A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO)
This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporate...
Saved in:
| Published in: | Information sciences Vol. 357; pp. 182 - 200 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
20.08.2016
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporated into the MO-ITLBO algorithm in order to allow this heuristic to handle problems with several objective functions. The qualities of the solution are computed based on the Pareto dominance notion. The performance of the MO-ITLBO algorithm is assessed by applying it on a set of standard test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009) competition. The results obtained using the proposed algorithm is compared with the other state-of-the-art algorithms available in the literature. Moreover, the performance of the MO-ITLBO algorithm is also compared with the multi-objective version of the basic teaching–learning based optimization algorithm (MO-TLBO). The statistical analysis of the experimental work is also carried out by conducting Friedman’s rank test and Holm post hoc procedure. The results show that the proposed approach is competitive and effective compared to other algorithms contemplated in this work and it can also find the result with greater precision. |
|---|---|
| AbstractList | This paper presents an efficient multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporated into the MO-ITLBO algorithm in order to allow this heuristic to handle problems with several objective functions. The qualities of the solution are computed based on the Pareto dominance notion. The performance of the MO-ITLBO algorithm is assessed by applying it on a set of standard test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009) competition. The results obtained using the proposed algorithm is compared with the other state-of-the-art algorithms available in the literature. Moreover, the performance of the MO-ITLBO algorithm is also compared with the multi-objective version of the basic teaching-learning based optimization algorithm (MO-TLBO). The statistical analysis of the experimental work is also carried out by conducting Friedman's rank test and Holm post hoc procedure. The results show that the proposed approach is competitive and effective compared to other algorithms contemplated in this work and it can also find the result with greater precision. |
| Author | Patel, Vivek K. Savsani, Vimal J. |
| Author_xml | – sequence: 1 givenname: Vivek K. surname: Patel fullname: Patel, Vivek K. email: viveksaparia@gmail.com organization: Gujarat Technological University, Gujarat, India – sequence: 2 givenname: Vimal J. surname: Savsani fullname: Savsani, Vimal J. email: vimal.savsani@gmail.com, vimal.s@sot.pdpu.ac.in organization: Pandit Deendayal Petroleum University, Raysan, Gandhinagar 382007, Gujarat, India |
| BookMark | eNp9kLFu2zAQhokiBeq4fYBuGpNB6pGWSAmZkiBtA7jwknYlSOqUnCGJDkkbSKa-Q9-wT1Km7tQh0x1w_3e4-07ZyexnZOwjh4oDl5-2Fc2xEsDrCpoK6u4NW_BWiVKKjp-wBYCAEkTTvGOnMW4BoFZSLtiPy2Laj4lKb7foEh2woGkX_AH7IqFxDzTf__75a0QT5twW1sQ88btEEz2bRH4uzHjvA6WHqTj7tilv79ZXm_P37O1gxogf_tUl-_755u76a7nefLm9vlyXbrWCVCqL0NteSGcFrvjQNnyoAa2SLe9Va6UVYgDX1qhML2wn0KjBDFxxI5seh9WSnR335pMf9xiTnig6HEczo99HzVsuAbqadznKj1EXfIwBB70LNJnwpDnoF4d6q7ND_eJQQ6Ozw8yo_xhH6e_XKRgaXyUvjiTm7w-EQUdHODvsKWTPuvf0Cv0HDNeQEw |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2018_03_010 crossref_primary_10_1016_j_swevo_2022_101041 crossref_primary_10_3390_mi13071026 crossref_primary_10_1016_j_asoc_2017_08_056 crossref_primary_10_1016_j_cie_2022_108719 crossref_primary_10_1016_j_knosys_2022_108334 crossref_primary_10_1007_s10845_015_1050_8 crossref_primary_10_26599_TST_2024_9010174 crossref_primary_10_1080_0305215X_2016_1150468 crossref_primary_10_1109_ACCESS_2022_3151088 crossref_primary_10_1109_ACCESS_2019_2951370 crossref_primary_10_1007_s11600_019_00374_3 crossref_primary_10_1002_ett_4579 crossref_primary_10_1007_s40313_021_00755_4 crossref_primary_10_1007_s10489_018_1170_x crossref_primary_10_1016_j_asoc_2017_05_003 crossref_primary_10_1016_j_knosys_2021_106881 crossref_primary_10_1038_s41598_025_10596_9 crossref_primary_10_1007_s10845_016_1210_5 crossref_primary_10_1016_j_cie_2021_107254 crossref_primary_10_1016_j_engappai_2021_104554 crossref_primary_10_1007_s10845_019_01486_9 crossref_primary_10_1007_s11771_019_4035_5 crossref_primary_10_3390_su11010170 crossref_primary_10_1016_j_cad_2018_03_003 crossref_primary_10_1080_02331934_2019_1630625 crossref_primary_10_1007_s00521_019_04343_1 crossref_primary_10_1155_2017_2034907 crossref_primary_10_1016_j_ress_2018_01_018 crossref_primary_10_1109_ACCESS_2021_3069748 crossref_primary_10_1016_j_jmrt_2025_08_284 crossref_primary_10_1016_j_advengsoft_2018_05_011 crossref_primary_10_1016_j_eswa_2021_115972 crossref_primary_10_1016_j_heliyon_2022_e09399 crossref_primary_10_1016_j_eswa_2022_118414 crossref_primary_10_1016_j_swevo_2020_100695 crossref_primary_10_1007_s11047_020_09811_5 crossref_primary_10_1080_15397734_2015_1124023 crossref_primary_10_1007_s00500_017_2722_4 crossref_primary_10_1088_1741_2552_aa8063 crossref_primary_10_1016_j_knosys_2016_06_019 crossref_primary_10_1016_j_epsr_2021_107433 crossref_primary_10_1109_ACCESS_2020_3015796 crossref_primary_10_1016_j_scitotenv_2018_05_153 crossref_primary_10_1016_j_engappai_2017_06_010 crossref_primary_10_3390_ma15207392 crossref_primary_10_1007_s00500_015_1786_2 crossref_primary_10_1007_s00521_017_3049_x crossref_primary_10_1007_s42452_020_03818_4 crossref_primary_10_1007_s00170_020_06284_9 crossref_primary_10_1016_j_ins_2016_08_061 crossref_primary_10_1016_j_ins_2017_11_052 crossref_primary_10_1016_j_jclepro_2017_04_132 crossref_primary_10_1016_j_swevo_2019_04_010 crossref_primary_10_1007_s13198_021_01248_y crossref_primary_10_1016_j_ins_2019_08_069 crossref_primary_10_3390_app12105060 crossref_primary_10_1016_j_knosys_2018_06_004 crossref_primary_10_1016_j_jclepro_2019_119536 crossref_primary_10_1007_s00521_018_3872_8 crossref_primary_10_1016_j_engappai_2017_04_018 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1080_23799927_2023_2227147 crossref_primary_10_1007_s10489_017_0927_y crossref_primary_10_1007_s12559_025_10486_2 crossref_primary_10_1080_00207543_2018_1437288 crossref_primary_10_1016_j_neucom_2018_06_076 crossref_primary_10_1109_ACCESS_2020_3023744 crossref_primary_10_1109_TEM_2017_2774281 crossref_primary_10_3390_w14152329 crossref_primary_10_1016_j_neucom_2023_126898 crossref_primary_10_1109_ACCESS_2018_2869040 crossref_primary_10_1109_TEM_2019_2918050 crossref_primary_10_1007_s00500_015_1866_3 crossref_primary_10_1016_j_ins_2015_06_044 crossref_primary_10_1155_2018_1806947 crossref_primary_10_1016_j_jksuci_2020_12_014 crossref_primary_10_1016_j_eswa_2024_125760 |
| Cites_doi | 10.1109/CEC.2009.4983177 10.1109/TSMCA.2007.914767 10.1016/j.engappai.2012.02.016 10.1016/j.ins.2011.04.004 10.1016/j.ins.2010.09.026 10.1109/CEC.2009.4983178 10.1145/2001858.2001917 10.1016/j.engappai.2012.11.006 10.1109/CEC.2009.4983180 10.1109/CEC.2009.4983311 10.1016/j.ins.2013.09.009 10.1016/j.apm.2012.03.043 10.1109/TSMCB.2008.925757 10.1016/j.engappai.2014.01.016 10.1109/CEC.2009.4983309 10.1016/j.ins.2012.12.013 10.1109/TEVC.2008.2011743 10.1016/j.swevo.2011.03.001 10.1109/CEC.2009.4982950 10.1109/4235.996017 10.1109/CEC.2009.4983310 10.1109/CEC.2009.4983176 10.1007/978-3-642-27172-4_82 10.1109/JSYST.2012.2183276 10.1109/TEVC.2004.826067 10.1109/CEC.2009.4983179 10.1109/CEC.2009.4982949 10.1016/j.ins.2013.11.023 10.1109/CEC.2009.4982948 10.1109/CEC.2009.4983312 10.1016/j.cad.2010.12.015 10.1016/j.swevo.2011.02.002 10.1016/j.ins.2011.08.006 10.1016/j.ins.2013.08.049 10.1016/j.ins.2012.06.007 10.1016/j.swevo.2011.08.001 10.1016/j.ins.2011.08.027 10.1080/0305215X.2011.652103 10.1109/CEC.2010.5586057 10.1080/0305215X.2010.493937 10.1162/106365605774666895 10.1109/CEC.2009.4982947 10.1016/j.ins.2013.12.045 10.1109/ICACTE.2010.5579761 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. |
| Copyright_xml | – notice: 2014 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2014.05.049 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 200 |
| ExternalDocumentID | 10_1016_j_ins_2014_05_049 S0020025514006124 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-7be0dbd26cb2e31f851f40eb7681d78b6b22f0c84e7ad2b92ea7faf171a65def3 |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377324500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Thu Oct 02 07:03:21 EDT 2025 Tue Nov 18 22:11:29 EST 2025 Sat Nov 29 07:58:42 EST 2025 Fri Feb 23 02:33:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Improved teaching–learning based optimization Multi-objective optimization Inverted generational distance Teaching–learning based optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-7be0dbd26cb2e31f851f40eb7681d78b6b22f0c84e7ad2b92ea7faf171a65def3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1816009419 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_1816009419 crossref_primary_10_1016_j_ins_2014_05_049 crossref_citationtrail_10_1016_j_ins_2014_05_049 elsevier_sciencedirect_doi_10_1016_j_ins_2014_05_049 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-20 |
| PublicationDateYYYYMMDD | 2016-08-20 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Rao, Patel (b0175) 2013; 26 Rao, Patel (b0180) 2013; 37 Zhou, Qu, Li, Zhao, Suganthan, Zhang (b0275) 2011; 1 F. Zeng, J. Decraene, M.Y.H. Low, P. Hingston, C. Wentong, Z. Suiping, M. Chandramohan, Autonomous bee colony optimization for multi-objective function, in: Proceedings of Congress on Evolutionary Computation 18–23 July 2010, IEEE Press, Barcelona, Spain, 2010, pp. 1–8. R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, K. Ziarati, A multi-objective artificial bee colony for optimizing multi-objective problems, in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) 20–22 August 2010, vol. 5, IEEE Press, Chengdu, China, 2010, pp. 271–281. Krishnanand, Panigrahi, Rout, Mohapatra (b0090) 2011; 7076 Rao, Savsani, Vakharia (b0200) 2011; 183 Chen, Zou (b0030) 2014; 262 V.L. Huang, S.Z. Zhao, R. Mallipeddi, P.N. Suganthan, Multi-objective optimization using self-adaptive differential evolution algorithm, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 190–194. Adra, Dodd, Griffin, Fleming (b0005) 2009; 13 H. Liu, X. Li, The multi-objective evolutionary algorithm based on determined weight and sub-regional search, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1928–1934. C.M. Chen, Y. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 209–216. Wang, Fleming, Purshouse (b0245) 2014; 258 A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self adaptation and local search for constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 192–202. K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2919–2926. Coello Coello, Pulido, Lechuga (b0045) 2004; 8 Medina, Das, Coello Coello, Ramírez (b0135) 2014; 32 Rao, Patel (b0165) 2012; 3 Deb, Mohan, Mishra (b0050) 2005; 13 Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 203–208. Martin, Rosete, Alcalá-Fdez, Herrera (b0130) 2014; 258 K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nanyang Technological University, Singapore, 2010. Qu, Suganthan (b0160) 2011; 43 Srinivasan, Seow (b0210) 2003; 3 Rao, Patel (b0170) 2013; 4 B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2934–2939. Tan, Jiao, Li, Wang (b0220) 2012; 213 S. Tiwari, G. Fadel, P. Koch, K. Deb, Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1935–1942. Coello Coello, Lamont, Van Veldhuizen (b0040) 2007 Deb, Pratap, Agarwal, Meyarivan (b0055) 2002; 6 P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, A. Chen, Y.P. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, 2005. Niknam, Golestaneh, Sadeghi (b0145) 2012; 6 W. Zou, Y. Zhu, H. Chen, H. Shen, A novel multi-objective optimization algorithm based on artificial bee colony, in: N. Krasnogor et al. (Eds.), Genetic and Evolutionary Computation Conference (GECCO’11) 12–16 July 2011, Dublin, Ireland, 2011, pp. 103–104. Rao, Savsani, Balic (b0190) 2012; 44 Leong, Yen (b0105) 2008; 38 J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A.C. Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-parameter Optimization, Technical Report. Nanyang Technological University, Singapore, 2006. Agrawal, Dashora, Tiwari, Son (b0010) 2008; 38 Jiao, wang, Shang, Liu (b0085) 2013; 228 Kundu, Suresh, Ghosh, Das, Panigrahi, Das (b0100) 2011; 181 Mostaghim, Teich (b0140) 2004; 2 Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2927–2933. Akbari, Ziarati (b0020) 2012; 8 Pedro, Takahashi (b0150) 2014; 268 L.Y. Tseng, C. Chen, Multiple trajectory search for unconstrained/constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1951–1958. Yen, Leong (b0250) 2009; 39 Akbari, Hedayatzadeh, Ziarati, Hasanizadeh (b0015) 2012; 2 Chen, Zou, Xie (b0035) 2011; 181 Zou, Wang, Hei, Chen, Wang (b0280) 2013; 26 Rao, Savsani, Vakharia (b0195) 2011; 43 Li, Kwong, Cao, Li, Zheng, Shen (b0110) 2012; 182 Derrac, Garcia, Molina, Herrera (b0060) 2011; 1 Rao, Patel (b0185) 2013; 20 S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1943–1950. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the Congress on Evolutionary Computation 2009 (CEC 2009) Special Session and Competition, Working Report CES-887, University of Essex, UK, 2009. S. Gao, S. Zeng, B. Xiao, L. Zhang, Y. Shi, X. Tian, Y. Yang, H. Long, X. Yang, D. Yu, Z. Yan, An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1959–1964. Holm (b0075) 1979; 6 M. Liu, X. Zou, Y. Chen, Z. Wu, Performance assessment of DMOEA-DD with CEC 2009 moea competition test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2913–2918. Kundu (10.1016/j.ins.2014.05.049_b0100) 2011; 181 Agrawal (10.1016/j.ins.2014.05.049_b0010) 2008; 38 Deb (10.1016/j.ins.2014.05.049_b0050) 2005; 13 Rao (10.1016/j.ins.2014.05.049_b0195) 2011; 43 Rao (10.1016/j.ins.2014.05.049_b0200) 2011; 183 Akbari (10.1016/j.ins.2014.05.049_b0020) 2012; 8 10.1016/j.ins.2014.05.049_b0205 Tan (10.1016/j.ins.2014.05.049_b0220) 2012; 213 Chen (10.1016/j.ins.2014.05.049_b0035) 2011; 181 10.1016/j.ins.2014.05.049_b0125 10.1016/j.ins.2014.05.049_b0255 Holm (10.1016/j.ins.2014.05.049_b0075) 1979; 6 Rao (10.1016/j.ins.2014.05.049_b0185) 2013; 20 10.1016/j.ins.2014.05.049_b0095 Medina (10.1016/j.ins.2014.05.049_b0135) 2014; 32 Chen (10.1016/j.ins.2014.05.049_b0030) 2014; 262 Derrac (10.1016/j.ins.2014.05.049_b0060) 2011; 1 10.1016/j.ins.2014.05.049_b0215 10.1016/j.ins.2014.05.049_b0025 10.1016/j.ins.2014.05.049_b0265 10.1016/j.ins.2014.05.049_b0065 Mostaghim (10.1016/j.ins.2014.05.049_b0140) 2004; 2 10.1016/j.ins.2014.05.049_b0260 Srinivasan (10.1016/j.ins.2014.05.049_b0210) 2003; 3 Li (10.1016/j.ins.2014.05.049_b0110) 2012; 182 Martin (10.1016/j.ins.2014.05.049_b0130) 2014; 258 Rao (10.1016/j.ins.2014.05.049_b0170) 2013; 4 Zhou (10.1016/j.ins.2014.05.049_b0275) 2011; 1 Rao (10.1016/j.ins.2014.05.049_b0180) 2013; 37 Deb (10.1016/j.ins.2014.05.049_b0055) 2002; 6 10.1016/j.ins.2014.05.049_b0225 Qu (10.1016/j.ins.2014.05.049_b0160) 2011; 43 10.1016/j.ins.2014.05.049_b0155 Akbari (10.1016/j.ins.2014.05.049_b0015) 2012; 2 Coello Coello (10.1016/j.ins.2014.05.049_b0040) 2007 10.1016/j.ins.2014.05.049_b0230 Leong (10.1016/j.ins.2014.05.049_b0105) 2008; 38 Rao (10.1016/j.ins.2014.05.049_b0175) 2013; 26 10.1016/j.ins.2014.05.049_b0270 10.1016/j.ins.2014.05.049_b0070 Niknam (10.1016/j.ins.2014.05.049_b0145) 2012; 6 Rao (10.1016/j.ins.2014.05.049_b0165) 2012; 3 Rao (10.1016/j.ins.2014.05.049_b0190) 2012; 44 10.1016/j.ins.2014.05.049_b0115 10.1016/j.ins.2014.05.049_b0235 Yen (10.1016/j.ins.2014.05.049_b0250) 2009; 39 10.1016/j.ins.2014.05.049_b0120 Wang (10.1016/j.ins.2014.05.049_b0245) 2014; 258 10.1016/j.ins.2014.05.049_b0285 10.1016/j.ins.2014.05.049_b0240 Coello Coello (10.1016/j.ins.2014.05.049_b0045) 2004; 8 Pedro (10.1016/j.ins.2014.05.049_b0150) 2014; 268 Krishnanand (10.1016/j.ins.2014.05.049_b0090) 2011; 7076 10.1016/j.ins.2014.05.049_b0080 Zou (10.1016/j.ins.2014.05.049_b0280) 2013; 26 Adra (10.1016/j.ins.2014.05.049_b0005) 2009; 13 Jiao (10.1016/j.ins.2014.05.049_b0085) 2013; 228 |
| References_xml | – volume: 182 start-page: 220 year: 2012 end-page: 242 ident: b0110 article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm publication-title: Inform. Sci. – reference: M. Liu, X. Zou, Y. Chen, Z. Wu, Performance assessment of DMOEA-DD with CEC 2009 moea competition test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2913–2918. – volume: 3 start-page: 2292 year: 2003 end-page: 2297 ident: b0210 article-title: Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization problem publication-title: Proc. Cong. Evol. Comput. – volume: 258 start-page: 29 year: 2014 end-page: 53 ident: b0245 article-title: General framework for localized multi-objective evolutionary algorithms publication-title: Inform. Sci. – reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, A. Chen, Y.P. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, 2005. – reference: F. Zeng, J. Decraene, M.Y.H. Low, P. Hingston, C. Wentong, Z. Suiping, M. Chandramohan, Autonomous bee colony optimization for multi-objective function, in: Proceedings of Congress on Evolutionary Computation 18–23 July 2010, IEEE Press, Barcelona, Spain, 2010, pp. 1–8. – volume: 26 start-page: 1291 year: 2013 end-page: 1300 ident: b0280 article-title: Multi-objective optimization using teaching–learning-based optimization algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 7076 start-page: 697 year: 2011 end-page: 705 ident: b0090 article-title: Application of multi-objective teaching–learning-based algorithm to an economic load dispatch problem with incommensurable objectives publication-title: Swarm Evol. Memetic Comput. – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: b0275 article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art publication-title: Swarm Evol. Comput. – volume: 6 start-page: 65 year: 1979 end-page: 70 ident: b0075 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. – volume: 38 start-page: 1270 year: 2008 end-page: 1293 ident: b0105 article-title: PSO-based multi-objective optimization with dynamic population size and adaptive local archives publication-title: IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) – reference: L.Y. Tseng, C. Chen, Multiple trajectory search for unconstrained/constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1951–1958. – reference: C.M. Chen, Y. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 209–216. – volume: 39 start-page: 1013 year: 2009 end-page: 1027 ident: b0250 article-title: Dynamic multiple swarms in multi-objective particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.) – reference: S. Gao, S. Zeng, B. Xiao, L. Zhang, Y. Shi, X. Tian, Y. Yang, H. Long, X. Yang, D. Yu, Z. Yan, An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1959–1964. – volume: 183 start-page: 1 year: 2011 end-page: 15 ident: b0200 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. – reference: B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2934–2939. – volume: 258 start-page: 1 year: 2014 end-page: 28 ident: b0130 article-title: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules publication-title: Inform. Sci. – volume: 181 start-page: 2441 year: 2011 end-page: 2454 ident: b0100 article-title: Multi-objective optimization with artificial weed colonies publication-title: Inform. Sci. – reference: K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2919–2926. – reference: K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nanyang Technological University, Singapore, 2010. – volume: 13 start-page: 501 year: 2005 end-page: 525 ident: b0050 article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions publication-title: Evol. Comput. – reference: J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A.C. Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-parameter Optimization, Technical Report. Nanyang Technological University, Singapore, 2006. – volume: 8 start-page: 715 year: 2012 end-page: 726 ident: b0020 article-title: Multi-objective bee swarm optimization publication-title: Int. J. Innovative Comput. Inform. Control – reference: S. Tiwari, G. Fadel, P. Koch, K. Deb, Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1935–1942. – volume: 4 start-page: 29 year: 2013 end-page: 50 ident: b0170 article-title: Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Int. J. Indust. Eng. Comput. – reference: V.L. Huang, S.Z. Zhao, R. Mallipeddi, P.N. Suganthan, Multi-objective optimization using self-adaptive differential evolution algorithm, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 190–194. – volume: 228 start-page: 90 year: 2013 end-page: 112 ident: b0085 article-title: A co-evolutionary multi-objective optimization algorithm based on direction vectors publication-title: Inform. Sci. – volume: 181 start-page: 3336 year: 2011 end-page: 3355 ident: b0035 article-title: Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front publication-title: Inform. Sci. – reference: Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2927–2933. – reference: Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the Congress on Evolutionary Computation 2009 (CEC 2009) Special Session and Competition, Working Report CES-887, University of Essex, UK, 2009. – volume: 38 start-page: 258 year: 2008 end-page: 277 ident: b0010 article-title: Interactive particle swarm: a Pareto-adaptive meta heuristic to multi-objective optimization publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.) – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0060 article-title: A Practical tutorial on the use of nonparametric statistical tests as methodology for comparing evolutionary intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 44 start-page: 1447 year: 2012 end-page: 1462 ident: b0190 article-title: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems publication-title: Eng. Optim. – reference: A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self adaptation and local search for constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 192–202. – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0045 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – volume: 268 start-page: 202 year: 2014 end-page: 219 ident: b0150 article-title: INSPM: an interactive evolutionary multi-objective algorithm with preference model publication-title: Inform. Sci. – volume: 3 start-page: 535 year: 2012 end-page: 560 ident: b0165 article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int. J. Indust. Eng. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0055 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – reference: H. Liu, X. Li, The multi-objective evolutionary algorithm based on determined weight and sub-regional search, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1928–1934. – volume: 2 start-page: 39 year: 2012 end-page: 52 ident: b0015 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. – volume: 213 start-page: 14 year: 2012 end-page: 38 ident: b0220 article-title: A modification to MOEA/D-DE for multi objective optimization problems with complicated Pareto sets publication-title: Inform. Sci. – volume: 37 start-page: 1147 year: 2013 end-page: 1162 ident: b0180 article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm publication-title: Appl. Math. Model. – volume: 26 start-page: 430 year: 2013 end-page: 445 ident: b0175 article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm publication-title: Eng. Appl. Artif. Intell. – year: 2007 ident: b0040 article-title: Evolutionary Algorithms for Solving Multi-Objective Problems – reference: S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1943–1950. – volume: 6 start-page: 341 year: 2012 end-page: 352 ident: b0145 article-title: -multiobjective teaching–learning-based optimization for dynamic economic emission dispatch publication-title: IEEE Syst. J. – volume: 32 start-page: 10 year: 2014 end-page: 20 ident: b0135 article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow – a comparative study publication-title: Eng. Appl. Artif. Intell. – volume: 20 start-page: 710 year: 2013 end-page: 720 ident: b0185 article-title: An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Scientia Iranica – volume: 2 start-page: 1404 year: 2004 end-page: 1411 ident: b0140 article-title: Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization publication-title: Proc. Cong. Evol. Comput. – reference: R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, K. Ziarati, A multi-objective artificial bee colony for optimizing multi-objective problems, in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) 20–22 August 2010, vol. 5, IEEE Press, Chengdu, China, 2010, pp. 271–281. – volume: 43 start-page: 403 year: 2011 end-page: 434 ident: b0160 article-title: Constrained multi-objective optimization algorithm with ensemble of constraint handling methods publication-title: Eng. Optim. – volume: 262 start-page: 62 year: 2014 end-page: 77 ident: b0030 article-title: Runtime analysis of a multi-objective evolutionary algorithm for obtaining finite approximations of Pareto fronts publication-title: Inform. Sci. – reference: W. Zou, Y. Zhu, H. Chen, H. Shen, A novel multi-objective optimization algorithm based on artificial bee colony, in: N. Krasnogor et al. (Eds.), Genetic and Evolutionary Computation Conference (GECCO’11) 12–16 July 2011, Dublin, Ireland, 2011, pp. 103–104. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b0195 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 13 start-page: 825 year: 2009 end-page: 847 ident: b0005 article-title: Convergence acceleration operator for multi objective optimization publication-title: IEEE Trans. Evol. Comput. – reference: Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 203–208. – ident: 10.1016/j.ins.2014.05.049_b0230 doi: 10.1109/CEC.2009.4983177 – volume: 38 start-page: 258 issue: 2 year: 2008 ident: 10.1016/j.ins.2014.05.049_b0010 article-title: Interactive particle swarm: a Pareto-adaptive meta heuristic to multi-objective optimization publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.) doi: 10.1109/TSMCA.2007.914767 – volume: 26 start-page: 430 issue: 1 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0175 article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.02.016 – volume: 181 start-page: 3336 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0035 article-title: Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.04.004 – volume: 181 start-page: 2441 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0100 article-title: Multi-objective optimization with artificial weed colonies publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.09.026 – volume: 6 start-page: 65 issue: 2 year: 1979 ident: 10.1016/j.ins.2014.05.049_b0075 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. – year: 2007 ident: 10.1016/j.ins.2014.05.049_b0040 – ident: 10.1016/j.ins.2014.05.049_b0095 doi: 10.1109/CEC.2009.4983178 – ident: 10.1016/j.ins.2014.05.049_b0285 doi: 10.1145/2001858.2001917 – volume: 26 start-page: 1291 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0280 article-title: Multi-objective optimization using teaching–learning-based optimization algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.11.006 – ident: 10.1016/j.ins.2014.05.049_b0225 – ident: 10.1016/j.ins.2014.05.049_b0065 doi: 10.1109/CEC.2009.4983180 – volume: 3 start-page: 2292 year: 2003 ident: 10.1016/j.ins.2014.05.049_b0210 article-title: Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization problem publication-title: Proc. Cong. Evol. Comput. – ident: 10.1016/j.ins.2014.05.049_b0240 doi: 10.1109/CEC.2009.4983311 – volume: 258 start-page: 1 year: 2014 ident: 10.1016/j.ins.2014.05.049_b0130 article-title: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.09.009 – volume: 37 start-page: 1147 issue: 3 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0180 article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.03.043 – volume: 39 start-page: 1013 issue: 4 year: 2009 ident: 10.1016/j.ins.2014.05.049_b0250 article-title: Dynamic multiple swarms in multi-objective particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.) – volume: 38 start-page: 1270 issue: 5 year: 2008 ident: 10.1016/j.ins.2014.05.049_b0105 article-title: PSO-based multi-objective optimization with dynamic population size and adaptive local archives publication-title: IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) doi: 10.1109/TSMCB.2008.925757 – volume: 32 start-page: 10 year: 2014 ident: 10.1016/j.ins.2014.05.049_b0135 article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow – a comparative study publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.01.016 – ident: 10.1016/j.ins.2014.05.049_b0125 doi: 10.1109/CEC.2009.4983309 – volume: 228 start-page: 90 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0085 article-title: A co-evolutionary multi-objective optimization algorithm based on direction vectors publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.12.013 – volume: 13 start-page: 825 issue: 4 year: 2009 ident: 10.1016/j.ins.2014.05.049_b0005 article-title: Convergence acceleration operator for multi objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2011743 – ident: 10.1016/j.ins.2014.05.049_b0115 – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0275 article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – ident: 10.1016/j.ins.2014.05.049_b0025 doi: 10.1109/CEC.2009.4982950 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2014.05.049_b0055 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: 10.1016/j.ins.2014.05.049_b0205 doi: 10.1109/CEC.2009.4983310 – ident: 10.1016/j.ins.2014.05.049_b0120 doi: 10.1109/CEC.2009.4983176 – volume: 4 start-page: 29 issue: 1 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0170 article-title: Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Int. J. Indust. Eng. Comput. – volume: 7076 start-page: 697 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0090 article-title: Application of multi-objective teaching–learning-based algorithm to an economic load dispatch problem with incommensurable objectives publication-title: Swarm Evol. Memetic Comput. doi: 10.1007/978-3-642-27172-4_82 – volume: 6 start-page: 341 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0145 article-title: θ-multiobjective teaching–learning-based optimization for dynamic economic emission dispatch publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2012.2183276 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.ins.2014.05.049_b0045 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – volume: 2 start-page: 1404 year: 2004 ident: 10.1016/j.ins.2014.05.049_b0140 article-title: Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization publication-title: Proc. Cong. Evol. Comput. – ident: 10.1016/j.ins.2014.05.049_b0235 doi: 10.1109/CEC.2009.4983179 – ident: 10.1016/j.ins.2014.05.049_b0265 doi: 10.1109/CEC.2009.4982949 – volume: 262 start-page: 62 year: 2014 ident: 10.1016/j.ins.2014.05.049_b0030 article-title: Runtime analysis of a multi-objective evolutionary algorithm for obtaining finite approximations of Pareto fronts publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.11.023 – ident: 10.1016/j.ins.2014.05.049_b0255 doi: 10.1109/CEC.2009.4982948 – ident: 10.1016/j.ins.2014.05.049_b0155 doi: 10.1109/CEC.2009.4983312 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0195 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0060 article-title: A Practical tutorial on the use of nonparametric statistical tests as methodology for comparing evolutionary intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 183 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0200 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.006 – volume: 258 start-page: 29 year: 2014 ident: 10.1016/j.ins.2014.05.049_b0245 article-title: General framework for localized multi-objective evolutionary algorithms publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.08.049 – volume: 213 start-page: 14 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0220 article-title: A modification to MOEA/D-DE for multi objective optimization problems with complicated Pareto sets publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.06.007 – volume: 3 start-page: 535 issue: 4 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0165 article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems publication-title: Int. J. Indust. Eng. Comput. – volume: 8 start-page: 715 issue: 1-B year: 2012 ident: 10.1016/j.ins.2014.05.049_b0020 article-title: Multi-objective bee swarm optimization publication-title: Int. J. Innovative Comput. Inform. Control – volume: 2 start-page: 39 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0015 article-title: A multi-objective artificial bee colony algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.08.001 – volume: 20 start-page: 710 issue: 3 year: 2013 ident: 10.1016/j.ins.2014.05.049_b0185 article-title: An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Scientia Iranica – volume: 182 start-page: 220 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0110 article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.027 – volume: 44 start-page: 1447 issue: 12 year: 2012 ident: 10.1016/j.ins.2014.05.049_b0190 article-title: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.652103 – ident: 10.1016/j.ins.2014.05.049_b0260 doi: 10.1109/CEC.2010.5586057 – volume: 43 start-page: 403 issue: 4 year: 2011 ident: 10.1016/j.ins.2014.05.049_b0160 article-title: Constrained multi-objective optimization algorithm with ensemble of constraint handling methods publication-title: Eng. Optim. doi: 10.1080/0305215X.2010.493937 – ident: 10.1016/j.ins.2014.05.049_b0215 – volume: 13 start-page: 501 issue: 4 year: 2005 ident: 10.1016/j.ins.2014.05.049_b0050 article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions publication-title: Evol. Comput. doi: 10.1162/106365605774666895 – ident: 10.1016/j.ins.2014.05.049_b0080 doi: 10.1109/CEC.2009.4982947 – ident: 10.1016/j.ins.2014.05.049_b0270 – volume: 268 start-page: 202 issue: 1 year: 2014 ident: 10.1016/j.ins.2014.05.049_b0150 article-title: INSPM: an interactive evolutionary multi-objective algorithm with preference model publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.12.045 – ident: 10.1016/j.ins.2014.05.049_b0070 doi: 10.1109/ICACTE.2010.5579761 |
| SSID | ssj0004766 |
| Score | 2.4843524 |
| Snippet | This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization... This paper presents an efficient multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 182 |
| SubjectTerms | Algorithms Dominance Improved teaching–learning based optimization Inverted generational distance Mathematical models Molybdenum Multi-objective optimization Optimization Pareto optimality Rank tests State of the art Teaching–learning based optimization |
| Title | A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO) |
| URI | https://dx.doi.org/10.1016/j.ins.2014.05.049 https://www.proquest.com/docview/1816009419 |
| Volume | 357 |
| WOSCitedRecordID | wos000377324500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVAqoBVoZCSFglSp2Hk6O26qI8mh7WKq9WbbjQJfdpNpNVz3yH_iH_BLGsZ1dFlEBEpcoylueL-NvxvNA6FmeF6xMtQIzVRRBnMCeFEIERADfSBImFFFtswl2fJwNh_mpW2ifte0EWFVlV1f5xX8VNRwDYZvU2b8Qd_dQOAD7IHTYgthh-0eC79sgwaCWI6vMTCbktJ4Ds2xc6KSPcIjG3jFiJrOiV4P-mLjEzJ4Yf6qn583niSGhH06Co8H7_RPvOBj5APgu-bHn5tKOo58Ci239y2fwDV967_Y6Z46Yz2wnKTg1MX7IvWXfA0mNM5WGC4eYT4r5KWbTMNDAmCp2irF6NWM0SKltzOUVb2RLUzvVSWwTIjcL2_qlvyp462sYgVViaq2TuC27aouertTNNsvQrcUEJqThcfFNtE5ZkoP2Xu8fHQ7fLtJnmV3S9t_tF7_bMMCVF_2OvqxM5C07GWygu86swH0Lh3vohq420Z2lYpObaMelqODneEls2Cn3--isj1eAgz1wsAfO96_fPGRwCxm8DBncQQa_8IB5-QB9fH04OHgTuK4bgYqisAmY1GEhC5oqSXVESqDkZRxqCXYpKVgmU0lpGaos1kwUVOZUC1aKkjAi0qTQZfQQrVV1pbcQ1nkcSV2qTCkWg6ksE5oVRMm0hOtiLbZR6AeTK1eS3nRGGXMfezjiMP7cjD8PEw7jv41edbdc2Hos110cewlx9xNYosgBTtfd9tRLk4OyNStootL15YwDHU5NLC7JH_3box-j24v_6Alaa6aXegfdUvPmfDbddcD8AcWqpi8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+improved+teaching%E2%80%93learning+based+optimization+algorithm+%28MO-ITLBO%29&rft.jtitle=Information+sciences&rft.au=Patel%2C+Vivek+K.&rft.au=Savsani%2C+Vimal+J.&rft.date=2016-08-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=357&rft.spage=182&rft.epage=200&rft_id=info:doi/10.1016%2Fj.ins.2014.05.049&rft.externalDocID=S0020025514006124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |