Campbell, A survey of peer-to-peer storage techniques for distributed file systems, in: International Conference on Information Technology: Coding and Computing, 2005, ITCC 2005, vol. 2, 2005, pp. 205–213. – year: 2011 ident: b1035 article-title: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data – volume: 7 start-page: 830 year: 1971 end-page: 833 ident: b0970 article-title: Bulk storage requirements in large-scale scientific calculations publication-title: IEEE Trans. Magn. – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: b0065 article-title: Deep machine learning – a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. – year: 2009 ident: b0450 article-title: Parallel clustering algorithms: survey publication-title: Parallel Algorithms – year: 2008 ident: b0500 article-title: Introduction to Bioinformatics – reference: Jason Brooks, Review: Talend Open Studio Makes Quick etl Work of Large Data Sets, 2009. < – volume: 23 start-page: 1017 year: 2012 end-page: 1029 ident: b0390 article-title: An online data access prediction and optimization approach for distributed systems publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 2 start-page: 87 year: 2013 end-page: 96 ident: b0870 article-title: A comparative study on how big data is scaling business intelligence and analytics publication-title: Int. J. Enhanced Res. Sci. Technol. Eng. – volume: 2 year: 2006 ident: b0060 article-title: Synthetic biology: new engineering rules for an emerging discipline publication-title: Mol. Syst. Biol. – reference: Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor systems, in: IEEE 13th International Symposium on High Performance Computer Architecture, 2007, HPCA 2007, 2006, pp. 13–24. – volume: 16 start-page: 210 year: 2008 end-page: 224 ident: b0510 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 34 year: 2011 end-page: 41 ident: b0895 article-title: Extreme data-intensive scientific computing publication-title: Comput. Sci. Eng. – reference: M. Tim Jones, Process Real-Time Big Data with Twitter Storm, 2012. < – reference: Rui Máximo Esteves, Chunming Rong, Rui Pais, K-means clustering in the cloud – a mahout test, in: 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA), 2011, pp. 514–519. – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b0535 article-title: Least squares quantization in pcm publication-title: IEEE Trans. Inf. Theory – start-page: 245 year: 2001 end-page: 250 ident: b0125 article-title: Random projection in dimensionality reduction: applications to image and text data publication-title: Knowledge Discovery and Data Mining – volume: 33 start-page: 1022 year: 2011 end-page: 1036 ident: b0530 article-title: Textual query of personal photos facilitated by large-scale web data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: David Thompson, Joshua A. Levine, Janine C. Bennett, Peer-Timo Bremer, Attila Gyulassy, Valerio Pascucci, Philippe P. Pébay, Analysis of large-scale scalar data using hixels, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 23–30. – reference: Andrew Horne Shvetank Shah, Jaime Capellá, Good Data won’t Guarantee Good Decisions, 2012. < – reference: Jing Han, Haihong E, Guan Le, Jian Du, Survey on nosql database, in: 2011 6th International Conference on Pervasive Computing and Applications (ICPCA), 2011, pp. 363–366. – volume: 25 start-page: 26 year: 2010 end-page: 35 ident: b0135 article-title: Learning and predicting the evolution of social networks publication-title: IEEE Intell. Syst. – reference: K.P. Lakshmi, C.R.K. Reddy, A survey on different trends in data streams, in: 2010 International Conference on Networking and Information Technology (ICNIT), 2010, pp. 451–455. – reference: Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, Michael Franklin, Johannes Gehrke, Laura Haas, Jiawei Han Alon Halevy, H.V. Jagadish, Alexandros Labrinidis, Sam Madden, Yannis Papakon stantinou, Jignesh Patel, Raghu Ramakrishnan, Kenneth Ross, Shahabi Cyrus, Dan Suciu, Shiv Vaithyanathan, Jennifer Widom, Challenges and Opportunities with Big Data, CYBER CENTER TECHNICAL REPORTS, Purdue University, 2011. – volume: 20 start-page: 1 year: 2008 end-page: 12 ident: b0165 article-title: Srda: an efficient algorithm for large-scale discriminant analysis publication-title: IEEE Trans. Knowl. Data Eng. – volume: 44 start-page: 1540 year: 2011 end-page: 1551 ident: b0545 article-title: A survey of multilinear subspace learning for tensor data publication-title: Pattern Recogn. – year: 2007 ident: b0490 article-title: Nonlinear Dimensionality Reduction – reference: Peter Wayner. 7 Top Tools for Taming Big Data, 2012. < – volume: 26 year: 2008 ident: b0185 article-title: Bigtable: a distributed storage system for structured data publication-title: ACM Trans. Comput. Syst. – volume: 24 start-page: 36 year: 2004 end-page: 44 ident: b0560 article-title: Massively parallel software rendering for visualizing large-scale data sets publication-title: IEEE Comput. Graph. Appl. – volume: 14 start-page: 22 year: 2013 end-page: 33 ident: b0200 article-title: Distributed modeling in a mapreduce framework for data-driven traffic flow forecasting publication-title: IEEE Trans. Intell. Trans. Syst. – volume: 16 start-page: 40 year: 2012 end-page: 50 ident: b0540 article-title: Dynamic cloud deployment of a mapreduce architecture publication-title: IEEE Internet Comput. – reference: Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave DeMaagd, Alex Feinberg, Phanindra Ganti, Bhaskar Ghosh Lei Gao, Kishore Gopalakrishna, Brendan Harris, Joel Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, Jason Zhang, Data infrastructure at linkedin, in: 2012 IEEE 28th International Conference on Data Engineering (ICDE), 2012, pp. 1370–1381. – volume: 3 start-page: 876 year: 1992 end-page: 888 ident: b0245 article-title: Massively parallel architectures for large scale neural network simulations publication-title: IEEE Trans. Neural Networks – volume: 51 start-page: 107 year: 2008 end-page: 113 ident: b0215 article-title: Mapreduce: simplified data processing on large clusters publication-title: Commun. ACM – volume: 1 start-page: 39 year: 2002 end-page: 55 ident: b0920 article-title: The millipede – nanotechnology entering data storage publication-title: IEEE Trans. Nanotechnol. – year: 2012 ident: b0435 article-title: Solid state drive vs. hard disk drive price and performance study publication-title: Dell PowerVault Tech. Mark. – reference: Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Diane Cerra, second ed., 2000. – reference: Udo Seiffert, Training of large-scale feed-forward neural networks, in: International Joint Conference on Neural Networks, IJCNN ’06, 2006, pp. 5324–5329. – volume: 19 start-page: 1141 year: 2011 end-page: 1151 ident: b0880 article-title: Radial basis function networks with linear interval regression weights for symbolic interval data publication-title: IEEE Trans. Syst. Man Cyber.–Part B: Cyber. – start-page: 282 year: 2011 end-page: 283 ident: b0145 article-title: High-energy physics: down the petabyte highway publication-title: Nature – reference: Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado, Jeff Dean, Andrew Y. Ng, Building high-level features using large scale unsupervised learning, in: Proceedings of the 29th International Conference on Machine Learning, 2012. – reference: Eric Savitz, Gartner: Top 10 Strategic Technology Trends for 2013, October 2012. < – volume: 23 start-page: 1087 year: 2012 end-page: 1099 ident: b0280 article-title: Online nonnegative matrix factorization with robust stochastic approximation publication-title: IEEE Trans. Neural Networks Learning Syst. – reference: Pentaho Business Analytics, 2012. < – volume: 72 start-page: 2796 year: 2009 end-page: 2805 ident: b0900 article-title: Selective negative correlation learning approach to incremental learning publication-title: Neurocomputing – reference: Janine Bennett, Ray Grout, Philippe Pebay, Diana Roe, David Thompson, Numerically stable, single-pass, parallel statistics algorithms, in: IEEE International Conference on Cluster Computing and Workshops, 2009, CLUSTER ’09, 2009, pp. 1–8. – reference: Dan Gillick, Arlo Faria, John DeNero, Mapreduce: Distributed Computing for Machine Learning, 2006. – volume: 18 start-page: 1017 year: 2002 end-page: 1031 ident: b0330 article-title: The uk e-science core programme and the grid publication-title: Future Gener. Comput. Syst. – year: 2008 ident: b0710 article-title: Handbook of Granular Computing – year: 2009 ident: b0585 article-title: Computational Systems Biology – reference: Storm, 2012. < – volume: 28 start-page: 32 year: 2009 end-page: 33 ident: b0495 article-title: A new revolution in enterprise storage architecture publication-title: IEEE Potentials – reference: Senthilkumar Vijayakumar, Anjani Bhargavi, Uma Praseeda, Syed Azar Ahamed, Optimizing sequence alignment in cloud using hadoop and mpp database, in: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), 2012, pp. 819–827. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b0105 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: Distributed data-parallel programs from sequential building blocks, in: Proceedings of the 2007 Eurosys Conference, 2007. – volume: 455 start-page: 28 year: 2008 end-page: 29 ident: b0550 article-title: Big data: how do your data grow? publication-title: Nature – volume: 23 start-page: 1299 year: 2011 end-page: 1311 ident: b0420 article-title: Map-join-reduce: toward scalable and efficient data analysis on large clusters publication-title: IEEE Trans. Knowl. Data Eng. – reference: Jeff Kelly, Apache drill brings sql-like, ad hoc query capabilities to big data, February 2013. < – year: 2012 ident: b0205 article-title: Advanced Statistical Methods for the Analysis of Large Data-Sets – volume: 8 start-page: 34 year: 1987 end-page: 36 ident: b0310 article-title: An incremental approach for the solution of quadratic problems publication-title: Math. Modell. – volume: 55 start-page: 1621 year: 2008 end-page: 1630 ident: b0095 article-title: A comparison of data-access platforms for the computing of large hadron collider experiments publication-title: IEEE Trans. Nucl. Sci. – volume: 34 start-page: 2451 year: 2004 end-page: 2465 ident: b0170 article-title: Distributed data mining on grids: services, tools, and applications publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber. – reference: Randal E. Bryant, Data Intensive supercomputing: The Case for Disc. Technical Report CMU-CS-07-128, 2007. – volume: 30 start-page: 2136 year: 2012 end-page: 2145 ident: b1020 article-title: Information production and link formation in social computing systems publication-title: IEEE J. Sel. Areas Commun. – reference: >. – reference: Christian Molinari, No One Size Fits all Strategy for Big Data, Says ibm, October 2012. < – year: 2012 ident: b0085 article-title: Scaling Up Machine Learning: Parallel and Distributed Approaches – volume: 22 start-page: 79 year: 2007 end-page: 83 ident: b0935 article-title: Social computing: from social informatics to social intelligence publication-title: IEEE Intell. Syst. – volume: 12 start-page: 1427 year: 2006 end-page: 1439 ident: b0820 article-title: Visual analysis of large heterogeneous social networks by semantic and structural abstraction publication-title: IEEE Trans. Visual. Comput. Graph. – volume: 323 start-page: 1297 year: 2009 end-page: 1298 ident: b0090 article-title: Beyond the data deluge publication-title: Science – reference: Zhong Liang, ChiTian He, Zhang Xin, Feature based visualization algorithm for large-scale flow data, in: Second International Conference on Computer Modeling and Simulation, 2010, ICCMS ’10, vol. 1, 2010, pp. 194–197. – volume: 1 start-page: 83 year: 1997 end-page: 97 ident: b0855 article-title: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems publication-title: IEEE Trans. Evol. Comput. – reference: Pavel Bzoch, Jiri Safarik, State of the art in distributed file systems: Increasing performance, in: Engineering of Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on the, 2011, pp. 153–154. – year: 2012 ident: b0570 article-title: Big data: The Next Frontier for Innovation, Competition, and Productivity – year: 2008 ident: b0845 article-title: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics – year: 2009 ident: b0915 article-title: Internet: Technical Development and Applications – volume: 178 start-page: 2985 year: 2008 end-page: 2999 ident: b0990 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Inf. Sci. – volume: 10 start-page: 26 year: 2011 end-page: 43 ident: b0385 article-title: An adaptive and historical approach to optimize data access in grid computing environments publication-title: INFOCOMP J. Comput. Sci. – volume: 26 start-page: 116 year: 1994 end-page: 123 ident: b0850 article-title: On the power of quantum computation publication-title: SIAM J. Comput. – volume: 24 start-page: 36 year: 2004 end-page: 44 ident: b0440 article-title: Visual data mining in large geospatial point sets publication-title: IEEE Comput. Graph. Appl. – reference: Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš Burget, Jan Černocký, Strategies for training large scale neural network language models, in: IEEE Workshop on Automatic Speech Recognition and Understanding, 2011. – volume: PP start-page: 1 year: 2013 ident: b1025 article-title: A collaborative fuzzy clustering algorithm in distributed network environments publication-title: IEEE Trans. Fuzzy Syst. – year: 2010 ident: b0725 article-title: The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing – volume: 2 start-page: 532 year: 1991 end-page: 536 ident: b0750 article-title: Clustering on a hypercube multicomputer publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b0345 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 11 start-page: 647 year: 2010 end-page: 657 ident: b0795 article-title: Computational solutions to large-scale data management and analysis publication-title: Nat. Rev. Genet. – volume: 24 start-page: 1051 year: 2012 end-page: 1064 ident: b0555 article-title: Mining web graphs for recommendations publication-title: IEEE Trans. Knowl. Data Eng. – volume: PP start-page: 1 year: 2012 end-page: 13 ident: b0305 article-title: Efficient skyline computation on big data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 18 start-page: 2526 year: 2012 end-page: 2535 ident: b0975 article-title: Visualizing flow of uncertainty through analytical processes publication-title: IEEE Trans. Visual. Comput. Graph. – volume: 11 start-page: 428 year: 2007 end-page: 434 ident: b0340 article-title: Learning multiple layers of representation publication-title: Trends Cogn. Sci. – volume: 42 start-page: 26 year: 2009 end-page: 34 ident: b0460 article-title: The changing paradigm of data-intensive computing publication-title: Computer – reference: Ted Samson, Splunk Storm Brings Log Management to the Cloud, 2012. < – year: 1981 ident: b0120 article-title: Pattern Recognition with Fuzzy Objective Function Algorithms – reference: Stephan Kraft, Giuliano Casale, Alin Jula, Peter Kilpatrick, Des Greer, Wiq: work-intensive query scheduling for in-memory database systems, in: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), 2012, pp. 33–40. – volume: 45 start-page: 16 year: 2012 end-page: 18 ident: b0255 article-title: Using in-memory analytics to quickly crunch big data publication-title: IEEE Comput. Soc. – volume: 2 start-page: 47 year: 2003 end-page: 84 ident: b0960 article-title: Genetic circuit building blocks for cellular computation, communications, and signal processing publication-title: Natural Comput. – volume: 22 start-page: 1162 year: 2011 end-page: 1167 ident: b0525 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans. Neural Networks – reference: http://quantumcomputers.com. – reference: David Taniar, High performance database processing, in: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (AINA), 2012, pp. 5–6. – volume: 332 start-page: 60 year: 2011 end-page: 65 ident: b0335 article-title: The world’s technological capacity to store, communicate, and compute information publication-title: Science – volume: 19 start-page: 1141 year: 2011 end-page: 1151 ident: b0715 article-title: Granular box regression publication-title: IEEE Trans. Fuzzy Syst. – year: 2011 ident: b0680 article-title: Principles of Distributed Database Systems – volume: 52 start-page: 36 year: 2009 end-page: 44 ident: b0405 article-title: The pathologies of big data publication-title: Commun. ACM – volume: 12 start-page: 1624 year: 2011 end-page: 1639 ident: b1015 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans. Intell. Trans. Syst. – year: 2011 ident: b0250 article-title: Handbook of Cloud Computing – volume: 34 start-page: 1599 year: 2008 end-page: 1608 ident: b0360 article-title: An incremental cluster-based approach to spam filtering publication-title: Expert Syst. Appl. – volume: 55 start-page: 2463 year: 2011 end-page: 2476 ident: b0660 article-title: A segmentation-based algorithm for large-scale partially ordered monotonic regression publication-title: Comput. Stat. Data Anal. – reference: Diana Samuels, Skytree: Machine Learning Meets Big Data, February 2012. < – reference: Weiya Shi, Yue-Fei Guo, Cheng Jin, Xiangyang Xue, An improved generalized discriminant analysis for large-scale data set, in: Seventh International Conference on Machine Learning and Applications, 2008, 2008, pp. 769–772. – year: 2005 ident: b0610 article-title: Theory of Random Sets – reference: Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand Kesari, S4: distributed stream computing platform, in: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia, 2010, pp. 170–177. – volume: 11 start-page: 2487 year: 2010 end-page: 2531 ident: b0735 article-title: Hubs in space: popular nearest neighbors in high-dimensional data publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 1158 year: 2008 end-page: 1170, 200 ident: b0760 article-title: A fast algorithm for learning a ranking function from large-scale data sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: b0100 article-title: Learning deep architectures for ai publication-title: Found. Trends Mach. Learn. – reference: Matthew Smith, Christian Szongott, Benjamin Henne, Gabriele von Voigt, Big data privacy issues in public social media, in: 2012 6th IEEE International Conference on Digital Ecosystems Technologies (DEST), 2012, pp. 1–6. – volume: 50 start-page: 418 year: 2008 end-page: 435 ident: b0965 article-title: The future of statistical computing publication-title: Technometrics – volume: 455 start-page: 47 year: 2008 end-page: 50 ident: b0225 article-title: Big data: the future of biocuration publication-title: Nature – reference: Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu úlfar Erlingsson, Pradeep Kumar Gunda, Jon Currey, Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language, in: 8th USENIX Symposium on Operating Systems Design and Implementation, 2008. – reference: Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, in: EuroSys ’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 41(3), 2007, pp. 59–72. – year: 2001 ident: b0480 article-title: 3d Data managment: controlling data volume, velocity and variety publication-title: Appl. Delivery Strategies Meta Group – reference: A.O. García, S. Bourov, A. Hammad, V. Hartmann, T. Jejkal, J.C. Otte, S. Pfeiffer, T. Schenker, C. Schmidt, P. Neuberger, R. Stotzka, J. van Wezel, B. Neumair, A. Streit, Data-intensive analysis for scientific experiments at the large scale data facility, in: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2011, pp. 125–126. – volume: 13 start-page: 14 year: 2011 end-page: 24 ident: b0685 article-title: Data-intensive science in the us doe: case studies and future challenges publication-title: Comput. Sci. Eng. – reference: Eric Savitz, Gartner: 10 Critical Tech Trends for the Next Five Years, October 2012. < – volume: 20 start-page: 232 year: 2012 end-page: 240 ident: b0800 article-title: Real-time power management of integrated power systems in all electric ships leveraging multi time scale property publication-title: IEEE Trans. Control Syst. Technol. – volume: 24 start-page: 95 year: 2009 end-page: 98 ident: b0080 article-title: Bio-inspired sensor network design publication-title: IEEE Signal Process. Mag. – volume: 28 start-page: 145 year: 2011 end-page: 154 ident: b1000 article-title: Deep learning and its applications to signal and information processing publication-title: IEEE Signal Process. Mag. – volume: 22 start-page: 847 year: 2011 end-page: 859 ident: b0950 article-title: Enabling public auditability and data dynamics for storage security in cloud computing publication-title: IEEE Trans. Parallel Distrib. Syst. – reference: Oracle, Oracle information architecture: an architect’s guide to big data, An Oracle White Paper in Enterprise Architecture, 2012. – reference: Byungik Ahn, Neuron machine: Parallel and pipelined digital neurocomputing architecture, in: 2012 IEEE International Conference on Computational Intelligence and Cybernetics (CyberneticsCom), 2012, pp. 143–147. – volume: 87 start-page: 575 year: 1999 end-page: 1600 ident: b0355 article-title: Fuzzy computing for data mining publication-title: Proc. IEEE – volume: 52 start-page: 1348 year: 2006 end-page: 1355 ident: b0415 article-title: Rough sets attributes reduction based expert system in interlaced video sequences publication-title: IEEE Trans. Consum. Electr. – reference: Abzetdin Adamov. Distributed file system as a basis of data-intensive computing, in: 2012 6th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (October). – volume: 23 start-page: 1831 year: 2012 end-page: 1843 ident: b0075 article-title: Analyzing massive machine maintenance data in a computing cloud publication-title: IEEE Trans Parallel Distrib. Syst. – start-page: 29.6.1 year: 2003 end-page: 29.6.4 ident: b0720 article-title: Scaling analysis of phase-change memory technology publication-title: IEEE Int. Electron Dev. Meeting – volume: 21 start-page: 34 year: 2001 end-page: 41 ident: b0050 article-title: Large-scale data visualization using parallel data streaming publication-title: IEEE Comput. Graph. Appl. – volume: 7 start-page: 32 year: 2012 end-page: 44 ident: b0620 article-title: Large-scale storage and reasoning for semantic data using swarms publication-title: IEEE Comput. Intell. Mag. – volume: 26 start-page: 603 year: 2004 end-page: 618 ident: b0605 article-title: A probabilistic active support vector learning algorithm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 13 start-page: 311 year: 2011 end-page: 336 ident: b0770 article-title: A survey of large scale data management approaches in cloud environments publication-title: IEEE Commun. Surv. Tutorials – volume: 46 start-page: 1608 year: 2012 end-page: 1619 ident: b1030 article-title: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems publication-title: IEEE Trans. Syst. Man Cyber Part B: Cyber – volume: 13 start-page: 1855 year: 2012 end-page: 1864 ident: b0175 article-title: A parallel computing framework for large-scale air traffic flow optimization publication-title: IEEE Trans. Intell. Trans. Syst. – volume: 14 start-page: 55 year: 2012 end-page: 65 ident: b0265 article-title: Parallel lasso for large-scale video concept detection publication-title: IEEE Trans. Multimedia – year: 2012 ident: b0210 article-title: Multi-column deep neural networks for image classification publication-title: IEEE Conf. Comput. Vision Pattern Recognit. – reference: Tadashi Nakano, Biological computing based on living cells and cell communication, in: 2010 13th International Conference on Network-Based Information Systems (NBiS), 2010, pp. 42–47. – year: 2002 ident: b0755 article-title: Nanotechnology: A Gentle Introduction to the Next Big Idea – volume: 12 start-page: 74 year: 2010 end-page: 83 ident: b0765 article-title: Efficient computational strategies for solving global optimization problems publication-title: Comput. Sci. Eng. – reference: Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis, Dremel: interactive analysis of webscale datasets, in: Proc. of the 36th Int’l Conf. on Very Large Data Bases (2010), vol. 3(1), 2010, pp. 330–339. – volume: 8 start-page: 429 year: 1996 end-page: 445 ident: b0865 article-title: Parallel optimization of large join queries with set operators and aggregates in a parallel environment supporting pipeline publication-title: IEEE Trans. Knowl. Data Eng. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b0350 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 42 start-page: 95 year: 2009 end-page: 98 ident: b0130 article-title: Biologically inspired computing publication-title: Computer – reference: R.P. Ishii, R.F. de Mello, A history-based heuristic to optimize data access in distributed environments, in: Proc. 21st IASTED International Conf. Parallel and Distributed Computing and Systems, 2009. – reference: Hui Li, Geoffrey Fox, Judy Qiu, Performance model for parallel matrix multiplication with dryad: dataflow graph runtime, in: 2012 Second International Conference on Cloud and Green Computing, 2012, pp. 675–683. – volume: 17 start-page: 740 year: 2006 end-page: 749 ident: b0650 article-title: Scalablast: a scalable implementation of blast for high-performance data-intensive bioinformatics analysis publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 41 start-page: 1263 year: 2011 end-page: 1274 ident: b0195 article-title: A multiple-kernel fuzzy c-means algorithm for image segmentation publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber. – reference: Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Michael Stonebraker, A comparison of approaches to large-scale data analysis, in: SIGMOD ’09 Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 2009, pp. 165–178. – volume: 20 start-page: 1904 year: 2012 end-page: 1916 ident: b0690 article-title: Scalable and parallel boosting with mapreduce publication-title: IEEE Trans. Knowl. Data Eng. – volume: 12 start-page: 171 year: 2008 end-page: 195 ident: b0220 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 2351 year: 2012 end-page: 2365 ident: b0285 article-title: Streamcloud: an elastic and scalable data streaming system publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 21 start-page: 883 year: 2010 end-page: 894 ident: b0885 article-title: Sparse approximation through boosting for learning large scale kernel machines publication-title: IEEE Trans. Neural Networks – reference: Mohsen Jamali, Hassan Abolhassani, Different aspects of social network analysis, in: IEEE/WIC/ACM International Conference on Web Intelligence, 2006, WI 2006, 2006, pp. 66–72. – volume: 10 start-page: 982 year: 2011 end-page: 996 ident: b0810 article-title: A distributed spatial-temporal similarity data storage scheme in wireless sensor networks publication-title: IEEE Trans. Mobile Comput. – volume: 23 start-page: 247 year: 2012 end-page: 259 ident: b0995 article-title: Concurrent subspace width optimization method for rbf neural network modeling publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 440 start-page: 23 year: 2006 end-page: 24 ident: b0890 article-title: Science in an exponential world publication-title: Nature – reference: Katsunari Shibata, Yusuke Ikeda, Effect of number of hidden neurons on learning in large-scale layered neural networks, in: ICROS-SICE International Joint Conference 2009, 2009, pp. 5008–5013. – reference: Apache Hadoop, Words Count Example, 2012. < – reference: Simone Ferlin Oliveira, Karl Fürlinger, Dieter Kranzlmüller, Trends in computation, communication and storage and the consequences for data-intensive science, in: IEEE 14th International Conference on High Performance Computing and Communications, 2012. – reference: Jiawei Yuan, Shucheng Yu, Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing, 2013. – reference: Wei Jiang, Eric Zavesky, Shih-Fu Chang, Alex Loui, Cross-domain learning methods for high-level visual concept classification, in: 15th IEEE International Conference on Image Processing, 2008, ICIP 2008, 2008, pp. 161–164. – volume: 34 start-page: 42 year: 2005 end-page: 47 ident: b0875 article-title: The 8 requirements of real-time stream processing publication-title: SIGMOD Rec. – reference: Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu, Cloud computing and grid computing 360-degree compared, in: Grid Computing Environments Workshop, 2008, GCE’08, 2008, pp. 1–10. – year: 2009 ident: b0315 article-title: The Elements of Statistical, Learning: Data Mining Inference and Prediction – volume: 23 start-page: 1103 year: 2011 end-page: 1117 ident: b0985 article-title: Trace-oriented feature analysis for large-scale text data dimension reduction publication-title: IEEE Trans. Knowl. Data Eng. – volume: 13 start-page: 1302 year: 2007 end-page: 1309 ident: b0635 article-title: Nodetrix: a hybrid visualization of social network publication-title: IEEE Trans. Visual. Comput. Graph. – volume: 13 start-page: 25 year: 2011 end-page: 33 ident: b0155 article-title: Data-intensive scalable computing for scientific applications publication-title: Comput. Sci. Eng. – volume: 41 start-page: 60 year: 2008 end-page: 68 ident: b0275 article-title: Hardware technologies for high-performance data-intensive computing publication-title: Computer – year: 2012 ident: b0580 article-title: Big data: principles and best practices of scalable realtime data systems publication-title: Manning – volume: 18 start-page: 1472 year: 2007 end-page: 1487 ident: b0700 article-title: Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated fpga approach publication-title: IEEE Trans. Neural Networks – volume: 24 start-page: 1747 year: 2012 end-page: 1759 ident: b0630 article-title: Data cube materialization and mining over mapreduce publication-title: IEEE Trans. Knowl. Data Eng. – reference: Philippe Pébay, David Thompson, Janine Bennett, Ajith Mascarenhas, Design and performance of a scalable, parallel statistics toolkit, in: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, pp. 1475–1484. – year: 2011 ident: b0180 article-title: Cassandra High Performance Cookbook – reference: Karmasphere Studio and Analyst, 2012. < – reference: Lijuan Wang, Jun Shen, Towards bio-inspired cost minimisation for data-intensive service provision, in: 2012 IEEE First International Conference on Services Economics (SE), 2012, pp. 16–23. – volume: 23 start-page: 3347 year: 2005 end-page: 3357 ident: b0840 article-title: Dynamic optical-network architectures and technologies for existing and emerging grid services publication-title: J. Lightwave Technol. – reference: Sqlstream, 2012. < – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0450 article-title: Parallel clustering algorithms: survey – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0325 article-title: The fourth paradigm: data-intensive scientific discovery publication-title: Microsoft Research – ident: 10.1016/j.ins.2014.01.015_b0020 – volume: 26 start-page: 603 issue: 3 year: 2004 ident: 10.1016/j.ins.2014.01.015_b0605 article-title: A probabilistic active support vector learning algorithm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1262340 – ident: 10.1016/j.ins.2014.01.015_b0290 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0205 – volume: 13 start-page: 311 issue: 3 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0770 article-title: A survey of large scale data management approaches in cloud environments publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/SURV.2011.032211.00087 – year: 2011 ident: 10.1016/j.ins.2014.01.015_b0250 – volume: 13 start-page: 25 issue: 6 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0155 article-title: Data-intensive scalable computing for scientific applications publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.73 – year: 2011 ident: 10.1016/j.ins.2014.01.015_b0680 – ident: 10.1016/j.ins.2014.01.015_b0035 doi: 10.1109/ICAICT.2012.6398484 – volume: 323 start-page: 1297 issue: 5919 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0090 article-title: Beyond the data deluge publication-title: Science doi: 10.1126/science.1170411 – volume: 23 start-page: 2351 issue: 12 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0285 article-title: Streamcloud: an elastic and scalable data streaming system publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2012.24 – volume: 18 start-page: 761 issue: 3 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0575 article-title: S4: Small state and small stretch compact routing protocol for large static wireless networks publication-title: IEEE/ACM Transactions on Networking doi: 10.1109/TNET.2010.2046645 – volume: 17 start-page: 740 issue: 8 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0650 article-title: Scalablast: a scalable implementation of blast for high-performance data-intensive bioinformatics analysis publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2006.112 – ident: 10.1016/j.ins.2014.01.015_b0745 doi: 10.1109/HPCA.2007.346181 – volume: 12 start-page: 74 issue: 4 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0765 article-title: Efficient computational strategies for solving global optimization problems publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2010.85 – volume: 440 start-page: 23 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0890 article-title: Science in an exponential world publication-title: Nature doi: 10.1038/440413a – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.ins.2014.01.015_b0535 article-title: Least squares quantization in pcm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – volume: 455 start-page: 28 issue: 7209 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0550 article-title: Big data: how do your data grow? publication-title: Nature doi: 10.1038/455028a – year: 2008 ident: 10.1016/j.ins.2014.01.015_b0455 – volume: 72 start-page: 2796 issue: 13-15 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0900 article-title: Selective negative correlation learning approach to incremental learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.022 – volume: 21 start-page: 34 issue: 4 year: 2001 ident: 10.1016/j.ins.2014.01.015_b0050 article-title: Large-scale data visualization using parallel data streaming publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.933522 – start-page: 282 issue: 469 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0145 article-title: High-energy physics: down the petabyte highway publication-title: Nature – ident: 10.1016/j.ins.2014.01.015_b0025 – ident: 10.1016/j.ins.2014.01.015_b0730 – volume: 24 start-page: 1051 issue: 12 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0555 article-title: Mining web graphs for recommendations publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.18 – volume: 45 start-page: 16 issue: 10 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0255 article-title: Using in-memory analytics to quickly crunch big data publication-title: IEEE Comput. Soc. doi: 10.1109/MC.2012.358 – year: 2008 ident: 10.1016/j.ins.2014.01.015_b0710 – volume: 23 start-page: 3347 issue: 5 year: 2005 ident: 10.1016/j.ins.2014.01.015_b0840 article-title: Dynamic optical-network architectures and technologies for existing and emerging grid services publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2005.856254 – ident: 10.1016/j.ins.2014.01.015_b0300 doi: 10.1109/ICPCA.2011.6106531 – volume: 3 start-page: 876 issue: 6 year: 1992 ident: 10.1016/j.ins.2014.01.015_b0245 article-title: Massively parallel architectures for large scale neural network simulations publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.165590 – volume: 28 start-page: 32 issue: 6 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0495 article-title: A new revolution in enterprise storage architecture publication-title: IEEE Potentials doi: 10.1109/MPOT.2009.934894 – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0315 – year: 1981 ident: 10.1016/j.ins.2014.01.015_b0120 – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0370 article-title: Introducing apache mahout: scalable, commercial-friendly machine learning for building intelligent applications publication-title: IBM Corporation – year: 2010 ident: 10.1016/j.ins.2014.01.015_b0725 – volume: 22 start-page: 79 issue: 2 year: 2007 ident: 10.1016/j.ins.2014.01.015_b0935 article-title: Social computing: from social informatics to social intelligence publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2007.41 – volume: 52 start-page: 36 issue: 8 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0405 article-title: The pathologies of big data publication-title: Commun. ACM doi: 10.1145/1536616.1536632 – ident: 10.1016/j.ins.2014.01.015_b0665 doi: 10.1109/HPCC.2012.83 – volume: 20 start-page: 1904 issue: 10 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0690 article-title: Scalable and parallel boosting with mapreduce publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.208 – volume: 30 start-page: 2136 issue: 1 year: 2012 ident: 10.1016/j.ins.2014.01.015_b1020 article-title: Information production and link formation in social computing systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2012.121206 – ident: 10.1016/j.ins.2014.01.015_b0705 doi: 10.1109/IPDPS.2011.293 – volume: 2 start-page: 87 issue: 8 year: 2013 ident: 10.1016/j.ins.2014.01.015_b0870 article-title: A comparative study on how big data is scaling business intelligence and analytics publication-title: Int. J. Enhanced Res. Sci. Technol. Eng. – ident: 10.1016/j.ins.2014.01.015_b0790 – volume: 13 start-page: 34 issue: 6 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0895 article-title: Extreme data-intensive scientific computing publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.74 – ident: 10.1016/j.ins.2014.01.015_b0675 – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0915 – volume: 34 start-page: 1599 issue: 3 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0360 article-title: An incremental cluster-based approach to spam filtering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.018 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0365 article-title: Solid-state revolution: in-depth on how ssds really work publication-title: Ars Technica – volume: 100 start-page: 2759 issue: 9 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0520 article-title: Social network analysis in enterprise publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2203090 – volume: 52 start-page: 1348 issue: 4 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0415 article-title: Rough sets attributes reduction based expert system in interlaced video sequences publication-title: IEEE Trans. Consum. Electr. doi: 10.1109/TCE.2006.273155 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0350 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.ins.2014.01.015_b0505 doi: 10.1109/CGC.2012.23 – ident: 10.1016/j.ins.2014.01.015_b0030 – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0220 article-title: Particle swarm optimization: basic concepts, variants and applications in power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896686 – year: 2008 ident: 10.1016/j.ins.2014.01.015_b0500 – volume: 11 start-page: 2487 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0735 article-title: Hubs in space: popular nearest neighbors in high-dimensional data publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 1831 issue: 10 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0075 article-title: Analyzing massive machine maintenance data in a computing cloud publication-title: IEEE Trans Parallel Distrib. Syst. doi: 10.1109/TPDS.2011.306 – volume: 55 start-page: 2463 issue: 8 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0660 article-title: A segmentation-based algorithm for large-scale partially ordered monotonic regression publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.03.001 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0435 article-title: Solid state drive vs. hard disk drive price and performance study publication-title: Dell PowerVault Tech. Mark. – ident: 10.1016/j.ins.2014.01.015_b0395 – ident: 10.1016/j.ins.2014.01.015_b0670 – volume: 8 start-page: 34 year: 1987 ident: 10.1016/j.ins.2014.01.015_b0310 article-title: An incremental approach for the solution of quadratic problems publication-title: Math. Modell. doi: 10.1016/0270-0255(87)90536-7 – ident: 10.1016/j.ins.2014.01.015_b0110 doi: 10.1109/CLUSTR.2009.5289161 – volume: 1 start-page: 83 issue: 1 year: 1997 ident: 10.1016/j.ins.2014.01.015_b0855 article-title: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585894 – ident: 10.1016/j.ins.2014.01.015_b0425 doi: 10.1109/ICIP.2008.4711716 – ident: 10.1016/j.ins.2014.01.015_b0925 doi: 10.1109/CLOUD.2012.34 – ident: 10.1016/j.ins.2014.01.015_b0140 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0345 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.ins.2014.01.015_b0515 doi: 10.1109/ICCMS.2010.215 – volume: 11 start-page: 647 issue: 9 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0795 article-title: Computational solutions to large-scale data management and analysis publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2857 – volume: 55 start-page: 1621 issue: 3 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0095 article-title: A comparison of data-access platforms for the computing of large hadron collider experiments publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2008.924087 – volume: 455 start-page: 47 issue: 7209 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0225 article-title: Big data: the future of biocuration publication-title: Nature doi: 10.1038/455047a – volume: 2 start-page: 532 issue: 2 year: 1991 ident: 10.1016/j.ins.2014.01.015_b0750 article-title: Clustering on a hypercube multicomputer publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.89059 – volume: 21 start-page: 883 issue: 6 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0885 article-title: Sparse approximation through boosting for learning large scale kernel machines publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2044244 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0215 article-title: Mapreduce: simplified data processing on large clusters publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – volume: 42 start-page: 26 issue: 1 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0460 article-title: The changing paradigm of data-intensive computing publication-title: Computer doi: 10.1109/MC.2009.26 – volume: 14 start-page: 1189 issue: 6 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0320 article-title: Graphical histories for visualization: supporting analysis, communication, and evaluation publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2008.137 – volume: 10 start-page: 26 issue: 2 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0385 article-title: An adaptive and historical approach to optimize data access in grid computing environments publication-title: INFOCOMP J. Comput. Sci. – volume: 14 start-page: 1262 issue: 12 year: 2003 ident: 10.1016/j.ins.2014.01.015_b0815 article-title: A high-performance application data environment for large-scale scientific computations publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2003.1255638 – ident: 10.1016/j.ins.2014.01.015_b0785 – volume: 1 start-page: 39 issue: 1 year: 2002 ident: 10.1016/j.ins.2014.01.015_b0920 article-title: The millipede – nanotechnology entering data storage publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2002.1005425 – year: 2011 ident: 10.1016/j.ins.2014.01.015_b1035 – volume: 7 start-page: 830 issue: 4 year: 1971 ident: 10.1016/j.ins.2014.01.015_b0970 article-title: Bulk storage requirements in large-scale scientific calculations publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1971.1067246 – ident: 10.1016/j.ins.2014.01.015_b0070 doi: 10.1109/ICDE.2012.147 – volume: PP start-page: 1 issue: 99 year: 2013 ident: 10.1016/j.ins.2014.01.015_b1025 article-title: A collaborative fuzzy clustering algorithm in distributed network environments publication-title: IEEE Trans. Fuzzy Syst. – ident: 10.1016/j.ins.2014.01.015_b0955 – volume: 13 start-page: 1302 issue: 6 year: 2007 ident: 10.1016/j.ins.2014.01.015_b0635 article-title: Nodetrix: a hybrid visualization of social network publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2007.70582 – ident: 10.1016/j.ins.2014.01.015_b0380 doi: 10.1145/1272996.1273005 – ident: 10.1016/j.ins.2014.01.015_b0230 doi: 10.1109/CloudCom.2011.86 – ident: 10.1016/j.ins.2014.01.015_b0295 – ident: 10.1016/j.ins.2014.01.015_b0270 – volume: 34 start-page: 42 issue: 4 year: 2005 ident: 10.1016/j.ins.2014.01.015_b0875 article-title: The 8 requirements of real-time stream processing publication-title: SIGMOD Rec. doi: 10.1145/1107499.1107504 – volume: 2 start-page: 47 year: 2003 ident: 10.1016/j.ins.2014.01.015_b0960 article-title: Genetic circuit building blocks for cellular computation, communications, and signal processing publication-title: Natural Comput. doi: 10.1023/A:1023307812034 – ident: 10.1016/j.ins.2014.01.015_b0780 – ident: 10.1016/j.ins.2014.01.015_b0740 doi: 10.1109/ITCC.2005.42 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0570 – ident: 10.1016/j.ins.2014.01.015_b0430 – volume: 16 start-page: 210 issue: 2 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0510 article-title: Cooperatively coevolving particle swarms for large scale optimization publication-title: IEEE Trans. Evol. Comput. – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0645 – ident: 10.1016/j.ins.2014.01.015_b0695 doi: 10.1145/1559845.1559865 – volume: 24 start-page: 1747 issue: 10 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0630 article-title: Data cube materialization and mining over mapreduce publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.257 – volume: 19 start-page: 1141 issue: 6 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0880 article-title: Radial basis function networks with linear interval regression weights for symbolic interval data publication-title: IEEE Trans. Syst. Man Cyber.–Part B: Cyber. – start-page: 245 year: 2001 ident: 10.1016/j.ins.2014.01.015_b0125 article-title: Random projection in dimensionality reduction: applications to image and text data – volume: 26 issue: 2 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0185 article-title: Bigtable: a distributed storage system for structured data publication-title: ACM Trans. Comput. Syst. doi: 10.1145/1365815.1365816 – volume: 28 start-page: 145 issue: 1 year: 2011 ident: 10.1016/j.ins.2014.01.015_b1000 article-title: Deep learning and its applications to signal and information processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939038 – volume: 23 start-page: 1299 issue: 9 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0420 article-title: Map-join-reduce: toward scalable and efficient data analysis on large clusters publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.248 – ident: 10.1016/j.ins.2014.01.015_b0940 doi: 10.1109/SE.2012.14 – year: 2011 ident: 10.1016/j.ins.2014.01.015_b0180 – volume: 30 start-page: 1158 issue: 7 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0760 article-title: A fast algorithm for learning a ranking function from large-scale data sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70776 – volume: 2 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0060 article-title: Synthetic biology: new engineering rules for an emerging discipline publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100073 – ident: 10.1016/j.ins.2014.01.015_b0905 doi: 10.1109/AINA.2012.140 – ident: 10.1016/j.ins.2014.01.015_b0910 doi: 10.1109/LDAV.2011.6092313 – year: 2007 ident: 10.1016/j.ins.2014.01.015_b0490 – ident: 10.1016/j.ins.2014.01.015_b0040 – ident: 10.1016/j.ins.2014.01.015_b0005 – ident: 10.1016/j.ins.2014.01.015_b0375 doi: 10.1145/1272998.1273005 – volume: 12 start-page: 954 issue: 2 year: 1997 ident: 10.1016/j.ins.2014.01.015_b0565 article-title: Large scale dynamic security screening and ranking using neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.589789 – ident: 10.1016/j.ins.2014.01.015_b0805 doi: 10.1109/IJCNN.2006.247289 – volume: 11 start-page: 428 year: 2007 ident: 10.1016/j.ins.2014.01.015_b0340 article-title: Learning multiple layers of representation publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.09.004 – volume: 12 start-page: 1427 issue: 6 year: 2006 ident: 10.1016/j.ins.2014.01.015_b0820 article-title: Visual analysis of large heterogeneous social networks by semantic and structural abstraction publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2006.107 – volume: 23 start-page: 247 issue: 2 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0995 article-title: Concurrent subspace width optimization method for rbf neural network modeling publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2011.2178560 – volume: 16 start-page: 40 issue: 6 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0540 article-title: Dynamic cloud deployment of a mapreduce architecture publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2011.163 – year: 2009 ident: 10.1016/j.ins.2014.01.015_b0585 – volume: PP start-page: 1 issue: 99 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0305 article-title: Efficient skyline computation on big data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 21 start-page: 633 issue: 4 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0655 article-title: Large-scale pattern storage and retrieval using generalized brain-state-in-a-box neural networks publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2040291 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.ins.2014.01.015_b0105 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0085 – volume: 8 start-page: 429 issue: 3 year: 1996 ident: 10.1016/j.ins.2014.01.015_b0865 article-title: Parallel optimization of large join queries with set operators and aggregates in a parallel environment supporting pipeline publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.506710 – volume: 23 start-page: 1017 issue: 6 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0390 article-title: An online data access prediction and optimization approach for distributed systems publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2011.256 – ident: 10.1016/j.ins.2014.01.015_b0410 doi: 10.1109/WI.2006.61 – ident: 10.1016/j.ins.2014.01.015_b1005 – ident: 10.1016/j.ins.2014.01.015_b0045 doi: 10.1109/CyberneticsCom.2012.6381635 – ident: 10.1016/j.ins.2014.01.015_b0150 – volume: 14 start-page: 55 issue: 1 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0265 article-title: Parallel lasso for large-scale video concept detection publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2011.2174781 – volume: 20 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0165 article-title: Srda: an efficient algorithm for large-scale discriminant analysis publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.190669 – ident: 10.1016/j.ins.2014.01.015_b0930 doi: 10.1109/ITI.2008.4588381 – ident: 10.1016/j.ins.2014.01.015_b0260 doi: 10.1109/LDAV.2011.6092331 – volume: 24 start-page: 95 issue: 3 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0080 article-title: Bio-inspired sensor network design publication-title: IEEE Signal Process. Mag. – volume: 46 start-page: 1608 issue: 6 year: 2012 ident: 10.1016/j.ins.2014.01.015_b1030 article-title: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems publication-title: IEEE Trans. Syst. Man Cyber Part B: Cyber doi: 10.1109/TSMCB.2012.2196432 – volume: 20 start-page: 232 issue: 1 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0800 article-title: Real-time power management of integrated power systems in all electric ships leveraging multi time scale property publication-title: IEEE Trans. Control Syst. Technol. – volume: 50 start-page: 418 issue: 4 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0965 article-title: The future of statistical computing publication-title: Technometrics doi: 10.1198/004017008000000460 – volume: 332 start-page: 60 issue: 6025 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0335 article-title: The world’s technological capacity to store, communicate, and compute information publication-title: Science doi: 10.1126/science.1200970 – volume: 10 start-page: 45 issue: 4 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0475 article-title: Exploiting social networks for large-scale human behavior modeling publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2011.70 – volume: 34 start-page: 2451 issue: 6 year: 2004 ident: 10.1016/j.ins.2014.01.015_b0170 article-title: Distributed data mining on grids: services, tools, and applications publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber. doi: 10.1109/TSMCB.2004.836890 – ident: 10.1016/j.ins.2014.01.015_b0775 – ident: 10.1016/j.ins.2014.01.015_b0825 doi: 10.1109/ICMLA.2008.41 – volume: 13 start-page: 1855 issue: 4 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0175 article-title: A parallel computing framework for large-scale air traffic flow optimization publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2012.2205145 – volume: 27 start-page: 603 issue: 4 year: 2005 ident: 10.1016/j.ins.2014.01.015_b0980 article-title: Fast svm training algorithm with decomposition on very large data sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.77 – issue: 949 year: 2001 ident: 10.1016/j.ins.2014.01.015_b0480 article-title: 3d Data managment: controlling data volume, velocity and variety publication-title: Appl. Delivery Strategies Meta Group – volume: 13 start-page: 14 issue: 6 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0685 article-title: Data-intensive science in the us doe: case studies and future challenges publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.77 – volume: 23 start-page: 1103 issue: 7 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0985 article-title: Trace-oriented feature analysis for large-scale text data dimension reduction publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.34 – volume: 44 start-page: 1540 issue: 7 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0545 article-title: A survey of multilinear subspace learning for tensor data publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.01.004 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0600 article-title: Introducing microsoft SQL server 2012 publication-title: Microsoft – volume: 41 start-page: 60 issue: 4 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0275 article-title: Hardware technologies for high-performance data-intensive computing publication-title: Computer doi: 10.1109/MC.2008.125 – ident: 10.1016/j.ins.2014.01.015_b0860 doi: 10.1109/DEST.2012.6227909 – volume: 18 start-page: 2526 issue: 12 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0975 article-title: Visualizing flow of uncertainty through analytical processes publication-title: IEEE Trans. Visual. Comput. Graph. doi: 10.1109/TVCG.2012.285 – ident: 10.1016/j.ins.2014.01.015_b0835 – volume: 33 start-page: 1022 issue: 5 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0530 article-title: Textual query of personal photos facilitated by large-scale web data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.142 – volume: 12 start-page: 1624 issue: 4 year: 2011 ident: 10.1016/j.ins.2014.01.015_b1015 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2011.2158001 – year: 2005 ident: 10.1016/j.ins.2014.01.015_b0610 – volume: 18 start-page: 1017 issue: 8 year: 2002 ident: 10.1016/j.ins.2014.01.015_b0330 article-title: The uk e-science core programme and the grid publication-title: Future Gener. Comput. Syst. doi: 10.1016/S0167-739X(02)00082-1 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0100 article-title: Learning deep architectures for ai publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 24 start-page: 36 issue: 5 year: 2004 ident: 10.1016/j.ins.2014.01.015_b0560 article-title: Massively parallel software rendering for visualizing large-scale data sets publication-title: IEEE Comput. Graph. Appl. – ident: 10.1016/j.ins.2014.01.015_b0465 doi: 10.1109/CLOUD.2012.120 – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0065 article-title: Deep machine learning – a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.938364 – volume: 19 start-page: 1141 issue: 6 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0715 article-title: Granular box regression publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2162416 – ident: 10.1016/j.ins.2014.01.015_b0235 doi: 10.1109/WAINA.2011.136 – ident: 10.1016/j.ins.2014.01.015_b0945 doi: 10.1109/INFCOM.2009.5062006 – ident: 10.1016/j.ins.2014.01.015_b0190 doi: 10.1109/3PGCIC.2012.55 – start-page: 29.6.1 year: 2003 ident: 10.1016/j.ins.2014.01.015_b0720 article-title: Scaling analysis of phase-change memory technology publication-title: IEEE Int. Electron Dev. Meeting – ident: 10.1016/j.ins.2014.01.015_b0830 – ident: 10.1016/j.ins.2014.01.015_b1010 doi: 10.1007/978-3-642-36883-7_18 – volume: 24 start-page: 36 issue: 5 year: 2004 ident: 10.1016/j.ins.2014.01.015_b0440 article-title: Visual data mining in large geospatial point sets publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2004.41 – ident: 10.1016/j.ins.2014.01.015_b0595 doi: 10.1109/ASRU.2011.6163930 – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0580 article-title: Big data: principles and best practices of scalable realtime data systems publication-title: Manning – year: 2012 ident: 10.1016/j.ins.2014.01.015_b0210 article-title: Multi-column deep neural networks for image classification publication-title: IEEE Conf. Comput. Vision Pattern Recognit. – volume: 20 start-page: 33 issue: 4 year: 2001 ident: 10.1016/j.ins.2014.01.015_b0115 article-title: Integrative data mining: the new direction in bioinformatics publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.940042 – volume: 26 start-page: 116 year: 1994 ident: 10.1016/j.ins.2014.01.015_b0850 article-title: On the power of quantum computation publication-title: SIAM J. Comput. – year: 2008 ident: 10.1016/j.ins.2014.01.015_b0845 – ident: 10.1016/j.ins.2014.01.015_b0615 – volume: 18 start-page: 1472 issue: 5 year: 2007 ident: 10.1016/j.ins.2014.01.015_b0700 article-title: Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated fpga approach publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2007.891203 – ident: 10.1016/j.ins.2014.01.015_b0590 – volume: 42 start-page: 95 issue: 4 year: 2009 ident: 10.1016/j.ins.2014.01.015_b0130 article-title: Biologically inspired computing publication-title: Computer doi: 10.1109/MC.2009.104 – ident: 10.1016/j.ins.2014.01.015_b0445 – ident: 10.1016/j.ins.2014.01.015_b0015 – volume: 41 start-page: 1263 issue: 5 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0195 article-title: A multiple-kernel fuzzy c-means algorithm for image segmentation publication-title: IEEE Trans. Syst. Man Cyber. Part B: Cyber. doi: 10.1109/TSMCB.2011.2124455 – ident: 10.1016/j.ins.2014.01.015_b0640 doi: 10.1109/ICDMW.2010.172 – volume: 87 start-page: 575 issue: 9 year: 1999 ident: 10.1016/j.ins.2014.01.015_b0355 article-title: Fuzzy computing for data mining publication-title: Proc. IEEE doi: 10.1109/5.784240 – volume: 178 start-page: 2985 issue: 15 year: 2008 ident: 10.1016/j.ins.2014.01.015_b0990 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.02.017 – ident: 10.1016/j.ins.2014.01.015_b0055 – ident: 10.1016/j.ins.2014.01.015_b0160 doi: 10.1109/ECBS-EERC.2011.34 – year: 2005 ident: 10.1016/j.ins.2014.01.015_b0400 – volume: 23 start-page: 1087 issue: 7 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0280 article-title: Online nonnegative matrix factorization with robust stochastic approximation publication-title: IEEE Trans. Neural Networks Learning Syst. doi: 10.1109/TNNLS.2012.2197827 – ident: 10.1016/j.ins.2014.01.015_b0485 – volume: 7 start-page: 32 issue: 2 year: 2012 ident: 10.1016/j.ins.2014.01.015_b0620 article-title: Large-scale storage and reasoning for semantic data using swarms publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2012.2188586 – volume: 22 start-page: 1162 issue: 7 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0525 article-title: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2011.2146788 – year: 2002 ident: 10.1016/j.ins.2014.01.015_b0755 – ident: 10.1016/j.ins.2014.01.015_b0470 doi: 10.1109/ICNIT.2010.5508473 – volume: 25 start-page: 26 issue: 4 year: 2010 ident: 10.1016/j.ins.2014.01.015_b0135 article-title: Learning and predicting the evolution of social networks publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2010.91 – ident: 10.1016/j.ins.2014.01.015_b0240 doi: 10.1109/GCE.2008.4738445 – ident: 10.1016/j.ins.2014.01.015_b0625 doi: 10.1109/NBiS.2010.8 – volume: 22 start-page: 847 issue: 5 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0950 article-title: Enabling public auditability and data dynamics for storage security in cloud computing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2010.183 – volume: 10 start-page: 982 issue: 7 year: 2011 ident: 10.1016/j.ins.2014.01.015_b0810 article-title: A distributed spatial-temporal similarity data storage scheme in wireless sensor networks publication-title: IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2010.214 – ident: 10.1016/j.ins.2014.01.015_b0010 – volume: 14 start-page: 22 issue: 1 year: 2013 ident: 10.1016/j.ins.2014.01.015_b0200 article-title: Distributed modeling in a mapreduce framework for data-driven traffic flow forecasting publication-title: IEEE Trans. Intell. Trans. Syst. doi: 10.1109/TITS.2012.2205144 |
| SSID | ssj0004766 |
| Score | 2.656568 |
| Snippet | It is already true that Big Data has drawn huge attention from researchers in information sciences, policy and decision makers in governments and enterprises.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 314 |
| SubjectTerms | Big Data Business Cloud computing Computation Data storage Data visualization Data-intensive computing e-Science Economics Evolutionary Parallel and distributed computing Policies Productivity |
| Title | Data-intensive applications, challenges, techniques and technologies: A survey on Big Data |
| URI | https://dx.doi.org/10.1016/j.ins.2014.01.015 https://www.proquest.com/docview/1629360699 |
| Volume | 275 |
| WOSCitedRecordID | wos000337199200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcY7MAOE4MhPsbkSWgHipFDnNjerRTQNiG0A5O6XSzHsaFoCqhNEX_-XmInDUWgcZhURU2UPLl5v74vvw-EdlmcOycjSzgVOWFaUyKNtCSxWSJSl4skzethE_z8XAyH8kcoIZjU4wR4UYj7e3n7X1kN14DZVensC9jdEoUL8B2YDkdgOxz_ifHHutRk1Gamd3eoq_dpmukp9VnbwtW3ai6bQPvIp8r1e5Pp-A7EBmDkaHTZO_aVbK05G4qZagwFXdra6D5U0xuE8o_BwdnBoyj14GpakF86aM8QfIgYqZvBdgUqeJ-VW9IVqIc86YjE2BeJBu0a-_6ajwS3jyFcg7dR9VCPWN1L1Rd6PmySPae82pTCJlvtWgEJVZFQNIJP8gotwYIkSLyl_reT4fdZ1Sz3O9nNT2j2vOvsv7l1PGW1zOnv2ii5WEFvgzeB-x4F79CCLVbRm06PyVW0EypT8Gfc4RYOMn0N_X6IF9zFyz6eoWUfz7CCASu4i5UvuI89UjDQBqTgiup79PP05GLwlYSBG8TEMS2J0JQ7mkeppdaBZZ-lMbcSHFCZCesOLXOZzJ0xJgNDVuQ8TqiRqbOUObDUtYvX0WJxU9gNhOHGXGrwpQ1nLONMC6kTJ3SkDafcmk1EmxeqTOhGXw1F-aOeZOQm2msfufWtWJ67mTVcUgH_3kZUgLjnHvvUcFSBnK02z3Rhb6YTFaVgGIO3L-XWS9axjZZn_5sPaLEcT-0Oem3uytFk_DFA8i_ui6Cg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-intensive+applications%2C+challenges%2C+techniques+and+technologies%3A+A+survey+on+Big+Data&rft.jtitle=Information+sciences&rft.au=Philip+Chen%2C+C.L.&rft.au=Zhang%2C+Chun-Yang&rft.date=2014-08-10&rft.issn=0020-0255&rft.volume=275&rft.spage=314&rft.epage=347&rft_id=info:doi/10.1016%2Fj.ins.2014.01.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2014_01_015 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |