A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis

We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V , E , w ) into three disjoint subsets V 1 , V 2 , and V 3 such that the sum of edge weights cross different parts is maximized subject to |...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 87; no. 2-4; pp. 917 - 937
Main Authors: Sun, Jian, Zhang, Zan-Bo, Chen, Yannan, Han, Deren, Du, Donglei, Zhang, Xiaoyan
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2023
Springer
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V , E , w ) into three disjoint subsets V 1 , V 2 , and V 3 such that the sum of edge weights cross different parts is maximized subject to | | V i | - | V l | | ≤ B ( ∀ i ≠ l ∈ { 1 , 2 , 3 } ) for a given parameter B . This problem is NP-hard because it includes some well-known problems like the max 3-section problem and the max 3-cut problem as special cases. We formulate the MH3C-LU as a ternary quadratic program and present a randomized approximation algorithm based on the complex semidefinite programming relaxation technique.
AbstractList We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V , E , w ) into three disjoint subsets V 1 , V 2 , and V 3 such that the sum of edge weights cross different parts is maximized subject to | | V i | - | V l | | ≤ B ( ∀ i ≠ l ∈ { 1 , 2 , 3 } ) for a given parameter B . This problem is NP-hard because it includes some well-known problems like the max 3-section problem and the max 3-cut problem as special cases. We formulate the MH3C-LU as a ternary quadratic program and present a randomized approximation algorithm based on the complex semidefinite programming relaxation technique.
We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph [Formula omitted] into three disjoint subsets [Formula omitted], [Formula omitted], and [Formula omitted] such that the sum of edge weights cross different parts is maximized subject to [Formula omitted] ( [Formula omitted]) for a given parameter B. This problem is NP-hard because it includes some well-known problems like the max 3-section problem and the max 3-cut problem as special cases. We formulate the MH3C-LU as a ternary quadratic program and present a randomized approximation algorithm based on the complex semidefinite programming relaxation technique.
Audience Academic
Author Zhang, Zan-Bo
Chen, Yannan
Han, Deren
Sun, Jian
Du, Donglei
Zhang, Xiaoyan
Author_xml – sequence: 1
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology
– sequence: 2
  givenname: Zan-Bo
  surname: Zhang
  fullname: Zhang, Zan-Bo
  organization: School of Statistics and Mathematics, Guangdong University of Finance and Economics
– sequence: 3
  givenname: Yannan
  surname: Chen
  fullname: Chen, Yannan
  organization: School of Mathematical Sciences, South China Normal University
– sequence: 4
  givenname: Deren
  surname: Han
  fullname: Han, Deren
  organization: School of Mathematical Sciences, Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), Beihang University
– sequence: 5
  givenname: Donglei
  surname: Du
  fullname: Du, Donglei
  organization: Faculty of Management, University of New Brunswick
– sequence: 6
  givenname: Xiaoyan
  orcidid: 0000-0002-2224-1484
  surname: Zhang
  fullname: Zhang, Xiaoyan
  email: zhangxiaoyan@njnu.edu.cn
  organization: School of Mathematical Science and Institute of Mathematics, Nanjing Normal University
BookMark eNp9kMtqAyEUhqW00CTtC3TlC5gedSY63YXQGwS6adbiOGcSw9zQCW3evjbpqosgB-Xo58_5puS66zsk5IHDnAOox8hBF5qBEAw415KpKzLhuZJMFHxxTSZQiJzlAPyWTGPcA0ChczEhmyVt7bdvDy3dHQcM22CHHZXMHUY6hL5ssKVfftzRxrd-xIoeutI2tnP4RO2QXiTWjr7vqO2qVLY5Rh_vyE1tm4j3f_uMbF6eP1dvbP3x-r5arpmTEkamdW0FFoVCrS0W3ErhMgc8ywDrRS0d8rJKF7LWKBZapZNCyLOyEpWAUskZmZ__3doGje_qfgzWpVVh611SVPvUXyrFQfFFxhMgzoALfYwBazOENEA4Gg7m16Q5mzTJpDmZNL8p-h_k_HgaOqX55jIqz2hMOd0Wg9n3h5AsxUvUD8WGizY
CitedBy_id crossref_primary_10_1016_j_dam_2025_05_033
crossref_primary_10_26599_TST_2024_9010214
Cites_doi 10.1016/j.jalgor.2004.11.003
10.1007/BF02523688
10.1007/s11425-010-3087-7
10.1137/17M115075X
10.1007/3-540-48777-8_2
10.1007/s11425-014-4900-5
10.1007/11561071_19
10.1007/PL00011415
10.1007/3-540-49116-3_22
10.1016/j.jcss.2003.07.012
10.1007/s11425-012-4512-x
10.1016/j.tcs.2007.05.036
10.1287/opre.36.3.493
10.1016/S0020-0190(98)00021-0
10.1137/S0097539705447372
10.1145/321958.321975
10.1016/j.dam.2002.07.001
10.1002/rsa.10035
10.1145/2907052
10.1137/1.9781611973099.33
10.1145/227683.227684
10.1137/130909597
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10898-022-01183-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 937
ExternalDocumentID A771071641
10_1007_s10898_022_01183_7
GrantInformation_xml – fundername: Guangdong Province Higher Education Foundation
  grantid: 2021ZDZX1071
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 06446
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: National Natural Science Foundation of China
  grantid: 11871081; U1811461
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12131004
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515010900
  funderid: http://dx.doi.org/10.13039/501100003453
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2020A1515010489
  funderid: http://dx.doi.org/10.13039/501100021171
– fundername: National Natural Science Foundation of China
  grantid: 11871280
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12171168
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c330t-88fa2e997e88ae91a32c4c01440ef6f3ce1bdae93f8e2687e937e054bd2d20b73
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810846800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Sat Nov 29 10:30:57 EST 2025
Tue Nov 18 21:26:10 EST 2025
Sat Nov 29 01:59:37 EST 2025
Fri Feb 21 02:44:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2-4
Keywords Complex semidefinite programming
Randomized algorithm
Approximation algorithm
Max hypergraph 3-cut
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-88fa2e997e88ae91a32c4c01440ef6f3ce1bdae93f8e2687e937e054bd2d20b73
ORCID 0000-0002-2224-1484
PageCount 21
ParticipantIDs gale_infotracacademiconefile_A771071641
crossref_primary_10_1007_s10898_022_01183_7
crossref_citationtrail_10_1007_s10898_022_01183_7
springer_journals_10_1007_s10898_022_01183_7
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2023
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References GoemansM-XWilliamsonD-PApproximation algorithms for max-3-cut and other problems via complex semidefinite programmingJ. Comput. Syst. Sci.2004682442470205910310.1016/j.jcss.2003.07.0121093.90038
XuZHongMLuoZ-QSemidefinite approximation for mixed binary quadratically constrained quadratic programsSIAM J. Optim.201424312651293324804110.1137/1309095971321.90101
BarahonaFGrötschelMReineltGAn application of combinatorial optimization to statistical physics and circuit layout designOper. Res.198836349351310.1287/opre.36.3.4930646.90084
HuangYZhangSApproximation algorithms for indefinite complex quadratic maximization problemsSci. China Math.2010531026972708272827210.1007/s11425-010-3087-71209.90284
LuCLiuY-FZhangW-QZhangS-ZTightness of a new and enhanced semidefinite relaxation for MIMO detectionSIAM J. Optim.2019291719742391941410.1137/17M115075X1412.90104
Hayrapetyan, A., Kempe, D., Pal, M., Svitkina, Z.: Unbalance graph cuts. In: Proceedings of the 13th Annual European Symposium, pp. 191–202 (2005)
SahniSGonzalesTP-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152
GoemansM-XWilliamsonD-PImproved approximation algorithms for maximum Cut and satisfiability problem using semidefinite programmingJ. ACM199542611151145141222810.1145/227683.2276840885.68088
AnderssonGEngebretsenLBetter approximation algorithms for set splitting and NOT-ALL-EQUAL SATInf. Process. Lett.1998656305311162165110.1016/S0020-0190(98)00021-01338.68286
XiaYNew semidefinite programming relaxations for box constrained quadratic programSci. China Math.2013564877886303484810.1007/s11425-012-4512-x1302.90135
XuBYuXZhangXZhangZAn SDP randomized approximation algorithm for max hypergraph cut with limited unbalanceSci. China Math.2014571224372462327539610.1007/s11425-014-4900-51335.49053
FriezeA-MJerrumMImproved approximation algorithms for max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut and max bisectionAlgorithmica19971816781143202910.1007/BF025236880873.68078
HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct. Algorithms2002203382402190061410.1002/rsa.100351017.68089
Raghavendra, P., Tan, N.: Approximating CSPs with global cardinality constraints using SDP hierarchies. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 373–387 (2012)
ZhangJYeYHanQImproved approximations for max set splitting and max NAE SATDiscrete Appl. Math.20041421–3133149207508810.1016/j.dam.2002.07.0011122.68154
Andersson, G.: An approximation algorithm for max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-section. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, vol. 1563, pp. 237–247 (1999)
KhotSKindlerGMosselEO’DonnellROptimal inapproximability results formax-cut and other 2-variable CSPs?SIAM J. Comput.2007371319357230629510.1137/S00975397054473721135.68019
FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} rounding technique for semidefinite programsJ. Algorithms2006601123222894210.1016/j.jalgor.2004.11.0031113.90116
GalbiatiGMaffioliFApproximation algorithms for maximum cut with limited unbalanceTheoret. Comput. Sci.20073851–37887235624310.1016/j.tcs.2007.05.0361124.68117
AustrinPBenabbasSGeorgiouKBetter balance by being biased: a 0.8776-approximation for max bisectionACM Trans. Algorithms2016131127359810610.1145/29070521422.68283
Ageev, A.-A., Sviridenko, M.-I.: Approximation algorithms for maximum coverage and Max-Cut with given sizes of parts. In: Proceedings of the 7th Integer Programming and Combinatorial Optimization, pp. 17–30 (1999)
YeYA. 699-approximation algorithm for max-bisectionMath. Program.2001901101111181978810.1007/PL000114151059.90119
G Andersson (1183_CR3) 1998; 65
S Khot (1183_CR14) 2007; 37
C Lu (1183_CR15) 2019; 29
G Galbiati (1183_CR8) 2007; 385
S Sahni (1183_CR17) 1976; 23
1183_CR12
Y Xia (1183_CR18) 2013; 56
1183_CR16
1183_CR2
P Austrin (1183_CR4) 2016; 13
1183_CR1
E Halperin (1183_CR11) 2002; 20
Y Huang (1183_CR13) 2010; 53
M-X Goemans (1183_CR9) 1995; 42
F Barahona (1183_CR5) 1988; 36
Z Xu (1183_CR20) 2014; 24
B Xu (1183_CR19) 2014; 57
Y Ye (1183_CR21) 2001; 90
M-X Goemans (1183_CR10) 2004; 68
U Feige (1183_CR6) 2006; 60
A-M Frieze (1183_CR7) 1997; 18
J Zhang (1183_CR22) 2004; 142
References_xml – reference: Andersson, G.: An approximation algorithm for max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-section. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, vol. 1563, pp. 237–247 (1999)
– reference: GoemansM-XWilliamsonD-PImproved approximation algorithms for maximum Cut and satisfiability problem using semidefinite programmingJ. ACM199542611151145141222810.1145/227683.2276840885.68088
– reference: KhotSKindlerGMosselEO’DonnellROptimal inapproximability results formax-cut and other 2-variable CSPs?SIAM J. Comput.2007371319357230629510.1137/S00975397054473721135.68019
– reference: XuBYuXZhangXZhangZAn SDP randomized approximation algorithm for max hypergraph cut with limited unbalanceSci. China Math.2014571224372462327539610.1007/s11425-014-4900-51335.49053
– reference: YeYA. 699-approximation algorithm for max-bisectionMath. Program.2001901101111181978810.1007/PL000114151059.90119
– reference: HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct. Algorithms2002203382402190061410.1002/rsa.100351017.68089
– reference: LuCLiuY-FZhangW-QZhangS-ZTightness of a new and enhanced semidefinite relaxation for MIMO detectionSIAM J. Optim.2019291719742391941410.1137/17M115075X1412.90104
– reference: Raghavendra, P., Tan, N.: Approximating CSPs with global cardinality constraints using SDP hierarchies. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 373–387 (2012)
– reference: Hayrapetyan, A., Kempe, D., Pal, M., Svitkina, Z.: Unbalance graph cuts. In: Proceedings of the 13th Annual European Symposium, pp. 191–202 (2005)
– reference: HuangYZhangSApproximation algorithms for indefinite complex quadratic maximization problemsSci. China Math.2010531026972708272827210.1007/s11425-010-3087-71209.90284
– reference: FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document} rounding technique for semidefinite programsJ. Algorithms2006601123222894210.1016/j.jalgor.2004.11.0031113.90116
– reference: GoemansM-XWilliamsonD-PApproximation algorithms for max-3-cut and other problems via complex semidefinite programmingJ. Comput. Syst. Sci.2004682442470205910310.1016/j.jcss.2003.07.0121093.90038
– reference: XuZHongMLuoZ-QSemidefinite approximation for mixed binary quadratically constrained quadratic programsSIAM J. Optim.201424312651293324804110.1137/1309095971321.90101
– reference: XiaYNew semidefinite programming relaxations for box constrained quadratic programSci. China Math.2013564877886303484810.1007/s11425-012-4512-x1302.90135
– reference: ZhangJYeYHanQImproved approximations for max set splitting and max NAE SATDiscrete Appl. Math.20041421–3133149207508810.1016/j.dam.2002.07.0011122.68154
– reference: AustrinPBenabbasSGeorgiouKBetter balance by being biased: a 0.8776-approximation for max bisectionACM Trans. Algorithms2016131127359810610.1145/29070521422.68283
– reference: FriezeA-MJerrumMImproved approximation algorithms for max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut and max bisectionAlgorithmica19971816781143202910.1007/BF025236880873.68078
– reference: BarahonaFGrötschelMReineltGAn application of combinatorial optimization to statistical physics and circuit layout designOper. Res.198836349351310.1287/opre.36.3.4930646.90084
– reference: AnderssonGEngebretsenLBetter approximation algorithms for set splitting and NOT-ALL-EQUAL SATInf. Process. Lett.1998656305311162165110.1016/S0020-0190(98)00021-01338.68286
– reference: SahniSGonzalesTP-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152
– reference: Ageev, A.-A., Sviridenko, M.-I.: Approximation algorithms for maximum coverage and Max-Cut with given sizes of parts. In: Proceedings of the 7th Integer Programming and Combinatorial Optimization, pp. 17–30 (1999)
– reference: GalbiatiGMaffioliFApproximation algorithms for maximum cut with limited unbalanceTheoret. Comput. Sci.20073851–37887235624310.1016/j.tcs.2007.05.0361124.68117
– volume: 60
  start-page: 1
  issue: 1
  year: 2006
  ident: 1183_CR6
  publication-title: J. Algorithms
  doi: 10.1016/j.jalgor.2004.11.003
– volume: 18
  start-page: 67
  issue: 1
  year: 1997
  ident: 1183_CR7
  publication-title: Algorithmica
  doi: 10.1007/BF02523688
– volume: 53
  start-page: 2697
  issue: 10
  year: 2010
  ident: 1183_CR13
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-010-3087-7
– volume: 29
  start-page: 719
  issue: 1
  year: 2019
  ident: 1183_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M115075X
– ident: 1183_CR1
  doi: 10.1007/3-540-48777-8_2
– volume: 57
  start-page: 2437
  issue: 12
  year: 2014
  ident: 1183_CR19
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-014-4900-5
– ident: 1183_CR12
  doi: 10.1007/11561071_19
– volume: 90
  start-page: 101
  issue: 1
  year: 2001
  ident: 1183_CR21
  publication-title: Math. Program.
  doi: 10.1007/PL00011415
– ident: 1183_CR2
  doi: 10.1007/3-540-49116-3_22
– volume: 68
  start-page: 442
  issue: 2
  year: 2004
  ident: 1183_CR10
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2003.07.012
– volume: 56
  start-page: 877
  issue: 4
  year: 2013
  ident: 1183_CR18
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-012-4512-x
– volume: 385
  start-page: 78
  issue: 1–3
  year: 2007
  ident: 1183_CR8
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2007.05.036
– volume: 36
  start-page: 493
  issue: 3
  year: 1988
  ident: 1183_CR5
  publication-title: Oper. Res.
  doi: 10.1287/opre.36.3.493
– volume: 65
  start-page: 305
  issue: 6
  year: 1998
  ident: 1183_CR3
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(98)00021-0
– volume: 37
  start-page: 319
  issue: 1
  year: 2007
  ident: 1183_CR14
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447372
– volume: 23
  start-page: 555
  issue: 3
  year: 1976
  ident: 1183_CR17
  publication-title: J. ACM
  doi: 10.1145/321958.321975
– volume: 142
  start-page: 133
  issue: 1–3
  year: 2004
  ident: 1183_CR22
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2002.07.001
– volume: 20
  start-page: 382
  issue: 3
  year: 2002
  ident: 1183_CR11
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.10035
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  ident: 1183_CR4
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2907052
– ident: 1183_CR16
  doi: 10.1137/1.9781611973099.33
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  ident: 1183_CR9
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– volume: 24
  start-page: 1265
  issue: 3
  year: 2014
  ident: 1183_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/130909597
SSID ssj0009852
Score 2.3860986
Snippet We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph H = ( V...
We consider the max hypergraph 3-cut problem with limited unbalance (MH3C-LU). The objective is to divide the vertex set of an edge-weighted hypergraph...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 917
SubjectTerms Algorithms
Analysis
Computer Science
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Relaxation
Title A maximum hypergraph 3-cut problem with limited unbalance: approximation and analysis
URI https://link.springer.com/article/10.1007/s10898-022-01183-7
Volume 87
WOSCitedRecordID wos000810846800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6tA_bw9JkG8s-ih4G7dgEtpRY0t7CWNhLQ1mbkjcjyTIrJN6Ik7E_fydZzgeMwPZgsLEkxJ1OupP0-x3Au5QVVmRuRI3M_G6VMVSVtqCJ0hiNSPQJrAzJJsR0KudzdRNBYXV72709kgwz9R7YTXo4GPNXCXAgUvEITnG5k94cv93e76h2Zcizkyg2oiOchSNU5u9tHCxH7aR8eCQaVppJ9__6eA5Po2dJxs1Q6MGJq_rQbbM2kGjEfXiyR0GIX9db3ta6D71YqiZXkY_6_TOYjclS_35YbpbkO0atq8BxTTi1mzWJ-WiI384liwYsRTaV8RcmrftEAmU51g36J7oq8GlYUJ7DbPLl7vNXGrMxUMt5sqZSlpo5pYSTUjuVas7s0PqALHFlVnLrUlPgD15KxzIp8E04dAhNwQqWGMFfQKf6UbmXQJTOMDAp0fczZqi01Rijj1xZOM0lc9wMIG2VkttIVe4zZizyHcmyF3SOgs6DoHMxgA_bOj8boo6jpS-9rnNvxdiy1RGMgP3zfFj5WKDn5UPJdAAfW1Xn0bzrIw2_-rfir-Gxz1_fgBvfQGe92ri3cGZ_rR_q1UUY138AUujwnQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9aW2j74MfV0qu25qFgSw3sJnebxLdDKop6lKrFt5Bksyh4q9zeiX9-J9msH1AE-7CwyyYhzORjJpnfbwC-5qx0ovBDamURTquspapyJc2UQW9Eok3gZEw2IcZjeXamfiVQWNNFu3dXknGlfgB2kwEOxkIoAQ5EKl7CqwHuWCGQ7_fxn3uqXRnz7GSKDekQV-EElfl3G4-2o25RfnwlGnea3aX_6-MyLCbLkozaobACL3zdg6UuawNJk7gH7x5QEOLX0R1va9ODlVSqId8SH_X393A6IhNzezGZT8g5eq3TyHFNOHXzGUn5aEg4ziWXLViKzGsbAiad3yaRshzrRv0TU5f4tCwoq3C6-_NkZ4-mbAzUcZ7NqJSVYV4p4aU0XuWGMzdwwSHLfFVU3PnclviDV9KzQgp8Ex4NQluykmVW8A-wUF_V_iMQZQp0TCq0_awdKOMM-uhDX5XecMk8t33IO6Vol6jKQ8aMS31PshwErVHQOgpaiz78uKtz3RJ1PFl6M-hah1mMLTuTwAjYv8CHpUcCLa_gSuZ92OpUrdP0bp5o-NPzim_Am72To0N9uD8-WIO3IZd9C3Rch4XZdO4_w2t3M7topl_iGP8LodbzgQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BaxQxFH7UVkQPrV0rXbWag6BiQ2eS3UnS29J2UdSloJXeQpLJ0EJ3WnZnpT-_L5lMuwUpiIeBGSYJIXlJ3kvyfR_A-5yVThR-SK0swm6VtVRVrqSZMhiNSPQJnIxiE2Iykaen6ngJxR9vu3dHki2mIbA01c3eVVntLQHfZICGsXCtAI2SikewNgiiQSFe__n7jnZXRs2dTLEhHeKMnGAzfy_j3tLUTdD3j0fjqjPe-P_6Pof15HGSUWsim7Di6x5sdGoOJA3uHjxboibErx-3fK7zHmymVHPyMfFUf3oBJyMyNdfn08WUnGE0O4vc14RTt2hI0qkhYZuXXLQgKrKobbhI6fw-iVTmmDfaBTF1iU_LjrIFJ-OjXwdfaFJpoI7zrKFSVoZ5pYSX0niVG87cwIVALfNVUXHnc1viD15Jzwop8E14dBRtyUqWWcFfwmp9WfttIMoUGLBU6BNaO1DGGYzdh74qveGSeW77kHcdpF2iMA9KGhf6jnw5NLTGhtaxobXow-fbPFctgceDqT-EftdhdGPJziSQAtYv8GTpkUCPLISYeR92u27XadjPHyj41b8lfwdPjg_H-vvXybfX8DRI3Lf4xzew2swWfgceuz_N-Xz2Npr7DSZf_GU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maximum+hypergraph+3-cut+problem+with+limited+unbalance%3A+approximation+and+analysis&rft.jtitle=Journal+of+global+optimization&rft.au=Sun%2C+Jian&rft.au=Zhang%2C+Zan-Bo&rft.au=Chen%2C+Yannan&rft.au=Han%2C+Deren&rft.date=2023-11-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=87&rft.issue=2-4&rft.spage=917&rft_id=info:doi/10.1007%2Fs10898-022-01183-7&rft.externalDocID=A771071641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon