Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in...
Uloženo v:
| Vydáno v: | Remote sensing of environment Ročník 299; s. 113856 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.12.2023
|
| Témata: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city.
•A new multimodal remote sensing benchmark for cross-city semantic segmentation.•Propose a high-resolution domain adaptation network for semantic segmentation.•Balance spatial topology, domain gaps, eases city class imbalance with Dice loss. |
|---|---|
| AbstractList | Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city.
•A new multimodal remote sensing benchmark for cross-city semantic segmentation.•Propose a high-resolution domain adaptation network for semantic segmentation.•Balance spatial topology, domain gaps, eases city class imbalance with Dice loss. Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city. |
| ArticleNumber | 113856 |
| Author | Hong, Danfeng Li, Chenyu Zhang, Bing Li, Yuxuan Li, Hao Werner, Martin Yao, Jing Chanussot, Jocelyn Zipf, Alexander Zhu, Xiao Xiang |
| Author_xml | – sequence: 1 givenname: Danfeng surname: Hong fullname: Hong, Danfeng email: hongdf@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 2 givenname: Bing surname: Zhang fullname: Zhang, Bing email: zb@radi.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 3 givenname: Hao surname: Li fullname: Li, Hao email: hao_bgd.li@tum.de organization: Big Geospatial Data Management, Technical University of Munich, Munich 85521, Germany – sequence: 4 givenname: Yuxuan surname: Li fullname: Li, Yuxuan email: liyuxuan231@mails.ucas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 5 givenname: Jing surname: Yao fullname: Yao, Jing email: yaojing@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China – sequence: 6 givenname: Chenyu surname: Li fullname: Li, Chenyu email: lichenyu@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing 210096, China – sequence: 7 givenname: Martin surname: Werner fullname: Werner, Martin email: martin.werner@tum.de organization: Big Geospatial Data Management, Technical University of Munich, Munich 85521, Germany – sequence: 8 givenname: Jocelyn surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@grenoble-inp.fr organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble 38000, France – sequence: 9 givenname: Alexander surname: Zipf fullname: Zipf, Alexander email: zipf@uni-heidelberg.de organization: Institute of Geography, Heidelberg University, Heidelberg 69120, Germany – sequence: 10 givenname: Xiao Xiang surname: Zhu fullname: Zhu, Xiao Xiang email: xiaoxiang.zhu@tum.de organization: Data Science in Earth Observation, Technical University of Munich, Munich 80333, Germany |
| BookMark | eNp9kc1O3DAUha2KSh0oD8DOy24y2HESJ2WFRuVHQmLTri3HuZnxENuDr0PFk_C6mBkkJBYsLFvX57vSOeeYHPnggZAzzpac8eZ8u4wIy5KVYsm5aOvmG1nwVnYFk6w6IgvGRFVUZS1_kGPELWO8biVfkJdVDIiFsemZOp0SRPxNL6mbp2RdGPREI7iQgCJ4tH5Ne_Bm43R8oINOGiHRMURqPrYgOO2TNfmxduCTTjZ4Ou_hjV1viggYpnk_HYLT1lM96N27zkP6H-ID_iTfRz0hnL7fJ-Tf1Z-_q5vi7v76dnV5VxghWCrkCLLkQsux5mNdSy6rfHRnBK_avusaqAG6ntf90EAv8w9rW1ma1nSi6wWIE_LrsHcXw-MMmJSzaGCatIcwoxKsYlUpRdNmKT9I92YjjGoXbU7iWXGm3kpQW5VLUG8lqEMJmZGfmJzR3mmK2k5fkhcHErL7JwtRobE5exhsBJPUEOwX9CtVHqea |
| CitedBy_id | crossref_primary_10_1109_TGRS_2025_3540269 crossref_primary_10_1080_10095020_2024_2387457 crossref_primary_10_1080_10095020_2025_2505551 crossref_primary_10_1109_LGRS_2023_3346929 crossref_primary_10_1002_cpe_8312 crossref_primary_10_1080_01431161_2025_2513561 crossref_primary_10_1109_TII_2024_3366983 crossref_primary_10_3390_rs16071214 crossref_primary_10_1049_ipr2_70053 crossref_primary_10_3390_rs17132229 crossref_primary_10_1016_j_inffus_2025_103042 crossref_primary_10_1109_JSTARS_2024_3413323 crossref_primary_10_1109_JSTARS_2024_3481248 crossref_primary_10_1109_TGRS_2024_3362895 crossref_primary_10_1109_TGRS_2024_3422007 crossref_primary_10_1109_JSTARS_2024_3399600 crossref_primary_10_1109_TGRS_2024_3403727 crossref_primary_10_1109_JSTARS_2024_3378348 crossref_primary_10_1016_j_neucom_2025_129995 crossref_primary_10_1016_j_knosys_2025_114182 crossref_primary_10_1109_LGRS_2024_3441938 crossref_primary_10_1109_TGRS_2025_3567751 crossref_primary_10_1109_JSTARS_2024_3370508 crossref_primary_10_1007_s11069_024_06815_7 crossref_primary_10_1016_j_inffus_2025_103717 crossref_primary_10_1109_TG_2024_3369330 crossref_primary_10_1109_TPAMI_2024_3362475 crossref_primary_10_1080_15481603_2025_2478689 crossref_primary_10_1109_JSTARS_2024_3358851 crossref_primary_10_1109_TGRS_2025_3566305 crossref_primary_10_1016_j_eswa_2025_127029 crossref_primary_10_1016_j_patcog_2025_111579 crossref_primary_10_1109_TGRS_2025_3559557 crossref_primary_10_1109_JSTARS_2024_3379579 crossref_primary_10_1109_TGRS_2024_3426981 crossref_primary_10_1088_1361_6501_ad86da crossref_primary_10_1109_TGRS_2024_3368091 crossref_primary_10_1016_j_patcog_2024_110546 crossref_primary_10_1109_TGRS_2024_3361211 crossref_primary_10_1109_TGRS_2025_3529129 crossref_primary_10_1016_j_compag_2024_109245 crossref_primary_10_1109_TNNLS_2024_3401589 crossref_primary_10_1109_ACCESS_2024_3494023 crossref_primary_10_1080_14498596_2024_2383881 crossref_primary_10_1117_1_JRS_18_014525 crossref_primary_10_1007_s40194_025_02060_z crossref_primary_10_1080_17538947_2024_2308734 crossref_primary_10_1109_JSTARS_2024_3394704 crossref_primary_10_1109_TGRS_2024_3524058 crossref_primary_10_1109_JSTARS_2023_3346454 crossref_primary_10_1016_j_eswa_2025_128110 crossref_primary_10_1109_TGRS_2025_3590623 crossref_primary_10_1109_JSEN_2023_3343917 crossref_primary_10_1109_TGRS_2025_3564216 crossref_primary_10_1109_TGRS_2024_3399003 crossref_primary_10_1109_TGRS_2024_3449073 crossref_primary_10_1109_TGRS_2024_3379436 crossref_primary_10_1109_TGRS_2024_3350573 crossref_primary_10_1016_j_inffus_2024_102699 crossref_primary_10_1109_TGRS_2025_3594544 crossref_primary_10_1016_j_jag_2024_104353 crossref_primary_10_1109_TGRS_2024_3362680 crossref_primary_10_1109_TGRS_2024_3505539 crossref_primary_10_1109_JSTARS_2024_3435575 crossref_primary_10_1109_JSTARS_2024_3378695 crossref_primary_10_1109_JSTARS_2024_3522662 crossref_primary_10_1016_j_apenergy_2025_126562 crossref_primary_10_1109_TGRS_2024_3409378 crossref_primary_10_1109_TGRS_2024_3401768 crossref_primary_10_1109_TGRS_2024_3439390 crossref_primary_10_1016_j_engappai_2024_108178 crossref_primary_10_1007_s00530_025_01852_z crossref_primary_10_1080_10106049_2024_2401937 crossref_primary_10_1109_JSTARS_2024_3479073 crossref_primary_10_1109_TGRS_2024_3434382 crossref_primary_10_1016_j_inffus_2024_102689 crossref_primary_10_1109_LGRS_2023_3345946 crossref_primary_10_1016_j_jag_2024_104129 crossref_primary_10_1109_TSMC_2025_3572123 crossref_primary_10_1145_3723009 crossref_primary_10_1016_j_isprsjprs_2024_09_039 crossref_primary_10_1109_ACCESS_2024_3434559 crossref_primary_10_1016_j_rse_2024_114108 crossref_primary_10_1016_j_inffus_2025_103293 crossref_primary_10_1109_JSTARS_2025_3585544 crossref_primary_10_1109_JSTARS_2025_3587845 crossref_primary_10_1109_TGRS_2024_3363777 crossref_primary_10_1109_ACCESS_2025_3549277 crossref_primary_10_1109_TGRS_2024_3360261 crossref_primary_10_1109_TGRS_2024_3419790 crossref_primary_10_1109_TGRS_2025_3529028 crossref_primary_10_1109_TGRS_2024_3382159 crossref_primary_10_1109_TCYB_2024_3416621 crossref_primary_10_1016_j_neunet_2024_106400 crossref_primary_10_1109_JSEN_2024_3381928 crossref_primary_10_1109_JSTARS_2024_3381185 crossref_primary_10_1016_j_rse_2024_114344 crossref_primary_10_1109_TGRS_2024_3431680 crossref_primary_10_1186_s13677_024_00621_z crossref_primary_10_1016_j_imavis_2024_105191 crossref_primary_10_1109_TGRS_2024_3491190 crossref_primary_10_3390_rs16203864 crossref_primary_10_1109_TGRS_2025_3534061 crossref_primary_10_1016_j_knosys_2025_113577 crossref_primary_10_1109_TGRS_2024_3510625 crossref_primary_10_3390_rs17111845 crossref_primary_10_1109_TGRS_2024_3362055 crossref_primary_10_1007_s11069_025_07352_7 crossref_primary_10_1109_JSTARS_2025_3531422 crossref_primary_10_1109_TGRS_2024_3493121 crossref_primary_10_1155_2024_1728801 crossref_primary_10_1049_ell2_70275 crossref_primary_10_1109_TGRS_2024_3386703 crossref_primary_10_1109_TGRS_2024_3473992 crossref_primary_10_1109_TGRS_2025_3570953 crossref_primary_10_1016_j_knosys_2024_111795 crossref_primary_10_26599_BDMA_2024_9020045 crossref_primary_10_1109_TGRS_2024_3490537 crossref_primary_10_1109_JSTARS_2024_3427017 crossref_primary_10_1109_JSEN_2025_3569157 crossref_primary_10_1109_JSTARS_2024_3485528 crossref_primary_10_1109_TGRS_2024_3516840 crossref_primary_10_1109_TGRS_2024_3394462 crossref_primary_10_1109_TGRS_2024_3521411 crossref_primary_10_1109_TGRS_2024_3407967 crossref_primary_10_1109_TGRS_2024_3409903 crossref_primary_10_1109_TGRS_2024_3465225 crossref_primary_10_1109_TGRS_2024_3433619 crossref_primary_10_1016_j_isprsjprs_2024_12_017 crossref_primary_10_1109_JSTARS_2024_3362936 crossref_primary_10_1109_TGRS_2024_3363159 crossref_primary_10_1109_TGRS_2024_3443420 crossref_primary_10_1109_TGRS_2024_3358493 crossref_primary_10_1109_LSP_2024_3358755 crossref_primary_10_1016_j_neucom_2024_129169 crossref_primary_10_1109_TGRS_2025_3528631 crossref_primary_10_1016_j_compag_2024_109204 crossref_primary_10_1016_j_knosys_2024_112535 crossref_primary_10_1016_j_knosys_2024_112413 crossref_primary_10_1109_TGRS_2025_3531478 crossref_primary_10_1016_j_neunet_2024_106224 crossref_primary_10_1109_JSTARS_2024_3376070 crossref_primary_10_1109_JSTARS_2024_3468456 crossref_primary_10_1016_j_eswa_2024_125732 crossref_primary_10_1109_LGRS_2024_3422805 crossref_primary_10_1109_TGRS_2024_3407952 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1109_JSEN_2024_3431241 crossref_primary_10_1109_JSTARS_2024_3350044 crossref_primary_10_1109_JSTARS_2024_3520960 crossref_primary_10_1109_TIP_2025_3531709 crossref_primary_10_1109_TGRS_2024_3445991 crossref_primary_10_1016_j_engappai_2024_108497 crossref_primary_10_1109_TGRS_2024_3392964 crossref_primary_10_1109_TGRS_2024_3471792 crossref_primary_10_1109_TGRS_2025_3598943 crossref_primary_10_1016_j_isprsjprs_2024_05_004 crossref_primary_10_1109_TGRS_2024_3401843 crossref_primary_10_1109_TGRS_2024_3384669 crossref_primary_10_1080_10106049_2025_2538802 crossref_primary_10_1080_17538947_2024_2347457 crossref_primary_10_3390_rs17173120 crossref_primary_10_26599_BDMA_2024_9020026 crossref_primary_10_1109_TGRS_2024_3456754 crossref_primary_10_1080_14498596_2024_2343751 crossref_primary_10_1109_JSEN_2025_3525712 crossref_primary_10_1109_JSTARS_2024_3359647 crossref_primary_10_1016_j_isprsjprs_2024_01_022 crossref_primary_10_1016_j_buildenv_2025_113630 crossref_primary_10_1016_j_neucom_2025_130111 crossref_primary_10_1109_JSEN_2024_3437474 crossref_primary_10_1109_TGRS_2025_3578675 crossref_primary_10_1109_TGRS_2024_3403100 crossref_primary_10_1016_j_jag_2024_104321 crossref_primary_10_1109_LSENS_2024_3503752 crossref_primary_10_1109_ACCESS_2024_3387944 crossref_primary_10_1080_17538947_2024_2328827 crossref_primary_10_1109_TGRS_2024_3402127 crossref_primary_10_1109_TGRS_2024_3442470 crossref_primary_10_1109_TGRS_2025_3527564 crossref_primary_10_1016_j_eswa_2025_127760 crossref_primary_10_1109_TGRS_2025_3568632 crossref_primary_10_1016_j_isprsjprs_2025_02_005 crossref_primary_10_1109_LGRS_2024_3464549 crossref_primary_10_1016_j_engappai_2025_110734 crossref_primary_10_1109_JSTARS_2024_3464758 crossref_primary_10_1080_15481603_2025_2471193 crossref_primary_10_1109_TGRS_2024_3474711 crossref_primary_10_1016_j_infrared_2024_105631 crossref_primary_10_1109_TGRS_2024_3377635 crossref_primary_10_1109_TGRS_2024_3476151 crossref_primary_10_1109_JSTARS_2023_3335288 crossref_primary_10_1109_TGRS_2024_3466909 crossref_primary_10_1109_TGRS_2024_3520879 crossref_primary_10_1016_j_jobe_2025_111904 crossref_primary_10_1080_14498596_2024_2364283 crossref_primary_10_1109_JSTARS_2024_3392812 crossref_primary_10_1109_JSTARS_2025_3559190 crossref_primary_10_1016_j_engappai_2024_108665 crossref_primary_10_1016_j_engappai_2024_108546 crossref_primary_10_1016_j_isprsjprs_2025_01_017 crossref_primary_10_1109_TGRS_2025_3541879 crossref_primary_10_1109_JSTARS_2024_3479212 crossref_primary_10_1109_TAES_2024_3388373 crossref_primary_10_1109_TGRS_2025_3526247 crossref_primary_10_1109_TGRS_2025_3572373 crossref_primary_10_1016_j_microc_2025_112689 crossref_primary_10_1109_TGRS_2024_3400979 crossref_primary_10_1109_TGRS_2024_3525411 crossref_primary_10_1111_mice_70001 crossref_primary_10_1109_TCE_2024_3371451 crossref_primary_10_1109_JSTARS_2024_3465831 crossref_primary_10_1109_JIOT_2025_3529761 crossref_primary_10_1109_TGRS_2024_3477910 crossref_primary_10_1016_j_measurement_2025_118272 crossref_primary_10_1080_0305215X_2024_2338189 crossref_primary_10_1109_TGRS_2023_3334294 crossref_primary_10_1109_TGRS_2024_3413023 crossref_primary_10_1002_jsfa_13668 crossref_primary_10_1007_s11004_024_10158_1 crossref_primary_10_1016_j_jenvman_2024_122615 crossref_primary_10_1080_01431161_2024_2318773 crossref_primary_10_1109_TGRS_2024_3515157 crossref_primary_10_1016_j_compbiomed_2025_110053 crossref_primary_10_1109_TCSVT_2024_3459009 crossref_primary_10_1016_j_engappai_2024_108533 crossref_primary_10_1109_TGRS_2024_3389056 crossref_primary_10_1109_TGRS_2024_3367165 crossref_primary_10_1016_j_knosys_2024_111918 crossref_primary_10_1016_j_knosys_2025_113003 crossref_primary_10_1016_j_imavis_2024_105301 crossref_primary_10_1109_TGRS_2024_3387420 crossref_primary_10_1109_ACCESS_2024_3494660 crossref_primary_10_1109_TGRS_2024_3502401 crossref_primary_10_1109_JSTARS_2024_3353796 crossref_primary_10_1016_j_knosys_2024_112577 crossref_primary_10_1109_TGRS_2024_3360522 crossref_primary_10_1038_s41598_025_13236_4 crossref_primary_10_1109_JSTARS_2024_3375806 crossref_primary_10_1016_j_jag_2024_103666 crossref_primary_10_1016_j_jag_2024_103665 crossref_primary_10_1109_JSEN_2025_3571600 crossref_primary_10_1109_TGRS_2024_3435745 crossref_primary_10_1016_j_inffus_2025_103469 crossref_primary_10_1016_j_engappai_2024_108446 crossref_primary_10_1016_j_jag_2024_103660 crossref_primary_10_1080_01431161_2025_2459214 crossref_primary_10_1109_JSTARS_2025_3569656 crossref_primary_10_1016_j_jag_2024_103662 crossref_primary_10_1080_09540091_2024_2435654 crossref_primary_10_1016_j_jag_2025_104795 crossref_primary_10_1016_j_wasman_2024_10_008 crossref_primary_10_1109_JSTARS_2024_3399310 crossref_primary_10_1109_JSTARS_2025_3581451 crossref_primary_10_1109_TGRS_2025_3542868 crossref_primary_10_1049_sil2_6606572 crossref_primary_10_1016_j_imavis_2024_105334 crossref_primary_10_1080_14498596_2024_2333753 crossref_primary_10_1109_JSTARS_2024_3511256 crossref_primary_10_1109_MGRS_2024_3495516 crossref_primary_10_1109_TGRS_2024_3463187 crossref_primary_10_1109_JSTARS_2024_3349775 crossref_primary_10_1109_TGRS_2024_3403425 crossref_primary_10_1109_JSEN_2023_3343080 crossref_primary_10_1109_TGRS_2024_3368016 crossref_primary_10_1109_TGRS_2024_3525192 crossref_primary_10_1080_22797254_2025_2545341 crossref_primary_10_1109_TGRS_2025_3589487 crossref_primary_10_1109_TGRS_2024_3435079 crossref_primary_10_1109_LGRS_2024_3516854 crossref_primary_10_1109_JSEN_2025_3567354 crossref_primary_10_1109_JSTARS_2024_3403146 crossref_primary_10_3390_rs17101797 crossref_primary_10_1049_cvi2_12320 crossref_primary_10_3390_atmos16010082 crossref_primary_10_1109_TGRS_2024_3446628 crossref_primary_10_1016_j_jag_2024_103671 crossref_primary_10_1016_j_isprsjprs_2024_10_007 crossref_primary_10_1016_j_isprsjprs_2025_01_003 crossref_primary_10_1109_TCYB_2025_3576752 crossref_primary_10_1109_JSTARS_2024_3521959 crossref_primary_10_1007_s00371_024_03284_8 crossref_primary_10_1111_jmi_13372 crossref_primary_10_1109_JSTARS_2024_3472296 crossref_primary_10_1038_s42256_025_01078_8 crossref_primary_10_1109_TGRS_2025_3527483 crossref_primary_10_1016_j_knosys_2025_114231 crossref_primary_10_3389_fpls_2023_1268098 crossref_primary_10_1016_j_neucom_2025_130428 crossref_primary_10_1016_j_isprsjprs_2025_06_030 crossref_primary_10_1109_JSTARS_2024_3386854 crossref_primary_10_1016_j_inffus_2024_102551 crossref_primary_10_3389_fcomp_2024_1455963 crossref_primary_10_1109_JSEN_2024_3416948 crossref_primary_10_1109_JSTARS_2024_3453936 crossref_primary_10_1109_ACCESS_2024_3401240 crossref_primary_10_1109_JSTARS_2024_3459916 crossref_primary_10_1109_TGRS_2024_3515484 crossref_primary_10_1109_TGRS_2024_3401231 crossref_primary_10_1016_j_optlastec_2024_112208 crossref_primary_10_1109_TGRS_2025_3544392 crossref_primary_10_1007_s00371_024_03277_7 crossref_primary_10_1016_j_imavis_2024_105114 crossref_primary_10_14358_PERS_24_00140R3 crossref_primary_10_1109_TGRS_2025_3580479 crossref_primary_10_1016_j_engappai_2024_108078 crossref_primary_10_1007_s11004_024_10170_5 crossref_primary_10_1080_07038992_2024_2430490 crossref_primary_10_1109_JSEN_2024_3380826 crossref_primary_10_1109_TGRS_2024_3453501 crossref_primary_10_1109_TGRS_2025_3569335 crossref_primary_10_1080_01431161_2025_2491817 crossref_primary_10_1109_TGRS_2024_3363427 crossref_primary_10_1109_TGRS_2024_3520161 crossref_primary_10_1109_JSTARS_2023_3347235 crossref_primary_10_1109_JSTARS_2024_3393828 crossref_primary_10_1109_JSTARS_2023_3342461 crossref_primary_10_1109_TGRS_2024_3415002 crossref_primary_10_1016_j_jag_2025_104801 crossref_primary_10_1109_JSTARS_2024_3465231 crossref_primary_10_1109_LGRS_2024_3356422 crossref_primary_10_1109_TGRS_2024_3476089 crossref_primary_10_1109_TGRS_2025_3585489 crossref_primary_10_1109_JSTARS_2024_3384545 crossref_primary_10_1109_TGRS_2025_3579267 crossref_primary_10_1109_TGRS_2024_3362471 crossref_primary_10_1109_TIP_2024_3451933 crossref_primary_10_1080_01431161_2024_2329528 crossref_primary_10_1080_08839514_2024_2411845 crossref_primary_10_3390_rs16214015 crossref_primary_10_7717_peerj_cs_2796 crossref_primary_10_1016_j_knosys_2025_114370 crossref_primary_10_1016_j_patcog_2025_111493 crossref_primary_10_1109_TGRS_2024_3483283 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1109_JSTARS_2024_3349541 crossref_primary_10_1109_TGRS_2025_3591926 crossref_primary_10_1016_j_sigpro_2025_110104 crossref_primary_10_1109_TNSM_2025_3532343 crossref_primary_10_1080_15481603_2025_2534740 crossref_primary_10_1109_JSEN_2025_3549519 crossref_primary_10_1109_TGRS_2024_3409612 crossref_primary_10_32604_cmc_2024_056318 crossref_primary_10_1016_j_jag_2024_103865 crossref_primary_10_1109_TGRS_2024_3399048 crossref_primary_10_1109_TGRS_2025_3561021 crossref_primary_10_1016_j_knosys_2024_111920 crossref_primary_10_1109_ACCESS_2024_3391808 crossref_primary_10_1109_TGRS_2024_3425500 crossref_primary_10_1109_JSTARS_2023_3347572 crossref_primary_10_1109_JSTARS_2024_3482553 crossref_primary_10_1109_TGRS_2024_3403868 crossref_primary_10_1109_JSTARS_2024_3373753 crossref_primary_10_1109_JSTARS_2024_3388464 crossref_primary_10_1109_TGRS_2024_3412790 crossref_primary_10_1016_j_inffus_2024_102408 crossref_primary_10_1109_TGRS_2024_3477933 crossref_primary_10_1109_TGRS_2024_3523097 crossref_primary_10_1109_TGRS_2025_3545926 crossref_primary_10_3390_rs16061001 crossref_primary_10_1109_TGRS_2024_3452550 crossref_primary_10_1109_TGRS_2024_3521238 crossref_primary_10_1016_j_inffus_2024_102787 crossref_primary_10_1109_TGRS_2025_3541441 crossref_primary_10_1109_LGRS_2024_3369619 crossref_primary_10_1109_TGRS_2025_3585229 crossref_primary_10_3390_rs17091645 crossref_primary_10_1109_JSTARS_2025_3528650 crossref_primary_10_59717_j_xinn_geo_2024_100055 crossref_primary_10_1109_TGRS_2024_3481875 crossref_primary_10_1080_10095020_2024_2378920 crossref_primary_10_1109_JSTARS_2025_3583442 crossref_primary_10_1109_JSTARS_2024_3351873 crossref_primary_10_1109_JSTARS_2025_3555567 crossref_primary_10_1109_TGRS_2024_3379355 crossref_primary_10_1109_TGRS_2025_3537638 crossref_primary_10_1016_j_rse_2025_115018 crossref_primary_10_1109_JSTARS_2024_3402122 crossref_primary_10_1109_TGRS_2024_3476975 crossref_primary_10_1109_JSEN_2025_3566079 |
| Cites_doi | 10.1016/j.isprsjprs.2020.06.014 10.1016/j.eswa.2020.114417 10.1016/j.isprsjprs.2018.04.014 10.5194/essd-15-113-2023 10.1016/j.rse.2019.05.022 10.1016/j.rse.2020.111716 10.1109/TGRS.2020.3020804 10.1111/tgis.12941 10.1016/j.rse.2021.112480 10.1016/j.isprsjprs.2022.06.008 10.1016/j.isprsjprs.2021.02.016 10.1109/TPAMI.2016.2644615 10.1109/JPROC.2015.2462751 10.1016/j.isprsjprs.2020.01.013 10.1016/j.isprsjprs.2019.02.006 10.1109/TGRS.2020.3020823 10.1016/j.rse.2019.111446 10.3390/rs11151774 10.1109/JSTARS.2012.2188994 10.1016/j.isprsjprs.2021.02.009 10.1109/JSTARS.2022.3190316 10.1109/TGRS.2022.3230846 10.1016/j.rse.2007.11.012 10.1109/TNNLS.2020.2988928 10.1109/MGRS.2019.2927687 10.1109/TPAMI.2017.2699184 10.1145/3422622 10.1109/TGRS.2020.3016820 10.1109/TGRS.2023.3335484 10.1145/3065386 10.1016/j.isprsjprs.2017.11.011 10.1016/j.rse.2019.111322 10.1016/j.rse.2022.113058 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rse.2023.113856 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2023_113856 S0034425723004078 |
| GeographicLocations | China Germany |
| GeographicLocations_xml | – name: China – name: Germany |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP VOH WUQ XOL ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c330t-7fe7213a7f51f557174717a9c3148b996e5ee9b15bd6eb77a908872c8c939b3e3 |
| ISICitedReferencesCount | 416 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001109906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sun Nov 09 10:31:11 EST 2025 Tue Nov 18 21:21:05 EST 2025 Sat Nov 29 07:26:52 EST 2025 Fri Feb 23 02:36:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning High-resolution network Segmentation Multimodal benchmark datasets Domain adaptation Dice loss Land cover Remote sensing Cross-city |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-7fe7213a7f51f557174717a9c3148b996e5ee9b15bd6eb77a908872c8c939b3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3040427368 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3040427368 crossref_primary_10_1016_j_rse_2023_113856 crossref_citationtrail_10_1016_j_rse_2023_113856 elsevier_sciencedirect_doi_10_1016_j_rse_2023_113856 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-15 |
| PublicationDateYYYYMMDD | 2023-12-15 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Xie, Wang, Yu, Anandkumar, Alvarez, Luo (bb0060) 2021; 34 Yu, Zhang, Dong, Hu, Dong, Zhang (bb0300) 2021; vol. 35 Hansen, Roy, Lindquist, Adusei, Justice, Altstatt (bb0230) 2008; 112 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0195) 2020; 63 Hu, Liu, Hong, Camero, Yao, Schneider, Kurz, Segl, Zhu (bb0225) 2023; 15 Yommy, Liu, Wu (bb0245) 2015; volume 2 Yi, Zhang, Zhang, Zhang, Li, Zhao (bb0030) 2019; 11 Sun, Xiao, Liu, Wang (bb0125) 2019 Kingma, Ba (bb0310) 2014 Okujeni, van der Linden, Hostert (bb0220) 2016 Diakogiannis, Waldner, Caccetta, Wu (bb0035) 2020; 162 Isola, Zhu, Zhou, Efros (bb0295) 2017 Wang, Li, Zhang, Fang, Duan, Meng, Atkinson (bb0045) 2022; 190 Badrinarayanan, Kendall, Cipolla (bb0085) 2017; 39 Li, Herfort, Lautenbach, Chen, Zipf (bb0160) 2022; 26 Dalla Mura, Prasad, Pacifici, Gamba, Chanussot, Benediktsson (bb0065) 2015; 103 Chen, Chen, Chen, Tsai, Wang, Sun (bb0140) 2017 Li, Shi, Zhang, Chen, Wang, Li (bb0165) 2021; 175 Xia, Yokoya, Adriano, Broni-Bediako (bb0210) 2023 Krizhevsky, Sutskever, Hinton (bb0260) 2017; 60 Hong, Yokoya, Xia, Chanussot, Zhu (bb0180) 2020; 167 Wu, Zhang, Huang, Liang, Yu (bb0080) 2019 Wang, Ma, Zhong, Zheng, Zhang (bb0170) 2022; 277 Zhou, Khosla, Lapedriza, Oliva, Torralba (bb0315) 2016 Segl, Guanter, Rogass, Kuester, Roessner, Kaufmann, Sang, Mogulsky, Hofer (bb0215) 2012; 5 Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (bb0155) 2021; 32 Ren, Ma, Hou, Hong, Chanussot, Wang, Jiao (bb0120) 2022; 112 Newell, Yang, Deng (bb0285) 2016 Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0115) 2017; 40 Tong, Xia, Lu, Shen, Li, You, Zhang (bb0150) 2020; 237 Audebert, Saux, Lefèvre (bb0070) 2016 Segal-Rozenhaimer, Li, Das, Chirayath (bb0110) 2020; 237 Hong, Gao, Hang, Zhang, Chanussot (bb0095) 2020; 19 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bb0270) 2015 Wieland, Li, Martinis (bb0100) 2019; 230 Yuan, Shen, Li, Li, Li, Jiang, Xu, Tan, Yang, Wang (bb0005) 2020; 241 Danielson, Gesch (bb0250) 2011 Hong, Yao, Meng, Xu, Chanussot (bb0185) 2021; 59 Hong, Gao, Yokoya, Yao, Chanussot, Du, Zhang (bb0205) 2021; 59 Audebert, Le Saux, Lefèvre (bb0090) 2018; 140 Kemker, Salvaggio, Kanan (bb0025) 2018; 145 Ji, Wang, Luo (bb0190) 2021; 59 Yuan, Shi, Gu (bb0010) 2021; 169 Tsai, Hung, Schulter, Sohn, Yang, Chandraker (bb0145) 2018 Zhao, Zhang, Tao, Li, Liao, Philips (bb0200) 2022; 15 Mao, Li, Xie, Lau, Wang, Smolley (bb0305) 2017 Schultz, Voss, Auer, Carter, Zipf (bb0235) 2017; 63 Ma, Zheng, Wang, Zhong (bb0175) 2023; 61 Li, Sun, Meng, Liang, Wu, Li (bb0290) 2020 Ganin, Lempitsky (bb0135) 2015 Feranec, Soukup, Hazeu, Jaffrain (bb0255) 2016 Gal, Ghahramani (bb0020) 2016 Du, Du, Liu, Zhang (bb0040) 2021; 261 He, Zhou, Zhao, Zhang, Yao, Xue (bb0050) 2022; 60 Simonyan, Zisserman (bb0265) 2015 Kampffmeyer, Salberg, Jenssen (bb0015) 2016 Wurm, Stark, Zhu, Weigand, Taubenböck (bb0105) 2019; 150 Wang, Wang, Yang, Liu, Chen, Gao (bb0055) 2023; 61 Liu, Sun, Hu, Ye, Li, Liu, Cao, Chai, Zhang, Zhang (bb0240) 2019; 7 Ronneberger, Fischer, Brox (bb0275) 2015 Long, Shelhamer, Darrell (bb0075) 2015 Adriano, Yokoya, Xia, Miura, Liu, Matsuoka, Koshimura (bb0130) 2021; 175 Noh, Hong, Han (bb0280) 2015 Okujeni (10.1016/j.rse.2023.113856_bb0220) 2016 Kingma (10.1016/j.rse.2023.113856_bb0310) 2014 Gal (10.1016/j.rse.2023.113856_bb0020) 2016 Dalla Mura (10.1016/j.rse.2023.113856_bb0065) 2015; 103 Zhu (10.1016/j.rse.2023.113856_bb0155) 2021; 32 Li (10.1016/j.rse.2023.113856_bb0160) 2022; 26 Li (10.1016/j.rse.2023.113856_bb0165) 2021; 175 Noh (10.1016/j.rse.2023.113856_bb0280) 2015 Kampffmeyer (10.1016/j.rse.2023.113856_bb0015) 2016 Tsai (10.1016/j.rse.2023.113856_bb0145) 2018 Hong (10.1016/j.rse.2023.113856_bb0185) 2021; 59 Ren (10.1016/j.rse.2023.113856_bb0120) 2022; 112 Danielson (10.1016/j.rse.2023.113856_bb0250) 2011 Badrinarayanan (10.1016/j.rse.2023.113856_bb0085) 2017; 39 Tong (10.1016/j.rse.2023.113856_bb0150) 2020; 237 Adriano (10.1016/j.rse.2023.113856_bb0130) 2021; 175 Chen (10.1016/j.rse.2023.113856_bb0140) 2017 Segl (10.1016/j.rse.2023.113856_bb0215) 2012; 5 Diakogiannis (10.1016/j.rse.2023.113856_bb0035) 2020; 162 Hu (10.1016/j.rse.2023.113856_bb0225) 2023; 15 Isola (10.1016/j.rse.2023.113856_bb0295) 2017 Wurm (10.1016/j.rse.2023.113856_bb0105) 2019; 150 Liu (10.1016/j.rse.2023.113856_bb0240) 2019; 7 Yuan (10.1016/j.rse.2023.113856_bb0005) 2020; 241 Li (10.1016/j.rse.2023.113856_bb0290) 2020 Wang (10.1016/j.rse.2023.113856_bb0170) 2022; 277 Krizhevsky (10.1016/j.rse.2023.113856_bb0260) 2017; 60 Goodfellow (10.1016/j.rse.2023.113856_bb0195) 2020; 63 Zhao (10.1016/j.rse.2023.113856_bb0200) 2022; 15 Sun (10.1016/j.rse.2023.113856_bb0125) 2019 Schultz (10.1016/j.rse.2023.113856_bb0235) 2017; 63 Kemker (10.1016/j.rse.2023.113856_bb0025) 2018; 145 Hong (10.1016/j.rse.2023.113856_bb0095) 2020; 19 Xia (10.1016/j.rse.2023.113856_bb0210) 2023 Hansen (10.1016/j.rse.2023.113856_bb0230) 2008; 112 Long (10.1016/j.rse.2023.113856_bb0075) 2015 Du (10.1016/j.rse.2023.113856_bb0040) 2021; 261 Wu (10.1016/j.rse.2023.113856_bb0080) 2019 Yuan (10.1016/j.rse.2023.113856_bb0010) 2021; 169 He (10.1016/j.rse.2023.113856_bb0050) 2022; 60 Zhou (10.1016/j.rse.2023.113856_bb0315) 2016 Wieland (10.1016/j.rse.2023.113856_bb0100) 2019; 230 Hong (10.1016/j.rse.2023.113856_bb0180) 2020; 167 Hong (10.1016/j.rse.2023.113856_bb0205) 2021; 59 Newell (10.1016/j.rse.2023.113856_bb0285) 2016 Mao (10.1016/j.rse.2023.113856_bb0305) 2017 Yommy (10.1016/j.rse.2023.113856_bb0245) 2015; volume 2 Wang (10.1016/j.rse.2023.113856_bb0045) 2022; 190 Ganin (10.1016/j.rse.2023.113856_bb0135) 2015 Yu (10.1016/j.rse.2023.113856_bb0300) 2021; vol. 35 Segal-Rozenhaimer (10.1016/j.rse.2023.113856_bb0110) 2020; 237 Wang (10.1016/j.rse.2023.113856_bb0055) 2023; 61 Audebert (10.1016/j.rse.2023.113856_bb0090) 2018; 140 Feranec (10.1016/j.rse.2023.113856_bb0255) 2016 Ji (10.1016/j.rse.2023.113856_bb0190) 2021; 59 Ronneberger (10.1016/j.rse.2023.113856_bb0275) 2015 Szegedy (10.1016/j.rse.2023.113856_bb0270) 2015 Audebert (10.1016/j.rse.2023.113856_bb0070) 2016 Ma (10.1016/j.rse.2023.113856_bb0175) 2023; 61 Xie (10.1016/j.rse.2023.113856_bb0060) 2021; 34 Chen (10.1016/j.rse.2023.113856_bb0115) 2017; 40 Yi (10.1016/j.rse.2023.113856_bb0030) 2019; 11 Simonyan (10.1016/j.rse.2023.113856_bb0265) 2015 |
| References_xml | – volume: 237 year: 2020 ident: bb0150 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. – year: 2016 ident: bb0255 article-title: European landscape dynamics: CORINE land cover data – volume: 169 year: 2021 ident: bb0010 article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery publication-title: Expert Syst. Appl. – year: 2015 ident: bb0265 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – volume: 5 start-page: 522 year: 2012 end-page: 530 ident: bb0215 article-title: EeteS—The EnMAP end-to-end simulation tool publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2011 ident: bb0250 article-title: Global multi-resolution terrain elevation data 2010 (GMTED2010) – start-page: 483 year: 2016 end-page: 499 ident: bb0285 article-title: Stacked hourglass networks for human pose estimation publication-title: Proceedings of the European Conference on Computer Vision – volume: 261 year: 2021 ident: bb0040 article-title: Mapping large-scale and fine-grained urban functional zones from vhr images using a multi-scale semantic segmentation network and object based approach publication-title: Remote Sens. Environ. – year: 2014 ident: bb0310 article-title: Adam: A method for stochastic optimization – volume: 15 start-page: 113 year: 2023 end-page: 131 ident: bb0225 article-title: Mdas: a new multimodal benchmark dataset for remote sensing publication-title: Earth Syst. Sci. Data – volume: 7 start-page: 23 year: 2019 end-page: 32 ident: bb0240 article-title: The advanced hyperspectral imager: aboard china’s gaofen-5 satellite publication-title: IEEE Geosci. Remote Sens. Mag. – start-page: 6254 year: 2023 end-page: 6264 ident: bb0210 article-title: Openearthmap: A benchmark dataset for global high-resolution land cover mapping publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 234 year: 2015 end-page: 241 ident: bb0275 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention (MICCAI) – start-page: 1992 year: 2017 end-page: 2001 ident: bb0140 article-title: No more discrimination: Cross city adaptation of road scene segmenters publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – volume: 11 start-page: 1774 year: 2019 ident: bb0030 article-title: Semantic segmentation of urban buildings from vhr remote sensing imagery using a deep convolutional neural network publication-title: Remote Sens. – start-page: 1125 year: 2017 end-page: 1134 ident: bb0295 article-title: Image-to-image translation with conditional adversarial networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 167 start-page: 12 year: 2020 end-page: 23 ident: bb0180 article-title: X-modalnet: a semi-supervised deep cross-modal network for classification of remote sensing data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: bb0195 article-title: Generative adversarial networks publication-title: Commun. ACM – volume: 175 start-page: 132 year: 2021 end-page: 143 ident: bb0130 article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 7472 year: 2018 end-page: 7481 ident: bb0145 article-title: Learning to adapt structured output space for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 277 year: 2022 ident: bb0170 article-title: Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: from airborne to spaceborne imagery publication-title: Remote Sens. Environ. – start-page: 1 year: 2015 end-page: 9 ident: bb0270 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 19 start-page: 1 year: 2020 end-page: 5 ident: bb0095 article-title: Deep encoder-decoder networks for classification of hyperspectral and lidar data publication-title: IEEE Geosci. Remote Sens. – start-page: 3431 year: 2015 end-page: 3440 ident: bb0075 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: vol. 35 start-page: 10754 year: 2021 end-page: 10762 ident: bb0300 article-title: Dast: Unsupervised domain adaptation in semantic segmentation based on discriminator attention and self-training publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 26 start-page: 3125 year: 2022 end-page: 3146 ident: bb0160 article-title: Improving openstreetmap missing building detection using few-shot transfer learning in sub-saharan africa publication-title: Trans. GIS – start-page: 465 year: 2020 end-page: 476 ident: bb0290 article-title: Dice loss for data-imbalanced nlp tasks publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL) – volume: 112 start-page: 2495 year: 2008 end-page: 2513 ident: bb0230 article-title: A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the Congo basin publication-title: Remote Sens. Environ. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: bb0115 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1520 year: 2015 end-page: 1528 ident: bb0280 article-title: Learning deconvolution network for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – start-page: 2921 year: 2016 end-page: 2929 ident: bb0315 article-title: Learning deep features for discriminative localization publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 5693 year: 2019 end-page: 5703 ident: bb0125 article-title: Deep high-resolution representation learning for human pose estimation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 32 start-page: 1713 year: 2021 end-page: 1722 ident: bb0155 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1050 year: 2016 end-page: 1059 ident: bb0020 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 237 year: 2020 ident: bb0110 article-title: Cloud detection algorithm for multi-modal satellite imagery using convolutional neural networks (cnn) publication-title: Remote Sens. Environ. – volume: 34 start-page: 12077 year: 2021 end-page: 12090 ident: bb0060 article-title: Segformer: simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Proces. Syst. – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: bb0090 article-title: Beyond rgb: very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 150 start-page: 59 year: 2019 end-page: 69 ident: bb0105 article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 175 start-page: 20 year: 2021 end-page: 33 ident: bb0165 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: bb0035 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 180 year: 2016 end-page: 196 ident: bb0070 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks publication-title: Proceedings of the Asian Conference on Computer Vision (ACCV) – start-page: 1180 year: 2015 end-page: 1189 ident: bb0135 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 63 start-page: 206 year: 2017 end-page: 213 ident: bb0235 article-title: Open land cover from openstreetmap and remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 103 start-page: 1585 year: 2015 end-page: 1601 ident: bb0065 article-title: Challenges and opportunities of multimodality and data fusion in remote sensing publication-title: Proc. IEEE – start-page: 1 year: 2016 end-page: 9 ident: bb0015 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: 61 start-page: 1 year: 2023 end-page: 17 ident: bb0175 article-title: Domain adaptive land-cover classification via local consistency and global diversity publication-title: IEEE Trans. Geosci. Remote – volume: 15 start-page: 5721 year: 2022 end-page: 5733 ident: bb0200 article-title: Cross-domain classification of multisource remote sensing data using fractional fusion and spatial-spectral domain adaptation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 241 year: 2020 ident: bb0005 article-title: Deep learning in environmental remote sensing: achievements and challenges publication-title: Remote Sens. Environ. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bb0085 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 59 start-page: 4340 year: 2021 end-page: 4354 ident: bb0205 article-title: More diverse means better: multimodal deep learning meets remote-sensing imagery classification publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2016 ident: bb0220 article-title: Berlin-urban-gradient dataset 2009-an enmap preparatory flight campaign – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: bb0050 article-title: Swin transformer embedding unet for remote sensing image semantic segmentation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 145 start-page: 60 year: 2018 end-page: 77 ident: bb0025 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 112 year: 2022 ident: bb0120 article-title: A dual-stream high resolution network: deep fusion of gf-2 and gf-3 data for land cover classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: volume 2 start-page: 260 year: 2015 end-page: 265 ident: bb0245 article-title: Sar image despeckling using refined lee filter publication-title: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics – start-page: 2794 year: 2017 end-page: 2802 ident: bb0305 article-title: Least squares generative adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bb0260 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 190 start-page: 196 year: 2022 end-page: 214 ident: bb0045 article-title: Unetformer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 61 start-page: 1 year: 2023 end-page: 11 ident: bb0055 article-title: Seismic facies segmentation via a segformer-based specific encoder–decoder–hypercolumns scheme publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 230 year: 2019 ident: bb0100 article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network publication-title: Remote Sens. Environ. – volume: 59 start-page: 5103 year: 2021 end-page: 5113 ident: bb0185 article-title: Multimodal gans: toward crossmodal hyperspectral–multispectral image segmentation publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: bb0080 article-title: Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation – volume: 59 start-page: 3816 year: 2021 end-page: 3828 ident: bb0190 article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 5693 year: 2019 ident: 10.1016/j.rse.2023.113856_bb0125 article-title: Deep high-resolution representation learning for human pose estimation – volume: 167 start-page: 12 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0180 article-title: X-modalnet: a semi-supervised deep cross-modal network for classification of remote sensing data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.014 – year: 2011 ident: 10.1016/j.rse.2023.113856_bb0250 – volume: 169 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0010 article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114417 – volume: 145 start-page: 60 year: 2018 ident: 10.1016/j.rse.2023.113856_bb0025 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.014 – volume: 15 start-page: 113 year: 2023 ident: 10.1016/j.rse.2023.113856_bb0225 article-title: Mdas: a new multimodal benchmark dataset for remote sensing publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-15-113-2023 – volume: 230 year: 2019 ident: 10.1016/j.rse.2023.113856_bb0100 article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.022 – start-page: 7472 year: 2018 ident: 10.1016/j.rse.2023.113856_bb0145 article-title: Learning to adapt structured output space for semantic segmentation – start-page: 1 year: 2016 ident: 10.1016/j.rse.2023.113856_bb0015 article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks – volume: 241 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0005 article-title: Deep learning in environmental remote sensing: achievements and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111716 – year: 2014 ident: 10.1016/j.rse.2023.113856_bb0310 – volume: 59 start-page: 3816 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0190 article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3020804 – volume: 26 start-page: 3125 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0160 article-title: Improving openstreetmap missing building detection using few-shot transfer learning in sub-saharan africa publication-title: Trans. GIS doi: 10.1111/tgis.12941 – volume: 261 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0040 article-title: Mapping large-scale and fine-grained urban functional zones from vhr images using a multi-scale semantic segmentation network and object based approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112480 – volume: 190 start-page: 196 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0045 article-title: Unetformer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.06.008 – start-page: 483 year: 2016 ident: 10.1016/j.rse.2023.113856_bb0285 article-title: Stacked hourglass networks for human pose estimation – volume: 175 start-page: 132 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0130 article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.016 – volume: 112 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0120 article-title: A dual-stream high resolution network: deep fusion of gf-2 and gf-3 data for land cover classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0085 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 1050 year: 2016 ident: 10.1016/j.rse.2023.113856_bb0020 article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning – volume: 103 start-page: 1585 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0065 article-title: Challenges and opportunities of multimodality and data fusion in remote sensing publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2462751 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.rse.2023.113856_bb0175 article-title: Domain adaptive land-cover classification via local consistency and global diversity publication-title: IEEE Trans. Geosci. Remote – start-page: 2921 year: 2016 ident: 10.1016/j.rse.2023.113856_bb0315 article-title: Learning deep features for discriminative localization – volume: 162 start-page: 94 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0035 article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.013 – start-page: 1992 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0140 article-title: No more discrimination: Cross city adaptation of road scene segmenters – start-page: 3431 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0075 article-title: Fully convolutional networks for semantic segmentation – volume: 150 start-page: 59 year: 2019 ident: 10.1016/j.rse.2023.113856_bb0105 article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.006 – volume: 59 start-page: 5103 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0185 article-title: Multimodal gans: toward crossmodal hyperspectral–multispectral image segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3020823 – volume: 237 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0110 article-title: Cloud detection algorithm for multi-modal satellite imagery using convolutional neural networks (cnn) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111446 – start-page: 465 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0290 article-title: Dice loss for data-imbalanced nlp tasks – volume: 11 start-page: 1774 year: 2019 ident: 10.1016/j.rse.2023.113856_bb0030 article-title: Semantic segmentation of urban buildings from vhr remote sensing imagery using a deep convolutional neural network publication-title: Remote Sens. doi: 10.3390/rs11151774 – volume: 5 start-page: 522 year: 2012 ident: 10.1016/j.rse.2023.113856_bb0215 article-title: EeteS—The EnMAP end-to-end simulation tool publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2188994 – year: 2016 ident: 10.1016/j.rse.2023.113856_bb0220 – start-page: 180 year: 2016 ident: 10.1016/j.rse.2023.113856_bb0070 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks – volume: 175 start-page: 20 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0165 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.009 – volume: 15 start-page: 5721 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0200 article-title: Cross-domain classification of multisource remote sensing data using fractional fusion and spatial-spectral domain adaptation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3190316 – volume: 63 start-page: 206 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0235 article-title: Open land cover from openstreetmap and remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0050 article-title: Swin transformer embedding unet for remote sensing image semantic segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3230846 – volume: 112 start-page: 2495 year: 2008 ident: 10.1016/j.rse.2023.113856_bb0230 article-title: A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the Congo basin publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.11.012 – volume: 32 start-page: 1713 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0155 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2988928 – start-page: 1520 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0280 article-title: Learning deconvolution network for semantic segmentation – year: 2015 ident: 10.1016/j.rse.2023.113856_bb0265 article-title: Very deep convolutional networks for large-scale image recognition – volume: vol. 35 start-page: 10754 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0300 article-title: Dast: Unsupervised domain adaptation in semantic segmentation based on discriminator attention and self-training – year: 2019 ident: 10.1016/j.rse.2023.113856_bb0080 – start-page: 6254 year: 2023 ident: 10.1016/j.rse.2023.113856_bb0210 article-title: Openearthmap: A benchmark dataset for global high-resolution land cover mapping – volume: 7 start-page: 23 year: 2019 ident: 10.1016/j.rse.2023.113856_bb0240 article-title: The advanced hyperspectral imager: aboard china’s gaofen-5 satellite publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2019.2927687 – volume: 40 start-page: 834 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0115 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 1125 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0295 article-title: Image-to-image translation with conditional adversarial networks – volume: 63 start-page: 139 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0195 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – start-page: 234 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0275 article-title: U-net: convolutional networks for biomedical image segmentation – volume: 34 start-page: 12077 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0060 article-title: Segformer: simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 2794 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0305 article-title: Least squares generative adversarial networks – volume: 59 start-page: 4340 year: 2021 ident: 10.1016/j.rse.2023.113856_bb0205 article-title: More diverse means better: multimodal deep learning meets remote-sensing imagery classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3016820 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.rse.2023.113856_bb0055 article-title: Seismic facies segmentation via a segformer-based specific encoder–decoder–hypercolumns scheme publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3335484 – start-page: 1180 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0135 article-title: Unsupervised domain adaptation by backpropagation – volume: 60 start-page: 84 year: 2017 ident: 10.1016/j.rse.2023.113856_bb0260 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.rse.2023.113856_bb0090 article-title: Beyond rgb: very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.011 – year: 2016 ident: 10.1016/j.rse.2023.113856_bb0255 – start-page: 1 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0270 article-title: Going deeper with convolutions – volume: 19 start-page: 1 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0095 article-title: Deep encoder-decoder networks for classification of hyperspectral and lidar data publication-title: IEEE Geosci. Remote Sens. – volume: volume 2 start-page: 260 year: 2015 ident: 10.1016/j.rse.2023.113856_bb0245 article-title: Sar image despeckling using refined lee filter – volume: 237 year: 2020 ident: 10.1016/j.rse.2023.113856_bb0150 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 – volume: 277 year: 2022 ident: 10.1016/j.rse.2023.113856_bb0170 article-title: Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: from airborne to spaceborne imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113058 |
| SSID | ssj0015871 |
| Score | 2.7518258 |
| Snippet | Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113856 |
| SubjectTerms | artificial intelligence China class Cross-city data collection Deep learning Dice loss domain Domain adaptation environment Germany High-resolution network Land cover Multimodal benchmark datasets Remote sensing Segmentation topology |
| Title | Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks |
| URI | https://dx.doi.org/10.1016/j.rse.2023.113856 https://www.proquest.com/docview/3040427368 |
| Volume | 299 |
| WOSCitedRecordID | wos001109906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJcZOReCIKauK6jnkrUxmgaUIwpPIUOY6zdSxJ1TRT-SX8A34nx5ckbRETIPESRU7suPq--pxjnwtCzyUdkTQjoZ9KGvnDYUb9JBtxX3FQNqiIRJaaqiVH7Pg4mk75h17vRxMLc3nBiiJarfj8v0INbQC2Dp39C7jbQaEB7gF0uALscP0j4A-03POl1q5zmzzTRp8b18G8TE0mfwBIeZV2Xi9OvQSmf5aLxVdP-4tWaml8D2U3TqVyAGAm4eY0d8FKhVebzjrfsQ82u_tNXlrmYlZ4IhVz915hPc2rdT344-YMQGNdi7hrqebchYGZmXISdn2P-_Wsazyy1bdFudnwpV7Vjv9uayMk2k3EBnfa_bYm5mbDJVRn1PH1SmMlmF22I6ZDsWwh42ZdD23lpV9khN2uOH-5qHSa1JDosjYR3crHbST8J5MQET4V6rxkoExdQ7shoxxWz93xu8n0fXteRSNmazO6uTXn58aTcOtDv9OAtnQBo-Cc3EG3nWWCx5ZRd1FPFX20N-lggYdOElR9dPNQuWTnfXTj0JSH_nYPfe_Ihx35XuEx7qiHLfWwAx631MOOehiohzvq4YZ6eJ162FAPb1EPW-rhjnq4od599PnN5OTgre9Kf_iSkMHSZ5liYUAEy2iQUcoCvXfCBJcEzPcEbHRFleJJQJN0pBIGT7S0DGUkOeEJUWQP7RRloR4gTFUmacgEWALpUPKBCAkXggWSBiyTUu2jQQNHLF1efF2e5SJuHCDPY0Aw1gjGFsF99KLtMrdJYa56edhgHDut1mqrMRDyqm7PGj7EsOLrYzxRqLKuYgJUHILVMYoe_tvQj9Ct7t_2GO0sF7V6gq7Ly-WsWjx11P4J0U7atA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-city+matters%3A+A+multimodal+remote+sensing+benchmark+dataset+for+cross-city+semantic+segmentation+using+high-resolution+domain+adaptation+networks&rft.jtitle=Remote+sensing+of+environment&rft.au=Hong%2C+Danfeng&rft.au=Zhang%2C+Bing&rft.au=Li%2C+Hao&rft.au=Li%2C+Yuxuan&rft.date=2023-12-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=299&rft_id=info:doi/10.1016%2Fj.rse.2023.113856&rft.externalDocID=S0034425723004078 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |