Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks

Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing of environment Ročník 299; s. 113856
Hlavní autoři: Hong, Danfeng, Zhang, Bing, Li, Hao, Li, Yuxuan, Yao, Jing, Li, Chenyu, Werner, Martin, Chanussot, Jocelyn, Zipf, Alexander, Zhu, Xiao Xiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.12.2023
Témata:
ISSN:0034-4257, 1879-0704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city. •A new multimodal remote sensing benchmark for cross-city semantic segmentation.•Propose a high-resolution domain adaptation network for semantic segmentation.•Balance spatial topology, domain gaps, eases city class imbalance with Dice loss.
AbstractList Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city. •A new multimodal remote sensing benchmark for cross-city semantic segmentation.•Propose a high-resolution domain adaptation network for semantic segmentation.•Balance spatial topology, domain gaps, eases city class imbalance with Dice loss.
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city.
ArticleNumber 113856
Author Hong, Danfeng
Li, Chenyu
Zhang, Bing
Li, Yuxuan
Li, Hao
Werner, Martin
Yao, Jing
Chanussot, Jocelyn
Zipf, Alexander
Zhu, Xiao Xiang
Author_xml – sequence: 1
  givenname: Danfeng
  surname: Hong
  fullname: Hong, Danfeng
  email: hongdf@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 2
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  email: zb@radi.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 3
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  email: hao_bgd.li@tum.de
  organization: Big Geospatial Data Management, Technical University of Munich, Munich 85521, Germany
– sequence: 4
  givenname: Yuxuan
  surname: Li
  fullname: Li, Yuxuan
  email: liyuxuan231@mails.ucas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 5
  givenname: Jing
  surname: Yao
  fullname: Yao, Jing
  email: yaojing@aircas.ac.cn
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 6
  givenname: Chenyu
  surname: Li
  fullname: Li, Chenyu
  email: lichenyu@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing 210096, China
– sequence: 7
  givenname: Martin
  surname: Werner
  fullname: Werner, Martin
  email: martin.werner@tum.de
  organization: Big Geospatial Data Management, Technical University of Munich, Munich 85521, Germany
– sequence: 8
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@grenoble-inp.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble 38000, France
– sequence: 9
  givenname: Alexander
  surname: Zipf
  fullname: Zipf, Alexander
  email: zipf@uni-heidelberg.de
  organization: Institute of Geography, Heidelberg University, Heidelberg 69120, Germany
– sequence: 10
  givenname: Xiao Xiang
  surname: Zhu
  fullname: Zhu, Xiao Xiang
  email: xiaoxiang.zhu@tum.de
  organization: Data Science in Earth Observation, Technical University of Munich, Munich 80333, Germany
BookMark eNp9kc1O3DAUha2KSh0oD8DOy24y2HESJ2WFRuVHQmLTri3HuZnxENuDr0PFk_C6mBkkJBYsLFvX57vSOeeYHPnggZAzzpac8eZ8u4wIy5KVYsm5aOvmG1nwVnYFk6w6IgvGRFVUZS1_kGPELWO8biVfkJdVDIiFsemZOp0SRPxNL6mbp2RdGPREI7iQgCJ4tH5Ne_Bm43R8oINOGiHRMURqPrYgOO2TNfmxduCTTjZ4Ou_hjV1viggYpnk_HYLT1lM96N27zkP6H-ID_iTfRz0hnL7fJ-Tf1Z-_q5vi7v76dnV5VxghWCrkCLLkQsux5mNdSy6rfHRnBK_avusaqAG6ntf90EAv8w9rW1ma1nSi6wWIE_LrsHcXw-MMmJSzaGCatIcwoxKsYlUpRdNmKT9I92YjjGoXbU7iWXGm3kpQW5VLUG8lqEMJmZGfmJzR3mmK2k5fkhcHErL7JwtRobE5exhsBJPUEOwX9CtVHqea
CitedBy_id crossref_primary_10_1109_TGRS_2025_3540269
crossref_primary_10_1080_10095020_2024_2387457
crossref_primary_10_1080_10095020_2025_2505551
crossref_primary_10_1109_LGRS_2023_3346929
crossref_primary_10_1002_cpe_8312
crossref_primary_10_1080_01431161_2025_2513561
crossref_primary_10_1109_TII_2024_3366983
crossref_primary_10_3390_rs16071214
crossref_primary_10_1049_ipr2_70053
crossref_primary_10_3390_rs17132229
crossref_primary_10_1016_j_inffus_2025_103042
crossref_primary_10_1109_JSTARS_2024_3413323
crossref_primary_10_1109_JSTARS_2024_3481248
crossref_primary_10_1109_TGRS_2024_3362895
crossref_primary_10_1109_TGRS_2024_3422007
crossref_primary_10_1109_JSTARS_2024_3399600
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1109_JSTARS_2024_3378348
crossref_primary_10_1016_j_neucom_2025_129995
crossref_primary_10_1016_j_knosys_2025_114182
crossref_primary_10_1109_LGRS_2024_3441938
crossref_primary_10_1109_TGRS_2025_3567751
crossref_primary_10_1109_JSTARS_2024_3370508
crossref_primary_10_1007_s11069_024_06815_7
crossref_primary_10_1016_j_inffus_2025_103717
crossref_primary_10_1109_TG_2024_3369330
crossref_primary_10_1109_TPAMI_2024_3362475
crossref_primary_10_1080_15481603_2025_2478689
crossref_primary_10_1109_JSTARS_2024_3358851
crossref_primary_10_1109_TGRS_2025_3566305
crossref_primary_10_1016_j_eswa_2025_127029
crossref_primary_10_1016_j_patcog_2025_111579
crossref_primary_10_1109_TGRS_2025_3559557
crossref_primary_10_1109_JSTARS_2024_3379579
crossref_primary_10_1109_TGRS_2024_3426981
crossref_primary_10_1088_1361_6501_ad86da
crossref_primary_10_1109_TGRS_2024_3368091
crossref_primary_10_1016_j_patcog_2024_110546
crossref_primary_10_1109_TGRS_2024_3361211
crossref_primary_10_1109_TGRS_2025_3529129
crossref_primary_10_1016_j_compag_2024_109245
crossref_primary_10_1109_TNNLS_2024_3401589
crossref_primary_10_1109_ACCESS_2024_3494023
crossref_primary_10_1080_14498596_2024_2383881
crossref_primary_10_1117_1_JRS_18_014525
crossref_primary_10_1007_s40194_025_02060_z
crossref_primary_10_1080_17538947_2024_2308734
crossref_primary_10_1109_JSTARS_2024_3394704
crossref_primary_10_1109_TGRS_2024_3524058
crossref_primary_10_1109_JSTARS_2023_3346454
crossref_primary_10_1016_j_eswa_2025_128110
crossref_primary_10_1109_TGRS_2025_3590623
crossref_primary_10_1109_JSEN_2023_3343917
crossref_primary_10_1109_TGRS_2025_3564216
crossref_primary_10_1109_TGRS_2024_3399003
crossref_primary_10_1109_TGRS_2024_3449073
crossref_primary_10_1109_TGRS_2024_3379436
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_1016_j_inffus_2024_102699
crossref_primary_10_1109_TGRS_2025_3594544
crossref_primary_10_1016_j_jag_2024_104353
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1109_TGRS_2024_3505539
crossref_primary_10_1109_JSTARS_2024_3435575
crossref_primary_10_1109_JSTARS_2024_3378695
crossref_primary_10_1109_JSTARS_2024_3522662
crossref_primary_10_1016_j_apenergy_2025_126562
crossref_primary_10_1109_TGRS_2024_3409378
crossref_primary_10_1109_TGRS_2024_3401768
crossref_primary_10_1109_TGRS_2024_3439390
crossref_primary_10_1016_j_engappai_2024_108178
crossref_primary_10_1007_s00530_025_01852_z
crossref_primary_10_1080_10106049_2024_2401937
crossref_primary_10_1109_JSTARS_2024_3479073
crossref_primary_10_1109_TGRS_2024_3434382
crossref_primary_10_1016_j_inffus_2024_102689
crossref_primary_10_1109_LGRS_2023_3345946
crossref_primary_10_1016_j_jag_2024_104129
crossref_primary_10_1109_TSMC_2025_3572123
crossref_primary_10_1145_3723009
crossref_primary_10_1016_j_isprsjprs_2024_09_039
crossref_primary_10_1109_ACCESS_2024_3434559
crossref_primary_10_1016_j_rse_2024_114108
crossref_primary_10_1016_j_inffus_2025_103293
crossref_primary_10_1109_JSTARS_2025_3585544
crossref_primary_10_1109_JSTARS_2025_3587845
crossref_primary_10_1109_TGRS_2024_3363777
crossref_primary_10_1109_ACCESS_2025_3549277
crossref_primary_10_1109_TGRS_2024_3360261
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1109_TGRS_2025_3529028
crossref_primary_10_1109_TGRS_2024_3382159
crossref_primary_10_1109_TCYB_2024_3416621
crossref_primary_10_1016_j_neunet_2024_106400
crossref_primary_10_1109_JSEN_2024_3381928
crossref_primary_10_1109_JSTARS_2024_3381185
crossref_primary_10_1016_j_rse_2024_114344
crossref_primary_10_1109_TGRS_2024_3431680
crossref_primary_10_1186_s13677_024_00621_z
crossref_primary_10_1016_j_imavis_2024_105191
crossref_primary_10_1109_TGRS_2024_3491190
crossref_primary_10_3390_rs16203864
crossref_primary_10_1109_TGRS_2025_3534061
crossref_primary_10_1016_j_knosys_2025_113577
crossref_primary_10_1109_TGRS_2024_3510625
crossref_primary_10_3390_rs17111845
crossref_primary_10_1109_TGRS_2024_3362055
crossref_primary_10_1007_s11069_025_07352_7
crossref_primary_10_1109_JSTARS_2025_3531422
crossref_primary_10_1109_TGRS_2024_3493121
crossref_primary_10_1155_2024_1728801
crossref_primary_10_1049_ell2_70275
crossref_primary_10_1109_TGRS_2024_3386703
crossref_primary_10_1109_TGRS_2024_3473992
crossref_primary_10_1109_TGRS_2025_3570953
crossref_primary_10_1016_j_knosys_2024_111795
crossref_primary_10_26599_BDMA_2024_9020045
crossref_primary_10_1109_TGRS_2024_3490537
crossref_primary_10_1109_JSTARS_2024_3427017
crossref_primary_10_1109_JSEN_2025_3569157
crossref_primary_10_1109_JSTARS_2024_3485528
crossref_primary_10_1109_TGRS_2024_3516840
crossref_primary_10_1109_TGRS_2024_3394462
crossref_primary_10_1109_TGRS_2024_3521411
crossref_primary_10_1109_TGRS_2024_3407967
crossref_primary_10_1109_TGRS_2024_3409903
crossref_primary_10_1109_TGRS_2024_3465225
crossref_primary_10_1109_TGRS_2024_3433619
crossref_primary_10_1016_j_isprsjprs_2024_12_017
crossref_primary_10_1109_JSTARS_2024_3362936
crossref_primary_10_1109_TGRS_2024_3363159
crossref_primary_10_1109_TGRS_2024_3443420
crossref_primary_10_1109_TGRS_2024_3358493
crossref_primary_10_1109_LSP_2024_3358755
crossref_primary_10_1016_j_neucom_2024_129169
crossref_primary_10_1109_TGRS_2025_3528631
crossref_primary_10_1016_j_compag_2024_109204
crossref_primary_10_1016_j_knosys_2024_112535
crossref_primary_10_1016_j_knosys_2024_112413
crossref_primary_10_1109_TGRS_2025_3531478
crossref_primary_10_1016_j_neunet_2024_106224
crossref_primary_10_1109_JSTARS_2024_3376070
crossref_primary_10_1109_JSTARS_2024_3468456
crossref_primary_10_1016_j_eswa_2024_125732
crossref_primary_10_1109_LGRS_2024_3422805
crossref_primary_10_1109_TGRS_2024_3407952
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1109_JSEN_2024_3431241
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_1109_JSTARS_2024_3520960
crossref_primary_10_1109_TIP_2025_3531709
crossref_primary_10_1109_TGRS_2024_3445991
crossref_primary_10_1016_j_engappai_2024_108497
crossref_primary_10_1109_TGRS_2024_3392964
crossref_primary_10_1109_TGRS_2024_3471792
crossref_primary_10_1109_TGRS_2025_3598943
crossref_primary_10_1016_j_isprsjprs_2024_05_004
crossref_primary_10_1109_TGRS_2024_3401843
crossref_primary_10_1109_TGRS_2024_3384669
crossref_primary_10_1080_10106049_2025_2538802
crossref_primary_10_1080_17538947_2024_2347457
crossref_primary_10_3390_rs17173120
crossref_primary_10_26599_BDMA_2024_9020026
crossref_primary_10_1109_TGRS_2024_3456754
crossref_primary_10_1080_14498596_2024_2343751
crossref_primary_10_1109_JSEN_2025_3525712
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_1016_j_isprsjprs_2024_01_022
crossref_primary_10_1016_j_buildenv_2025_113630
crossref_primary_10_1016_j_neucom_2025_130111
crossref_primary_10_1109_JSEN_2024_3437474
crossref_primary_10_1109_TGRS_2025_3578675
crossref_primary_10_1109_TGRS_2024_3403100
crossref_primary_10_1016_j_jag_2024_104321
crossref_primary_10_1109_LSENS_2024_3503752
crossref_primary_10_1109_ACCESS_2024_3387944
crossref_primary_10_1080_17538947_2024_2328827
crossref_primary_10_1109_TGRS_2024_3402127
crossref_primary_10_1109_TGRS_2024_3442470
crossref_primary_10_1109_TGRS_2025_3527564
crossref_primary_10_1016_j_eswa_2025_127760
crossref_primary_10_1109_TGRS_2025_3568632
crossref_primary_10_1016_j_isprsjprs_2025_02_005
crossref_primary_10_1109_LGRS_2024_3464549
crossref_primary_10_1016_j_engappai_2025_110734
crossref_primary_10_1109_JSTARS_2024_3464758
crossref_primary_10_1080_15481603_2025_2471193
crossref_primary_10_1109_TGRS_2024_3474711
crossref_primary_10_1016_j_infrared_2024_105631
crossref_primary_10_1109_TGRS_2024_3377635
crossref_primary_10_1109_TGRS_2024_3476151
crossref_primary_10_1109_JSTARS_2023_3335288
crossref_primary_10_1109_TGRS_2024_3466909
crossref_primary_10_1109_TGRS_2024_3520879
crossref_primary_10_1016_j_jobe_2025_111904
crossref_primary_10_1080_14498596_2024_2364283
crossref_primary_10_1109_JSTARS_2024_3392812
crossref_primary_10_1109_JSTARS_2025_3559190
crossref_primary_10_1016_j_engappai_2024_108665
crossref_primary_10_1016_j_engappai_2024_108546
crossref_primary_10_1016_j_isprsjprs_2025_01_017
crossref_primary_10_1109_TGRS_2025_3541879
crossref_primary_10_1109_JSTARS_2024_3479212
crossref_primary_10_1109_TAES_2024_3388373
crossref_primary_10_1109_TGRS_2025_3526247
crossref_primary_10_1109_TGRS_2025_3572373
crossref_primary_10_1016_j_microc_2025_112689
crossref_primary_10_1109_TGRS_2024_3400979
crossref_primary_10_1109_TGRS_2024_3525411
crossref_primary_10_1111_mice_70001
crossref_primary_10_1109_TCE_2024_3371451
crossref_primary_10_1109_JSTARS_2024_3465831
crossref_primary_10_1109_JIOT_2025_3529761
crossref_primary_10_1109_TGRS_2024_3477910
crossref_primary_10_1016_j_measurement_2025_118272
crossref_primary_10_1080_0305215X_2024_2338189
crossref_primary_10_1109_TGRS_2023_3334294
crossref_primary_10_1109_TGRS_2024_3413023
crossref_primary_10_1002_jsfa_13668
crossref_primary_10_1007_s11004_024_10158_1
crossref_primary_10_1016_j_jenvman_2024_122615
crossref_primary_10_1080_01431161_2024_2318773
crossref_primary_10_1109_TGRS_2024_3515157
crossref_primary_10_1016_j_compbiomed_2025_110053
crossref_primary_10_1109_TCSVT_2024_3459009
crossref_primary_10_1016_j_engappai_2024_108533
crossref_primary_10_1109_TGRS_2024_3389056
crossref_primary_10_1109_TGRS_2024_3367165
crossref_primary_10_1016_j_knosys_2024_111918
crossref_primary_10_1016_j_knosys_2025_113003
crossref_primary_10_1016_j_imavis_2024_105301
crossref_primary_10_1109_TGRS_2024_3387420
crossref_primary_10_1109_ACCESS_2024_3494660
crossref_primary_10_1109_TGRS_2024_3502401
crossref_primary_10_1109_JSTARS_2024_3353796
crossref_primary_10_1016_j_knosys_2024_112577
crossref_primary_10_1109_TGRS_2024_3360522
crossref_primary_10_1038_s41598_025_13236_4
crossref_primary_10_1109_JSTARS_2024_3375806
crossref_primary_10_1016_j_jag_2024_103666
crossref_primary_10_1016_j_jag_2024_103665
crossref_primary_10_1109_JSEN_2025_3571600
crossref_primary_10_1109_TGRS_2024_3435745
crossref_primary_10_1016_j_inffus_2025_103469
crossref_primary_10_1016_j_engappai_2024_108446
crossref_primary_10_1016_j_jag_2024_103660
crossref_primary_10_1080_01431161_2025_2459214
crossref_primary_10_1109_JSTARS_2025_3569656
crossref_primary_10_1016_j_jag_2024_103662
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_1016_j_jag_2025_104795
crossref_primary_10_1016_j_wasman_2024_10_008
crossref_primary_10_1109_JSTARS_2024_3399310
crossref_primary_10_1109_JSTARS_2025_3581451
crossref_primary_10_1109_TGRS_2025_3542868
crossref_primary_10_1049_sil2_6606572
crossref_primary_10_1016_j_imavis_2024_105334
crossref_primary_10_1080_14498596_2024_2333753
crossref_primary_10_1109_JSTARS_2024_3511256
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1109_TGRS_2024_3463187
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1109_TGRS_2024_3403425
crossref_primary_10_1109_JSEN_2023_3343080
crossref_primary_10_1109_TGRS_2024_3368016
crossref_primary_10_1109_TGRS_2024_3525192
crossref_primary_10_1080_22797254_2025_2545341
crossref_primary_10_1109_TGRS_2025_3589487
crossref_primary_10_1109_TGRS_2024_3435079
crossref_primary_10_1109_LGRS_2024_3516854
crossref_primary_10_1109_JSEN_2025_3567354
crossref_primary_10_1109_JSTARS_2024_3403146
crossref_primary_10_3390_rs17101797
crossref_primary_10_1049_cvi2_12320
crossref_primary_10_3390_atmos16010082
crossref_primary_10_1109_TGRS_2024_3446628
crossref_primary_10_1016_j_jag_2024_103671
crossref_primary_10_1016_j_isprsjprs_2024_10_007
crossref_primary_10_1016_j_isprsjprs_2025_01_003
crossref_primary_10_1109_TCYB_2025_3576752
crossref_primary_10_1109_JSTARS_2024_3521959
crossref_primary_10_1007_s00371_024_03284_8
crossref_primary_10_1111_jmi_13372
crossref_primary_10_1109_JSTARS_2024_3472296
crossref_primary_10_1038_s42256_025_01078_8
crossref_primary_10_1109_TGRS_2025_3527483
crossref_primary_10_1016_j_knosys_2025_114231
crossref_primary_10_3389_fpls_2023_1268098
crossref_primary_10_1016_j_neucom_2025_130428
crossref_primary_10_1016_j_isprsjprs_2025_06_030
crossref_primary_10_1109_JSTARS_2024_3386854
crossref_primary_10_1016_j_inffus_2024_102551
crossref_primary_10_3389_fcomp_2024_1455963
crossref_primary_10_1109_JSEN_2024_3416948
crossref_primary_10_1109_JSTARS_2024_3453936
crossref_primary_10_1109_ACCESS_2024_3401240
crossref_primary_10_1109_JSTARS_2024_3459916
crossref_primary_10_1109_TGRS_2024_3515484
crossref_primary_10_1109_TGRS_2024_3401231
crossref_primary_10_1016_j_optlastec_2024_112208
crossref_primary_10_1109_TGRS_2025_3544392
crossref_primary_10_1007_s00371_024_03277_7
crossref_primary_10_1016_j_imavis_2024_105114
crossref_primary_10_14358_PERS_24_00140R3
crossref_primary_10_1109_TGRS_2025_3580479
crossref_primary_10_1016_j_engappai_2024_108078
crossref_primary_10_1007_s11004_024_10170_5
crossref_primary_10_1080_07038992_2024_2430490
crossref_primary_10_1109_JSEN_2024_3380826
crossref_primary_10_1109_TGRS_2024_3453501
crossref_primary_10_1109_TGRS_2025_3569335
crossref_primary_10_1080_01431161_2025_2491817
crossref_primary_10_1109_TGRS_2024_3363427
crossref_primary_10_1109_TGRS_2024_3520161
crossref_primary_10_1109_JSTARS_2023_3347235
crossref_primary_10_1109_JSTARS_2024_3393828
crossref_primary_10_1109_JSTARS_2023_3342461
crossref_primary_10_1109_TGRS_2024_3415002
crossref_primary_10_1016_j_jag_2025_104801
crossref_primary_10_1109_JSTARS_2024_3465231
crossref_primary_10_1109_LGRS_2024_3356422
crossref_primary_10_1109_TGRS_2024_3476089
crossref_primary_10_1109_TGRS_2025_3585489
crossref_primary_10_1109_JSTARS_2024_3384545
crossref_primary_10_1109_TGRS_2025_3579267
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_1109_TIP_2024_3451933
crossref_primary_10_1080_01431161_2024_2329528
crossref_primary_10_1080_08839514_2024_2411845
crossref_primary_10_3390_rs16214015
crossref_primary_10_7717_peerj_cs_2796
crossref_primary_10_1016_j_knosys_2025_114370
crossref_primary_10_1016_j_patcog_2025_111493
crossref_primary_10_1109_TGRS_2024_3483283
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1109_JSTARS_2024_3349541
crossref_primary_10_1109_TGRS_2025_3591926
crossref_primary_10_1016_j_sigpro_2025_110104
crossref_primary_10_1109_TNSM_2025_3532343
crossref_primary_10_1080_15481603_2025_2534740
crossref_primary_10_1109_JSEN_2025_3549519
crossref_primary_10_1109_TGRS_2024_3409612
crossref_primary_10_32604_cmc_2024_056318
crossref_primary_10_1016_j_jag_2024_103865
crossref_primary_10_1109_TGRS_2024_3399048
crossref_primary_10_1109_TGRS_2025_3561021
crossref_primary_10_1016_j_knosys_2024_111920
crossref_primary_10_1109_ACCESS_2024_3391808
crossref_primary_10_1109_TGRS_2024_3425500
crossref_primary_10_1109_JSTARS_2023_3347572
crossref_primary_10_1109_JSTARS_2024_3482553
crossref_primary_10_1109_TGRS_2024_3403868
crossref_primary_10_1109_JSTARS_2024_3373753
crossref_primary_10_1109_JSTARS_2024_3388464
crossref_primary_10_1109_TGRS_2024_3412790
crossref_primary_10_1016_j_inffus_2024_102408
crossref_primary_10_1109_TGRS_2024_3477933
crossref_primary_10_1109_TGRS_2024_3523097
crossref_primary_10_1109_TGRS_2025_3545926
crossref_primary_10_3390_rs16061001
crossref_primary_10_1109_TGRS_2024_3452550
crossref_primary_10_1109_TGRS_2024_3521238
crossref_primary_10_1016_j_inffus_2024_102787
crossref_primary_10_1109_TGRS_2025_3541441
crossref_primary_10_1109_LGRS_2024_3369619
crossref_primary_10_1109_TGRS_2025_3585229
crossref_primary_10_3390_rs17091645
crossref_primary_10_1109_JSTARS_2025_3528650
crossref_primary_10_59717_j_xinn_geo_2024_100055
crossref_primary_10_1109_TGRS_2024_3481875
crossref_primary_10_1080_10095020_2024_2378920
crossref_primary_10_1109_JSTARS_2025_3583442
crossref_primary_10_1109_JSTARS_2024_3351873
crossref_primary_10_1109_JSTARS_2025_3555567
crossref_primary_10_1109_TGRS_2024_3379355
crossref_primary_10_1109_TGRS_2025_3537638
crossref_primary_10_1016_j_rse_2025_115018
crossref_primary_10_1109_JSTARS_2024_3402122
crossref_primary_10_1109_TGRS_2024_3476975
crossref_primary_10_1109_JSEN_2025_3566079
Cites_doi 10.1016/j.isprsjprs.2020.06.014
10.1016/j.eswa.2020.114417
10.1016/j.isprsjprs.2018.04.014
10.5194/essd-15-113-2023
10.1016/j.rse.2019.05.022
10.1016/j.rse.2020.111716
10.1109/TGRS.2020.3020804
10.1111/tgis.12941
10.1016/j.rse.2021.112480
10.1016/j.isprsjprs.2022.06.008
10.1016/j.isprsjprs.2021.02.016
10.1109/TPAMI.2016.2644615
10.1109/JPROC.2015.2462751
10.1016/j.isprsjprs.2020.01.013
10.1016/j.isprsjprs.2019.02.006
10.1109/TGRS.2020.3020823
10.1016/j.rse.2019.111446
10.3390/rs11151774
10.1109/JSTARS.2012.2188994
10.1016/j.isprsjprs.2021.02.009
10.1109/JSTARS.2022.3190316
10.1109/TGRS.2022.3230846
10.1016/j.rse.2007.11.012
10.1109/TNNLS.2020.2988928
10.1109/MGRS.2019.2927687
10.1109/TPAMI.2017.2699184
10.1145/3422622
10.1109/TGRS.2020.3016820
10.1109/TGRS.2023.3335484
10.1145/3065386
10.1016/j.isprsjprs.2017.11.011
10.1016/j.rse.2019.111322
10.1016/j.rse.2022.113058
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2023.113856
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2023_113856
S0034425723004078
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
VOH
WUQ
XOL
~HD
7S9
L.6
ID FETCH-LOGICAL-c330t-7fe7213a7f51f557174717a9c3148b996e5ee9b15bd6eb77a908872c8c939b3e3
ISICitedReferencesCount 416
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001109906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Nov 09 10:31:11 EST 2025
Tue Nov 18 21:21:05 EST 2025
Sat Nov 29 07:26:52 EST 2025
Fri Feb 23 02:36:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
High-resolution network
Segmentation
Multimodal benchmark datasets
Domain adaptation
Dice loss
Land cover
Remote sensing
Cross-city
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-7fe7213a7f51f557174717a9c3148b996e5ee9b15bd6eb77a908872c8c939b3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3040427368
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040427368
crossref_primary_10_1016_j_rse_2023_113856
crossref_citationtrail_10_1016_j_rse_2023_113856
elsevier_sciencedirect_doi_10_1016_j_rse_2023_113856
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xie, Wang, Yu, Anandkumar, Alvarez, Luo (bb0060) 2021; 34
Yu, Zhang, Dong, Hu, Dong, Zhang (bb0300) 2021; vol. 35
Hansen, Roy, Lindquist, Adusei, Justice, Altstatt (bb0230) 2008; 112
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bb0195) 2020; 63
Hu, Liu, Hong, Camero, Yao, Schneider, Kurz, Segl, Zhu (bb0225) 2023; 15
Yommy, Liu, Wu (bb0245) 2015; volume 2
Yi, Zhang, Zhang, Zhang, Li, Zhao (bb0030) 2019; 11
Sun, Xiao, Liu, Wang (bb0125) 2019
Kingma, Ba (bb0310) 2014
Okujeni, van der Linden, Hostert (bb0220) 2016
Diakogiannis, Waldner, Caccetta, Wu (bb0035) 2020; 162
Isola, Zhu, Zhou, Efros (bb0295) 2017
Wang, Li, Zhang, Fang, Duan, Meng, Atkinson (bb0045) 2022; 190
Badrinarayanan, Kendall, Cipolla (bb0085) 2017; 39
Li, Herfort, Lautenbach, Chen, Zipf (bb0160) 2022; 26
Dalla Mura, Prasad, Pacifici, Gamba, Chanussot, Benediktsson (bb0065) 2015; 103
Chen, Chen, Chen, Tsai, Wang, Sun (bb0140) 2017
Li, Shi, Zhang, Chen, Wang, Li (bb0165) 2021; 175
Xia, Yokoya, Adriano, Broni-Bediako (bb0210) 2023
Krizhevsky, Sutskever, Hinton (bb0260) 2017; 60
Hong, Yokoya, Xia, Chanussot, Zhu (bb0180) 2020; 167
Wu, Zhang, Huang, Liang, Yu (bb0080) 2019
Wang, Ma, Zhong, Zheng, Zhang (bb0170) 2022; 277
Zhou, Khosla, Lapedriza, Oliva, Torralba (bb0315) 2016
Segl, Guanter, Rogass, Kuester, Roessner, Kaufmann, Sang, Mogulsky, Hofer (bb0215) 2012; 5
Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong, He (bb0155) 2021; 32
Ren, Ma, Hou, Hong, Chanussot, Wang, Jiao (bb0120) 2022; 112
Newell, Yang, Deng (bb0285) 2016
Chen, Papandreou, Kokkinos, Murphy, Yuille (bb0115) 2017; 40
Tong, Xia, Lu, Shen, Li, You, Zhang (bb0150) 2020; 237
Audebert, Saux, Lefèvre (bb0070) 2016
Segal-Rozenhaimer, Li, Das, Chirayath (bb0110) 2020; 237
Hong, Gao, Hang, Zhang, Chanussot (bb0095) 2020; 19
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bb0270) 2015
Wieland, Li, Martinis (bb0100) 2019; 230
Yuan, Shen, Li, Li, Li, Jiang, Xu, Tan, Yang, Wang (bb0005) 2020; 241
Danielson, Gesch (bb0250) 2011
Hong, Yao, Meng, Xu, Chanussot (bb0185) 2021; 59
Hong, Gao, Yokoya, Yao, Chanussot, Du, Zhang (bb0205) 2021; 59
Audebert, Le Saux, Lefèvre (bb0090) 2018; 140
Kemker, Salvaggio, Kanan (bb0025) 2018; 145
Ji, Wang, Luo (bb0190) 2021; 59
Yuan, Shi, Gu (bb0010) 2021; 169
Tsai, Hung, Schulter, Sohn, Yang, Chandraker (bb0145) 2018
Zhao, Zhang, Tao, Li, Liao, Philips (bb0200) 2022; 15
Mao, Li, Xie, Lau, Wang, Smolley (bb0305) 2017
Schultz, Voss, Auer, Carter, Zipf (bb0235) 2017; 63
Ma, Zheng, Wang, Zhong (bb0175) 2023; 61
Li, Sun, Meng, Liang, Wu, Li (bb0290) 2020
Ganin, Lempitsky (bb0135) 2015
Feranec, Soukup, Hazeu, Jaffrain (bb0255) 2016
Gal, Ghahramani (bb0020) 2016
Du, Du, Liu, Zhang (bb0040) 2021; 261
He, Zhou, Zhao, Zhang, Yao, Xue (bb0050) 2022; 60
Simonyan, Zisserman (bb0265) 2015
Kampffmeyer, Salberg, Jenssen (bb0015) 2016
Wurm, Stark, Zhu, Weigand, Taubenböck (bb0105) 2019; 150
Wang, Wang, Yang, Liu, Chen, Gao (bb0055) 2023; 61
Liu, Sun, Hu, Ye, Li, Liu, Cao, Chai, Zhang, Zhang (bb0240) 2019; 7
Ronneberger, Fischer, Brox (bb0275) 2015
Long, Shelhamer, Darrell (bb0075) 2015
Adriano, Yokoya, Xia, Miura, Liu, Matsuoka, Koshimura (bb0130) 2021; 175
Noh, Hong, Han (bb0280) 2015
Okujeni (10.1016/j.rse.2023.113856_bb0220) 2016
Kingma (10.1016/j.rse.2023.113856_bb0310) 2014
Gal (10.1016/j.rse.2023.113856_bb0020) 2016
Dalla Mura (10.1016/j.rse.2023.113856_bb0065) 2015; 103
Zhu (10.1016/j.rse.2023.113856_bb0155) 2021; 32
Li (10.1016/j.rse.2023.113856_bb0160) 2022; 26
Li (10.1016/j.rse.2023.113856_bb0165) 2021; 175
Noh (10.1016/j.rse.2023.113856_bb0280) 2015
Kampffmeyer (10.1016/j.rse.2023.113856_bb0015) 2016
Tsai (10.1016/j.rse.2023.113856_bb0145) 2018
Hong (10.1016/j.rse.2023.113856_bb0185) 2021; 59
Ren (10.1016/j.rse.2023.113856_bb0120) 2022; 112
Danielson (10.1016/j.rse.2023.113856_bb0250) 2011
Badrinarayanan (10.1016/j.rse.2023.113856_bb0085) 2017; 39
Tong (10.1016/j.rse.2023.113856_bb0150) 2020; 237
Adriano (10.1016/j.rse.2023.113856_bb0130) 2021; 175
Chen (10.1016/j.rse.2023.113856_bb0140) 2017
Segl (10.1016/j.rse.2023.113856_bb0215) 2012; 5
Diakogiannis (10.1016/j.rse.2023.113856_bb0035) 2020; 162
Hu (10.1016/j.rse.2023.113856_bb0225) 2023; 15
Isola (10.1016/j.rse.2023.113856_bb0295) 2017
Wurm (10.1016/j.rse.2023.113856_bb0105) 2019; 150
Liu (10.1016/j.rse.2023.113856_bb0240) 2019; 7
Yuan (10.1016/j.rse.2023.113856_bb0005) 2020; 241
Li (10.1016/j.rse.2023.113856_bb0290) 2020
Wang (10.1016/j.rse.2023.113856_bb0170) 2022; 277
Krizhevsky (10.1016/j.rse.2023.113856_bb0260) 2017; 60
Goodfellow (10.1016/j.rse.2023.113856_bb0195) 2020; 63
Zhao (10.1016/j.rse.2023.113856_bb0200) 2022; 15
Sun (10.1016/j.rse.2023.113856_bb0125) 2019
Schultz (10.1016/j.rse.2023.113856_bb0235) 2017; 63
Kemker (10.1016/j.rse.2023.113856_bb0025) 2018; 145
Hong (10.1016/j.rse.2023.113856_bb0095) 2020; 19
Xia (10.1016/j.rse.2023.113856_bb0210) 2023
Hansen (10.1016/j.rse.2023.113856_bb0230) 2008; 112
Long (10.1016/j.rse.2023.113856_bb0075) 2015
Du (10.1016/j.rse.2023.113856_bb0040) 2021; 261
Wu (10.1016/j.rse.2023.113856_bb0080) 2019
Yuan (10.1016/j.rse.2023.113856_bb0010) 2021; 169
He (10.1016/j.rse.2023.113856_bb0050) 2022; 60
Zhou (10.1016/j.rse.2023.113856_bb0315) 2016
Wieland (10.1016/j.rse.2023.113856_bb0100) 2019; 230
Hong (10.1016/j.rse.2023.113856_bb0180) 2020; 167
Hong (10.1016/j.rse.2023.113856_bb0205) 2021; 59
Newell (10.1016/j.rse.2023.113856_bb0285) 2016
Mao (10.1016/j.rse.2023.113856_bb0305) 2017
Yommy (10.1016/j.rse.2023.113856_bb0245) 2015; volume 2
Wang (10.1016/j.rse.2023.113856_bb0045) 2022; 190
Ganin (10.1016/j.rse.2023.113856_bb0135) 2015
Yu (10.1016/j.rse.2023.113856_bb0300) 2021; vol. 35
Segal-Rozenhaimer (10.1016/j.rse.2023.113856_bb0110) 2020; 237
Wang (10.1016/j.rse.2023.113856_bb0055) 2023; 61
Audebert (10.1016/j.rse.2023.113856_bb0090) 2018; 140
Feranec (10.1016/j.rse.2023.113856_bb0255) 2016
Ji (10.1016/j.rse.2023.113856_bb0190) 2021; 59
Ronneberger (10.1016/j.rse.2023.113856_bb0275) 2015
Szegedy (10.1016/j.rse.2023.113856_bb0270) 2015
Audebert (10.1016/j.rse.2023.113856_bb0070) 2016
Ma (10.1016/j.rse.2023.113856_bb0175) 2023; 61
Xie (10.1016/j.rse.2023.113856_bb0060) 2021; 34
Chen (10.1016/j.rse.2023.113856_bb0115) 2017; 40
Yi (10.1016/j.rse.2023.113856_bb0030) 2019; 11
Simonyan (10.1016/j.rse.2023.113856_bb0265) 2015
References_xml – volume: 237
  year: 2020
  ident: bb0150
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bb0255
  article-title: European landscape dynamics: CORINE land cover data
– volume: 169
  year: 2021
  ident: bb0010
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bb0265
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 5
  start-page: 522
  year: 2012
  end-page: 530
  ident: bb0215
  article-title: EeteS—The EnMAP end-to-end simulation tool
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2011
  ident: bb0250
  article-title: Global multi-resolution terrain elevation data 2010 (GMTED2010)
– start-page: 483
  year: 2016
  end-page: 499
  ident: bb0285
  article-title: Stacked hourglass networks for human pose estimation
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 261
  year: 2021
  ident: bb0040
  article-title: Mapping large-scale and fine-grained urban functional zones from vhr images using a multi-scale semantic segmentation network and object based approach
  publication-title: Remote Sens. Environ.
– year: 2014
  ident: bb0310
  article-title: Adam: A method for stochastic optimization
– volume: 15
  start-page: 113
  year: 2023
  end-page: 131
  ident: bb0225
  article-title: Mdas: a new multimodal benchmark dataset for remote sensing
  publication-title: Earth Syst. Sci. Data
– volume: 7
  start-page: 23
  year: 2019
  end-page: 32
  ident: bb0240
  article-title: The advanced hyperspectral imager: aboard china’s gaofen-5 satellite
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 6254
  year: 2023
  end-page: 6264
  ident: bb0210
  article-title: Openearthmap: A benchmark dataset for global high-resolution land cover mapping
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0275
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention (MICCAI)
– start-page: 1992
  year: 2017
  end-page: 2001
  ident: bb0140
  article-title: No more discrimination: Cross city adaptation of road scene segmenters
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– volume: 11
  start-page: 1774
  year: 2019
  ident: bb0030
  article-title: Semantic segmentation of urban buildings from vhr remote sensing imagery using a deep convolutional neural network
  publication-title: Remote Sens.
– start-page: 1125
  year: 2017
  end-page: 1134
  ident: bb0295
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 167
  start-page: 12
  year: 2020
  end-page: 23
  ident: bb0180
  article-title: X-modalnet: a semi-supervised deep cross-modal network for classification of remote sensing data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: bb0195
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 175
  start-page: 132
  year: 2021
  end-page: 143
  ident: bb0130
  article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 7472
  year: 2018
  end-page: 7481
  ident: bb0145
  article-title: Learning to adapt structured output space for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 277
  year: 2022
  ident: bb0170
  article-title: Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: from airborne to spaceborne imagery
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bb0270
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 19
  start-page: 1
  year: 2020
  end-page: 5
  ident: bb0095
  article-title: Deep encoder-decoder networks for classification of hyperspectral and lidar data
  publication-title: IEEE Geosci. Remote Sens.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bb0075
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: vol. 35
  start-page: 10754
  year: 2021
  end-page: 10762
  ident: bb0300
  article-title: Dast: Unsupervised domain adaptation in semantic segmentation based on discriminator attention and self-training
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 26
  start-page: 3125
  year: 2022
  end-page: 3146
  ident: bb0160
  article-title: Improving openstreetmap missing building detection using few-shot transfer learning in sub-saharan africa
  publication-title: Trans. GIS
– start-page: 465
  year: 2020
  end-page: 476
  ident: bb0290
  article-title: Dice loss for data-imbalanced nlp tasks
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)
– volume: 112
  start-page: 2495
  year: 2008
  end-page: 2513
  ident: bb0230
  article-title: A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the Congo basin
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: bb0115
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bb0280
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– start-page: 2921
  year: 2016
  end-page: 2929
  ident: bb0315
  article-title: Learning deep features for discriminative localization
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5693
  year: 2019
  end-page: 5703
  ident: bb0125
  article-title: Deep high-resolution representation learning for human pose estimation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 32
  start-page: 1713
  year: 2021
  end-page: 1722
  ident: bb0155
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: bb0020
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 237
  year: 2020
  ident: bb0110
  article-title: Cloud detection algorithm for multi-modal satellite imagery using convolutional neural networks (cnn)
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 12077
  year: 2021
  end-page: 12090
  ident: bb0060
  article-title: Segformer: simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 140
  start-page: 20
  year: 2018
  end-page: 32
  ident: bb0090
  article-title: Beyond rgb: very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 150
  start-page: 59
  year: 2019
  end-page: 69
  ident: bb0105
  article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 175
  start-page: 20
  year: 2021
  end-page: 33
  ident: bb0165
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: bb0035
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 180
  year: 2016
  end-page: 196
  ident: bb0070
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
  publication-title: Proceedings of the Asian Conference on Computer Vision (ACCV)
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: bb0135
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 63
  start-page: 206
  year: 2017
  end-page: 213
  ident: bb0235
  article-title: Open land cover from openstreetmap and remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 103
  start-page: 1585
  year: 2015
  end-page: 1601
  ident: bb0065
  article-title: Challenges and opportunities of multimodality and data fusion in remote sensing
  publication-title: Proc. IEEE
– start-page: 1
  year: 2016
  end-page: 9
  ident: bb0015
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 61
  start-page: 1
  year: 2023
  end-page: 17
  ident: bb0175
  article-title: Domain adaptive land-cover classification via local consistency and global diversity
  publication-title: IEEE Trans. Geosci. Remote
– volume: 15
  start-page: 5721
  year: 2022
  end-page: 5733
  ident: bb0200
  article-title: Cross-domain classification of multisource remote sensing data using fractional fusion and spatial-spectral domain adaptation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 241
  year: 2020
  ident: bb0005
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bb0085
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 59
  start-page: 4340
  year: 2021
  end-page: 4354
  ident: bb0205
  article-title: More diverse means better: multimodal deep learning meets remote-sensing imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2016
  ident: bb0220
  article-title: Berlin-urban-gradient dataset 2009-an enmap preparatory flight campaign
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: bb0050
  article-title: Swin transformer embedding unet for remote sensing image semantic segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 145
  start-page: 60
  year: 2018
  end-page: 77
  ident: bb0025
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 112
  year: 2022
  ident: bb0120
  article-title: A dual-stream high resolution network: deep fusion of gf-2 and gf-3 data for land cover classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: volume 2
  start-page: 260
  year: 2015
  end-page: 265
  ident: bb0245
  article-title: Sar image despeckling using refined lee filter
  publication-title: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics
– start-page: 2794
  year: 2017
  end-page: 2802
  ident: bb0305
  article-title: Least squares generative adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bb0260
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 190
  start-page: 196
  year: 2022
  end-page: 214
  ident: bb0045
  article-title: Unetformer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 61
  start-page: 1
  year: 2023
  end-page: 11
  ident: bb0055
  article-title: Seismic facies segmentation via a segformer-based specific encoder–decoder–hypercolumns scheme
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 230
  year: 2019
  ident: bb0100
  article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network
  publication-title: Remote Sens. Environ.
– volume: 59
  start-page: 5103
  year: 2021
  end-page: 5113
  ident: bb0185
  article-title: Multimodal gans: toward crossmodal hyperspectral–multispectral image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: bb0080
  article-title: Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation
– volume: 59
  start-page: 3816
  year: 2021
  end-page: 3828
  ident: bb0190
  article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 5693
  year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0125
  article-title: Deep high-resolution representation learning for human pose estimation
– volume: 167
  start-page: 12
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0180
  article-title: X-modalnet: a semi-supervised deep cross-modal network for classification of remote sensing data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.014
– year: 2011
  ident: 10.1016/j.rse.2023.113856_bb0250
– volume: 169
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0010
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114417
– volume: 145
  start-page: 60
  year: 2018
  ident: 10.1016/j.rse.2023.113856_bb0025
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.014
– volume: 15
  start-page: 113
  year: 2023
  ident: 10.1016/j.rse.2023.113856_bb0225
  article-title: Mdas: a new multimodal benchmark dataset for remote sensing
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-15-113-2023
– volume: 230
  year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0100
  article-title: Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.022
– start-page: 7472
  year: 2018
  ident: 10.1016/j.rse.2023.113856_bb0145
  article-title: Learning to adapt structured output space for semantic segmentation
– start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0015
  article-title: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
– volume: 241
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0005
  article-title: Deep learning in environmental remote sensing: achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– year: 2014
  ident: 10.1016/j.rse.2023.113856_bb0310
– volume: 59
  start-page: 3816
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0190
  article-title: Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3020804
– volume: 26
  start-page: 3125
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0160
  article-title: Improving openstreetmap missing building detection using few-shot transfer learning in sub-saharan africa
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12941
– volume: 261
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0040
  article-title: Mapping large-scale and fine-grained urban functional zones from vhr images using a multi-scale semantic segmentation network and object based approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112480
– volume: 190
  start-page: 196
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0045
  article-title: Unetformer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.06.008
– start-page: 483
  year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0285
  article-title: Stacked hourglass networks for human pose estimation
– volume: 175
  start-page: 132
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0130
  article-title: Learning from multimodal and multitemporal earth observation data for building damage mapping
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.016
– volume: 112
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0120
  article-title: A dual-stream high resolution network: deep fusion of gf-2 and gf-3 data for land cover classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0085
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1050
  year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0020
  article-title: Dropout as a bayesian approximation: Representing model uncertainty in deep learning
– volume: 103
  start-page: 1585
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0065
  article-title: Challenges and opportunities of multimodality and data fusion in remote sensing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2462751
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.rse.2023.113856_bb0175
  article-title: Domain adaptive land-cover classification via local consistency and global diversity
  publication-title: IEEE Trans. Geosci. Remote
– start-page: 2921
  year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0315
  article-title: Learning deep features for discriminative localization
– volume: 162
  start-page: 94
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0035
  article-title: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.013
– start-page: 1992
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0140
  article-title: No more discrimination: Cross city adaptation of road scene segmenters
– start-page: 3431
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0075
  article-title: Fully convolutional networks for semantic segmentation
– volume: 150
  start-page: 59
  year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0105
  article-title: Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.006
– volume: 59
  start-page: 5103
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0185
  article-title: Multimodal gans: toward crossmodal hyperspectral–multispectral image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3020823
– volume: 237
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0110
  article-title: Cloud detection algorithm for multi-modal satellite imagery using convolutional neural networks (cnn)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111446
– start-page: 465
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0290
  article-title: Dice loss for data-imbalanced nlp tasks
– volume: 11
  start-page: 1774
  year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0030
  article-title: Semantic segmentation of urban buildings from vhr remote sensing imagery using a deep convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs11151774
– volume: 5
  start-page: 522
  year: 2012
  ident: 10.1016/j.rse.2023.113856_bb0215
  article-title: EeteS—The EnMAP end-to-end simulation tool
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2188994
– year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0220
– start-page: 180
  year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0070
  article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks
– volume: 175
  start-page: 20
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0165
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.009
– volume: 15
  start-page: 5721
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0200
  article-title: Cross-domain classification of multisource remote sensing data using fractional fusion and spatial-spectral domain adaptation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3190316
– volume: 63
  start-page: 206
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0235
  article-title: Open land cover from openstreetmap and remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0050
  article-title: Swin transformer embedding unet for remote sensing image semantic segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3230846
– volume: 112
  start-page: 2495
  year: 2008
  ident: 10.1016/j.rse.2023.113856_bb0230
  article-title: A method for integrating modis and landsat data for systematic monitoring of forest cover and change in the Congo basin
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.11.012
– volume: 32
  start-page: 1713
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0155
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2988928
– start-page: 1520
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0280
  article-title: Learning deconvolution network for semantic segmentation
– year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0265
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: vol. 35
  start-page: 10754
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0300
  article-title: Dast: Unsupervised domain adaptation in semantic segmentation based on discriminator attention and self-training
– year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0080
– start-page: 6254
  year: 2023
  ident: 10.1016/j.rse.2023.113856_bb0210
  article-title: Openearthmap: A benchmark dataset for global high-resolution land cover mapping
– volume: 7
  start-page: 23
  year: 2019
  ident: 10.1016/j.rse.2023.113856_bb0240
  article-title: The advanced hyperspectral imager: aboard china’s gaofen-5 satellite
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2927687
– volume: 40
  start-page: 834
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0115
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 1125
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0295
  article-title: Image-to-image translation with conditional adversarial networks
– volume: 63
  start-page: 139
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0195
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– start-page: 234
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0275
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 34
  start-page: 12077
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0060
  article-title: Segformer: simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 2794
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0305
  article-title: Least squares generative adversarial networks
– volume: 59
  start-page: 4340
  year: 2021
  ident: 10.1016/j.rse.2023.113856_bb0205
  article-title: More diverse means better: multimodal deep learning meets remote-sensing imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3016820
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.rse.2023.113856_bb0055
  article-title: Seismic facies segmentation via a segformer-based specific encoder–decoder–hypercolumns scheme
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3335484
– start-page: 1180
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0135
  article-title: Unsupervised domain adaptation by backpropagation
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.rse.2023.113856_bb0260
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 140
  start-page: 20
  year: 2018
  ident: 10.1016/j.rse.2023.113856_bb0090
  article-title: Beyond rgb: very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.011
– year: 2016
  ident: 10.1016/j.rse.2023.113856_bb0255
– start-page: 1
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0270
  article-title: Going deeper with convolutions
– volume: 19
  start-page: 1
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0095
  article-title: Deep encoder-decoder networks for classification of hyperspectral and lidar data
  publication-title: IEEE Geosci. Remote Sens.
– volume: volume 2
  start-page: 260
  year: 2015
  ident: 10.1016/j.rse.2023.113856_bb0245
  article-title: Sar image despeckling using refined lee filter
– volume: 237
  year: 2020
  ident: 10.1016/j.rse.2023.113856_bb0150
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
– volume: 277
  year: 2022
  ident: 10.1016/j.rse.2023.113856_bb0170
  article-title: Cross-sensor domain adaptation for high spatial resolution urban land-cover mapping: from airborne to spaceborne imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113058
SSID ssj0015871
Score 2.7518258
Snippet Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113856
SubjectTerms artificial intelligence
China
class
Cross-city
data collection
Deep learning
Dice loss
domain
Domain adaptation
environment
Germany
High-resolution network
Land cover
Multimodal benchmark datasets
Remote sensing
Segmentation
topology
Title Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks
URI https://dx.doi.org/10.1016/j.rse.2023.113856
https://www.proquest.com/docview/3040427368
Volume 299
WOSCitedRecordID wos001109906200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBoIXBIWJcZOReCIKauK6jnkrUxmgaUIwpPIUOY6zdSxJ1TRT-SX8A34nx5ckbRETIPESRU7suPq--pxjnwtCzyUdkTQjoZ9KGvnDYUb9JBtxX3FQNqiIRJaaqiVH7Pg4mk75h17vRxMLc3nBiiJarfj8v0INbQC2Dp39C7jbQaEB7gF0uALscP0j4A-03POl1q5zmzzTRp8b18G8TE0mfwBIeZV2Xi9OvQSmf5aLxVdP-4tWaml8D2U3TqVyAGAm4eY0d8FKhVebzjrfsQ82u_tNXlrmYlZ4IhVz915hPc2rdT344-YMQGNdi7hrqebchYGZmXISdn2P-_Wsazyy1bdFudnwpV7Vjv9uayMk2k3EBnfa_bYm5mbDJVRn1PH1SmMlmF22I6ZDsWwh42ZdD23lpV9khN2uOH-5qHSa1JDosjYR3crHbST8J5MQET4V6rxkoExdQ7shoxxWz93xu8n0fXteRSNmazO6uTXn58aTcOtDv9OAtnQBo-Cc3EG3nWWCx5ZRd1FPFX20N-lggYdOElR9dPNQuWTnfXTj0JSH_nYPfe_Ihx35XuEx7qiHLfWwAx631MOOehiohzvq4YZ6eJ162FAPb1EPW-rhjnq4od599PnN5OTgre9Kf_iSkMHSZ5liYUAEy2iQUcoCvXfCBJcEzPcEbHRFleJJQJN0pBIGT7S0DGUkOeEJUWQP7RRloR4gTFUmacgEWALpUPKBCAkXggWSBiyTUu2jQQNHLF1efF2e5SJuHCDPY0Aw1gjGFsF99KLtMrdJYa56edhgHDut1mqrMRDyqm7PGj7EsOLrYzxRqLKuYgJUHILVMYoe_tvQj9Ct7t_2GO0sF7V6gq7Ly-WsWjx11P4J0U7atA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-city+matters%3A+A+multimodal+remote+sensing+benchmark+dataset+for+cross-city+semantic+segmentation+using+high-resolution+domain+adaptation+networks&rft.jtitle=Remote+sensing+of+environment&rft.au=Hong%2C+Danfeng&rft.au=Zhang%2C+Bing&rft.au=Li%2C+Hao&rft.au=Li%2C+Yuxuan&rft.date=2023-12-15&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=299&rft_id=info:doi/10.1016%2Fj.rse.2023.113856&rft.externalDocID=S0034425723004078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon