A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis

We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V , E , w ) into three disjoint subsets V 1 , V 2 , and V 3 such that the sum of edge weights cross different parts is maximized subject to |...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 87; číslo 2-4; s. 917 - 937
Hlavní autori: Sun, Jian, Zhang, Zan-Bo, Chen, Yannan, Han, Deren, Du, Donglei, Zhang, Xiaoyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2023
Springer
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V , E , w ) into three disjoint subsets V 1 , V 2 , and V 3 such that the sum of edge weights cross different parts is maximized subject to | | V i | - | V l | | ≤ B ( ∀ i ≠ l ∈ { 1 , 2 , 3 } ) for a given parameter B . This problem is NP-hard because it includes some well-known problems like the max 3-section problem and the max 3-cut problem as special cases. We formulate the MH3C-LU as a ternary quadratic program and present a randomized approximation algorithm based on the complex semidefinite programming relaxation technique.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01183-7