Graphic sequences with a realization containing a generalized friendship graph

Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph Theory and Algorithms, vol. I, New Issues Press, Kalamazoo, MI, 1999, pp. 451–460] considered a variation of the classical Turán-type extremal p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics Jg. 308; H. 24; S. 6226 - 6232
Hauptverfasser: Yin, Jian-Hua, Chen, Gang, Schmitt, John R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 28.12.2008
Elsevier
Schlagworte:
ISSN:0012-365X, 1872-681X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph Theory and Algorithms, vol. I, New Issues Press, Kalamazoo, MI, 1999, pp. 451–460] considered a variation of the classical Turán-type extremal problems as follows: for any simple graph H , determine the smallest even integer σ ( H , n ) such that every n -term graphic sequence π = ( d 1 , d 2 , … , d n ) with term sum σ ( π ) = d 1 + d 2 + ⋯ + d n ≥ σ ( H , n ) has a realization G containing H as a subgraph. Let F t , r , k denote the generalized friendship graph on k t − k r + r vertices, that is, the graph of k copies of K t meeting in a common r set, where K t is the complete graph on t vertices and 0 ≤ r ≤ t . In this paper, we determine σ ( F t , r , k , n ) for k ≥ 2 , t ≥ 3 , 1 ≤ r ≤ t − 2 and n sufficiently large.
AbstractList Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph Theory and Algorithms, vol. I, New Issues Press, Kalamazoo, MI, 1999, pp. 451–460] considered a variation of the classical Turán-type extremal problems as follows: for any simple graph H , determine the smallest even integer σ ( H , n ) such that every n -term graphic sequence π = ( d 1 , d 2 , … , d n ) with term sum σ ( π ) = d 1 + d 2 + ⋯ + d n ≥ σ ( H , n ) has a realization G containing H as a subgraph. Let F t , r , k denote the generalized friendship graph on k t − k r + r vertices, that is, the graph of k copies of K t meeting in a common r set, where K t is the complete graph on t vertices and 0 ≤ r ≤ t . In this paper, we determine σ ( F t , r , k , n ) for k ≥ 2 , t ≥ 3 , 1 ≤ r ≤ t − 2 and n sufficiently large.
Author Schmitt, John R.
Chen, Gang
Yin, Jian-Hua
Author_xml – sequence: 1
  givenname: Jian-Hua
  surname: Yin
  fullname: Yin, Jian-Hua
  email: yinjh@ustc.edu
  organization: Department of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, PR China
– sequence: 2
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
  organization: Department of Mathematics, Ningxia University, Yinchuan 750021, PR China
– sequence: 3
  givenname: John R.
  surname: Schmitt
  fullname: Schmitt, John R.
  organization: Department of Mathematics, Middlebury College, Middlebury, VT, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20863298$$DView record in Pascal Francis
BookMark eNp9kLFOwzAQhi1UJNrCCzBlYUywndhJJBZUQUGqYAGpm-Xa5_aq4gQ7gODpSShiYOh0Ot3__dJ9EzLyjQdCzhnNGGXycptZjCbjlJYZYxktxREZs6rkqazYckTGlDKe5lIsT8gkxi3td5lXY_IwD7rdoEkivL6BNxCTD-w2iU4C6B1-6Q4bn5jGdxo9-nV_WIOHMNzAJi4geBs32CbroeiUHDu9i3D2O6fk-fbmaXaXLh7n97PrRWrynHZpadiq5mC5k25FaZ2XUjDgRamlBGGc4JatODBNCyvqwpRVzYUrC-BOFBRoPiUX-95WR6N3LmhvMKo24IsOn4rTSua8rvoc3-dMaGIM4P4ijKrBnNqqwZwazCnGVG-uh6p_kMHuR0QXNO4Oo1d7FPrn3xGCigYHrRYDmE7ZBg_h33xsjFo
CODEN DSMHA4
CitedBy_id crossref_primary_10_1080_03081087_2021_2017836
crossref_primary_10_1007_s10114_012_9608_2
crossref_primary_10_1016_j_ejc_2019_103061
crossref_primary_10_1007_s10587_009_0074_7
crossref_primary_10_1137_080715275
Cites_doi 10.1007/s10114-005-0676-4
10.1016/S0095-8956(03)00044-3
10.21136/CPM.1955.108220
10.1007/BF02879940
10.1016/j.disc.2005.03.028
10.1016/S0012-365X(02)00765-3
10.1007/s00373-007-0737-9
10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
10.1016/S0012-365X(99)00289-7
10.1360/02ys9076
10.1137/0110037
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2009 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2009 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.disc.2007.11.075
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-681X
EndPage 6232
ExternalDocumentID 20863298
10_1016_j_disc_2007_11_075
S0012365X07009569
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-7c1b92ed2f6fb00937651e247a66e5cf52d1b2e1a04d594c78925f74e2f540e03
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261259100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Mon Jul 21 09:14:30 EDT 2025
Sat Nov 29 06:17:36 EST 2025
Tue Nov 18 22:37:03 EST 2025
Fri Feb 23 02:29:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Potentially F t , r , k -graphic sequence
Generalized friendship graph
Degree sequence
Integer
Graphics
Algorithm theory
Complete graph
Subgraph
Graph theory
Combinatorics
Potentially Ft,r,k-graphic sequence
Graph algorithm
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-7c1b92ed2f6fb00937651e247a66e5cf52d1b2e1a04d594c78925f74e2f540e03
OpenAccessLink https://dx.doi.org/10.1016/j.disc.2007.11.075
PageCount 7
ParticipantIDs pascalfrancis_primary_20863298
crossref_primary_10_1016_j_disc_2007_11_075
crossref_citationtrail_10_1016_j_disc_2007_11_075
elsevier_sciencedirect_doi_10_1016_j_disc_2007_11_075
PublicationCentury 2000
PublicationDate 2008-12-28
PublicationDateYYYYMMDD 2008-12-28
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-28
  day: 28
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Discrete mathematics
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Gould, Jacobson, Lehel (b7) 1999; vol. I
Havel (b9) 1955; 80
Lai (b10) 2007; 61
Li, Song, Luo (b13) 1998; 41
Yin, Li (b18) 2002; 45
J.R. Schmitt, On Potentially
Yin, Li (b19) 2005; 301
Yin, Li (b17) 2003; 260
M.J. Ferrara, J.R. Schmitt, A sharp lower bound for potentially
graphic sequences (submitted for publication) (under review)
Ferrara (b4) 2007; 23
Hakimi (b8) 1962; 10
Erdős, Gallai (b2) 1960; 11
Li, Song (b12) 1998; 29
graphic Degree Sequences and Saturated Graphs, Ph.D. Dissertation, Emory University, May 2005
Erdős, Jacobson, Lehel (b3) 1991; vol. I
Yin, Chen (b16) 2007; 72
Li, Song (b11) 2000; 212
Li, Yin (b14) 2006; 22
Chen, Gould, Pfender, Wei (b1) 2003; 89
Ferrara, Gould, Schmitt (b5) 2007; 85
Chen (10.1016/j.disc.2007.11.075_b1) 2003; 89
Gould (10.1016/j.disc.2007.11.075_b7) 1999; vol. I
Ferrara (10.1016/j.disc.2007.11.075_b5) 2007; 85
Lai (10.1016/j.disc.2007.11.075_b10) 2007; 61
Li (10.1016/j.disc.2007.11.075_b13) 1998; 41
Yin (10.1016/j.disc.2007.11.075_b16) 2007; 72
Ferrara (10.1016/j.disc.2007.11.075_b4) 2007; 23
Yin (10.1016/j.disc.2007.11.075_b17) 2003; 260
Li (10.1016/j.disc.2007.11.075_b11) 2000; 212
Li (10.1016/j.disc.2007.11.075_b14) 2006; 22
Erdős (10.1016/j.disc.2007.11.075_b2) 1960; 11
Havel (10.1016/j.disc.2007.11.075_b9) 1955; 80
Erdős (10.1016/j.disc.2007.11.075_b3) 1991; vol. I
Hakimi (10.1016/j.disc.2007.11.075_b8) 1962; 10
Li (10.1016/j.disc.2007.11.075_b12) 1998; 29
10.1016/j.disc.2007.11.075_b6
10.1016/j.disc.2007.11.075_b15
Yin (10.1016/j.disc.2007.11.075_b18) 2002; 45
Yin (10.1016/j.disc.2007.11.075_b19) 2005; 301
References_xml – volume: 260
  start-page: 295
  year: 2003
  end-page: 305
  ident: b17
  article-title: An extremal problem on potentially
  publication-title: Discrete Math.
– volume: 41
  start-page: 510
  year: 1998
  end-page: 520
  ident: b13
  article-title: The Erdős–Jacobson–Lehel conjecture on potentially
  publication-title: Sci. China Ser. A
– volume: 301
  start-page: 218
  year: 2005
  end-page: 227
  ident: b19
  article-title: Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size
  publication-title: Discrete Math.
– volume: 23
  start-page: 263
  year: 2007
  end-page: 269
  ident: b4
  article-title: Graphic sequences with a realization containing a union of cliques
  publication-title: Graphs Combin.
– volume: 29
  start-page: 63
  year: 1998
  end-page: 72
  ident: b12
  article-title: The smallest degree sum that yields potentially
  publication-title: J. Graph Theory
– volume: 10
  start-page: 496
  year: 1962
  end-page: 506
  ident: b8
  article-title: On the realizability of a set of integers as degrees of vertices of a graph
  publication-title: J. SIAM Appl. Math.
– reference: -graphic sequences (submitted for publication) (under review)
– volume: 89
  start-page: 159
  year: 2003
  end-page: 171
  ident: b1
  article-title: Extremal graphs for intersecting cliques
  publication-title: J. Combin. Theory Ser. B
– volume: vol. I
  start-page: 451
  year: 1999
  end-page: 460
  ident: b7
  article-title: Potentially
  publication-title: Combinatorics, Graph Theory and Algorithms
– reference: J.R. Schmitt, On Potentially
– volume: 22
  start-page: 1133
  year: 2006
  end-page: 1138
  ident: b14
  article-title: The threshold for the Erdős, Jacobson and Lehel conjecture to be true
  publication-title: Acta Math. Sin. (Engl. Ser.)
– volume: 61
  start-page: 59
  year: 2007
  end-page: 63
  ident: b10
  article-title: An extremal problem on potentially
  publication-title: J. Combin. Math. Combin. Comput.
– volume: 11
  start-page: 264
  year: 1960
  end-page: 274
  ident: b2
  article-title: Graphs with given degrees of vertices
  publication-title: Math. Lapok
– reference: -graphic Degree Sequences and Saturated Graphs, Ph.D. Dissertation, Emory University, May 2005
– volume: 45
  start-page: 694
  year: 2002
  end-page: 705
  ident: b18
  article-title: The smallest degree sum that yields potentially
  publication-title: Science in China, Ser. A,
– volume: vol. I
  start-page: 439
  year: 1991
  end-page: 449
  ident: b3
  article-title: Graphs realizing the same degree sequences and their respective clique numbers
  publication-title: Graph Theory, Combinatorics and Applications
– volume: 72
  start-page: 149
  year: 2007
  end-page: 161
  ident: b16
  article-title: On potentially
  publication-title: Util. Math.
– reference: M.J. Ferrara, J.R. Schmitt, A sharp lower bound for potentially
– volume: 80
  start-page: 477
  year: 1955
  end-page: 480
  ident: b9
  article-title: A remark on the existence of finite graphs
  publication-title: Časopis Pěst. Mat.
– volume: 212
  start-page: 223
  year: 2000
  end-page: 231
  ident: b11
  article-title: An extremal problem on the potentially
  publication-title: Discrete Math.
– volume: 85
  start-page: 161
  year: 2007
  end-page: 171
  ident: b5
  article-title: Graphic sequences with a realization containing a friendship graph
  publication-title: Ars Combin.
– volume: 22
  start-page: 1133
  year: 2006
  ident: 10.1016/j.disc.2007.11.075_b14
  article-title: The threshold for the Erdős, Jacobson and Lehel conjecture to be true
  publication-title: Acta Math. Sin. (Engl. Ser.)
  doi: 10.1007/s10114-005-0676-4
– volume: vol. I
  start-page: 439
  year: 1991
  ident: 10.1016/j.disc.2007.11.075_b3
  article-title: Graphs realizing the same degree sequences and their respective clique numbers
– volume: 89
  start-page: 159
  year: 2003
  ident: 10.1016/j.disc.2007.11.075_b1
  article-title: Extremal graphs for intersecting cliques
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/S0095-8956(03)00044-3
– volume: 80
  start-page: 477
  year: 1955
  ident: 10.1016/j.disc.2007.11.075_b9
  article-title: A remark on the existence of finite graphs
  publication-title: Časopis Pěst. Mat.
  doi: 10.21136/CPM.1955.108220
– volume: 61
  start-page: 59
  year: 2007
  ident: 10.1016/j.disc.2007.11.075_b10
  article-title: An extremal problem on potentially Km−C4-graphical sequences
  publication-title: J. Combin. Math. Combin. Comput.
– volume: 41
  start-page: 510
  year: 1998
  ident: 10.1016/j.disc.2007.11.075_b13
  article-title: The Erdős–Jacobson–Lehel conjecture on potentially Pk-graphic sequences is true
  publication-title: Sci. China Ser. A
  doi: 10.1007/BF02879940
– volume: 72
  start-page: 149
  year: 2007
  ident: 10.1016/j.disc.2007.11.075_b16
  article-title: On potentially Kr1,r2,…,rm-graphic sequences
  publication-title: Util. Math.
– volume: 85
  start-page: 161
  year: 2007
  ident: 10.1016/j.disc.2007.11.075_b5
  article-title: Graphic sequences with a realization containing a friendship graph
  publication-title: Ars Combin.
– volume: 301
  start-page: 218
  year: 2005
  ident: 10.1016/j.disc.2007.11.075_b19
  article-title: Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2005.03.028
– volume: 260
  start-page: 295
  year: 2003
  ident: 10.1016/j.disc.2007.11.075_b17
  article-title: An extremal problem on potentially Kr,s-graphic sequences
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(02)00765-3
– volume: 23
  start-page: 263
  year: 2007
  ident: 10.1016/j.disc.2007.11.075_b4
  article-title: Graphic sequences with a realization containing a union of cliques
  publication-title: Graphs Combin.
  doi: 10.1007/s00373-007-0737-9
– ident: 10.1016/j.disc.2007.11.075_b6
– volume: 29
  start-page: 63
  year: 1998
  ident: 10.1016/j.disc.2007.11.075_b12
  article-title: The smallest degree sum that yields potentially Pk-graphic sequences
  publication-title: J. Graph Theory
  doi: 10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
– volume: vol. I
  start-page: 451
  year: 1999
  ident: 10.1016/j.disc.2007.11.075_b7
  article-title: Potentially G-graphical degree sequences
– volume: 212
  start-page: 223
  year: 2000
  ident: 10.1016/j.disc.2007.11.075_b11
  article-title: An extremal problem on the potentially Pk-graphic sequence
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(99)00289-7
– volume: 45
  start-page: 694
  year: 2002
  ident: 10.1016/j.disc.2007.11.075_b18
  article-title: The smallest degree sum that yields potentially Kr,r-graphic sequences
  publication-title: Science in China, Ser. A,
  doi: 10.1360/02ys9076
– volume: 10
  start-page: 496
  year: 1962
  ident: 10.1016/j.disc.2007.11.075_b8
  article-title: On the realizability of a set of integers as degrees of vertices of a graph
  publication-title: J. SIAM Appl. Math.
  doi: 10.1137/0110037
– volume: 11
  start-page: 264
  year: 1960
  ident: 10.1016/j.disc.2007.11.075_b2
  article-title: Graphs with given degrees of vertices
  publication-title: Math. Lapok
– ident: 10.1016/j.disc.2007.11.075_b15
SSID ssj0001638
Score 1.8640406
Snippet Gould, Jacobson and Lehel [R.J. Gould, M.S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi, et al. (Eds.), Combinatorics, Graph...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 6226
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Degree sequence
Exact sciences and technology
Generalized friendship graph
Graph theory
Information retrieval. Graph
Mathematics
Potentially [formula omitted]-graphic sequence
Sciences and techniques of general use
Theoretical computing
Title Graphic sequences with a realization containing a generalized friendship graph
URI https://dx.doi.org/10.1016/j.disc.2007.11.075
Volume 308
WOSCitedRecordID wos000261259100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYciVPWp0gfyobdVUOLEryMCCq3aPVS02p4ix3boIkhX7IJQfz3j2HGyqKBy6CVaJRsnu_PZ89me-QahD8xSo2HKlUhFSVJwWyTKCJXkps64sZnWbW3AH1_4ZCKmU9nt6C7acgK8acTVlZz_V1PDOTC2S529h7ljo3ACPoPR4Qhmh-M_Gf7ASVDP9DgGSYf8tTHQw9OQddlGqPvaEHDh2EtPz_4A-ayd7rFpQ7j6chSBvO7NYIwBkj0-i1qvkZH_DFW9AG3J4UUf_hOSPw5U8JDtns-vs25PysXtfNteWXoQLoyDiOFw6hQPGZ0Oh9M8FQPckGIwOjJC2MDTAvMifx3F_YLCybZLTPYqk05o1VdYWZXMvuHKYoBhF7t2Uro2XK1NDnOdEtp4iNYIp1KM0NrOp_3p5-i2HTH1btv_ppBh5YMBb77JbSxmY64W0LdqXxRlwFSOnqInYYqBdzw0nqEHtnmO1r_2NnuBJgEkOIIEO5BghQcgwT1I4MIAJLgHCW5B8hJ9_7h_tHuYhMoaic7zdJlwnVWSWENqVlduUYszmllScMWg8-qaEpNVxGYqLQyVheZCElrzwpIaGL5N81do1Pxu7GuEmdIVtYoL43Sa0kplyulD8YopKfKs2kRZ90-VOsjOu-onp-XtNtpE43jP3Iuu3Plt2hmgDLTR08ES8HTnfVsr1oqPIjDNz4kUb-71Gm_R476PvEOj5fmFfY8e6cvlbHG-FdB2Ddo6mf0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphic+sequences+with+a+realization+containing+a+generalized+friendship+graph&rft.jtitle=Discrete+mathematics&rft.au=Yin%2C+Jian-Hua&rft.au=Chen%2C+Gang&rft.au=Schmitt%2C+John+R.&rft.date=2008-12-28&rft.issn=0012-365X&rft.volume=308&rft.issue=24&rft.spage=6226&rft.epage=6232&rft_id=info:doi/10.1016%2Fj.disc.2007.11.075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2007_11_075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon