A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO)

This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporate...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 357; pp. 182 - 200
Main Authors: Patel, Vivek K., Savsani, Vimal J.
Format: Journal Article
Language:English
Published: Elsevier Inc 20.08.2016
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporated into the MO-ITLBO algorithm in order to allow this heuristic to handle problems with several objective functions. The qualities of the solution are computed based on the Pareto dominance notion. The performance of the MO-ITLBO algorithm is assessed by applying it on a set of standard test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009) competition. The results obtained using the proposed algorithm is compared with the other state-of-the-art algorithms available in the literature. Moreover, the performance of the MO-ITLBO algorithm is also compared with the multi-objective version of the basic teaching–learning based optimization algorithm (MO-TLBO). The statistical analysis of the experimental work is also carried out by conducting Friedman’s rank test and Holm post hoc procedure. The results show that the proposed approach is competitive and effective compared to other algorithms contemplated in this work and it can also find the result with greater precision.
AbstractList This paper presents an efficient multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization problems. The proposed algorithm uses a grid-based approach in order to keep diversity in the external archive. Pareto dominance is incorporated into the MO-ITLBO algorithm in order to allow this heuristic to handle problems with several objective functions. The qualities of the solution are computed based on the Pareto dominance notion. The performance of the MO-ITLBO algorithm is assessed by applying it on a set of standard test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009) competition. The results obtained using the proposed algorithm is compared with the other state-of-the-art algorithms available in the literature. Moreover, the performance of the MO-ITLBO algorithm is also compared with the multi-objective version of the basic teaching-learning based optimization algorithm (MO-TLBO). The statistical analysis of the experimental work is also carried out by conducting Friedman's rank test and Holm post hoc procedure. The results show that the proposed approach is competitive and effective compared to other algorithms contemplated in this work and it can also find the result with greater precision.
Author Patel, Vivek K.
Savsani, Vimal J.
Author_xml – sequence: 1
  givenname: Vivek K.
  surname: Patel
  fullname: Patel, Vivek K.
  email: viveksaparia@gmail.com
  organization: Gujarat Technological University, Gujarat, India
– sequence: 2
  givenname: Vimal J.
  surname: Savsani
  fullname: Savsani, Vimal J.
  email: vimal.savsani@gmail.com, vimal.s@sot.pdpu.ac.in
  organization: Pandit Deendayal Petroleum University, Raysan, Gandhinagar 382007, Gujarat, India
BookMark eNp9kLFu2zAQhokiBeq4fYBuGpNB6pGWSAmZkiBtA7jwknYlSOqUnCGJDkkbSKa-Q9-wT1Km7tQh0x1w_3e4-07ZyexnZOwjh4oDl5-2Fc2xEsDrCpoK6u4NW_BWiVKKjp-wBYCAEkTTvGOnMW4BoFZSLtiPy2Laj4lKb7foEh2woGkX_AH7IqFxDzTf__75a0QT5twW1sQ88btEEz2bRH4uzHjvA6WHqTj7tilv79ZXm_P37O1gxogf_tUl-_755u76a7nefLm9vlyXbrWCVCqL0NteSGcFrvjQNnyoAa2SLe9Va6UVYgDX1qhML2wn0KjBDFxxI5seh9WSnR335pMf9xiTnig6HEczo99HzVsuAbqadznKj1EXfIwBB70LNJnwpDnoF4d6q7ND_eJQQ6Ozw8yo_xhH6e_XKRgaXyUvjiTm7w-EQUdHODvsKWTPuvf0Cv0HDNeQEw
CitedBy_id crossref_primary_10_1016_j_jestch_2018_03_010
crossref_primary_10_1016_j_swevo_2022_101041
crossref_primary_10_3390_mi13071026
crossref_primary_10_1016_j_asoc_2017_08_056
crossref_primary_10_1016_j_cie_2022_108719
crossref_primary_10_1016_j_knosys_2022_108334
crossref_primary_10_1007_s10845_015_1050_8
crossref_primary_10_26599_TST_2024_9010174
crossref_primary_10_1080_0305215X_2016_1150468
crossref_primary_10_1109_ACCESS_2022_3151088
crossref_primary_10_1109_ACCESS_2019_2951370
crossref_primary_10_1007_s11600_019_00374_3
crossref_primary_10_1002_ett_4579
crossref_primary_10_1007_s40313_021_00755_4
crossref_primary_10_1007_s10489_018_1170_x
crossref_primary_10_1016_j_asoc_2017_05_003
crossref_primary_10_1016_j_knosys_2021_106881
crossref_primary_10_1038_s41598_025_10596_9
crossref_primary_10_1007_s10845_016_1210_5
crossref_primary_10_1016_j_cie_2021_107254
crossref_primary_10_1016_j_engappai_2021_104554
crossref_primary_10_1007_s10845_019_01486_9
crossref_primary_10_1007_s11771_019_4035_5
crossref_primary_10_3390_su11010170
crossref_primary_10_1016_j_cad_2018_03_003
crossref_primary_10_1080_02331934_2019_1630625
crossref_primary_10_1007_s00521_019_04343_1
crossref_primary_10_1155_2017_2034907
crossref_primary_10_1016_j_ress_2018_01_018
crossref_primary_10_1109_ACCESS_2021_3069748
crossref_primary_10_1016_j_jmrt_2025_08_284
crossref_primary_10_1016_j_advengsoft_2018_05_011
crossref_primary_10_1016_j_eswa_2021_115972
crossref_primary_10_1016_j_heliyon_2022_e09399
crossref_primary_10_1016_j_eswa_2022_118414
crossref_primary_10_1016_j_swevo_2020_100695
crossref_primary_10_1007_s11047_020_09811_5
crossref_primary_10_1080_15397734_2015_1124023
crossref_primary_10_1007_s00500_017_2722_4
crossref_primary_10_1088_1741_2552_aa8063
crossref_primary_10_1016_j_knosys_2016_06_019
crossref_primary_10_1016_j_epsr_2021_107433
crossref_primary_10_1109_ACCESS_2020_3015796
crossref_primary_10_1016_j_scitotenv_2018_05_153
crossref_primary_10_1016_j_engappai_2017_06_010
crossref_primary_10_3390_ma15207392
crossref_primary_10_1007_s00500_015_1786_2
crossref_primary_10_1007_s00521_017_3049_x
crossref_primary_10_1007_s42452_020_03818_4
crossref_primary_10_1007_s00170_020_06284_9
crossref_primary_10_1016_j_ins_2016_08_061
crossref_primary_10_1016_j_ins_2017_11_052
crossref_primary_10_1016_j_jclepro_2017_04_132
crossref_primary_10_1016_j_swevo_2019_04_010
crossref_primary_10_1007_s13198_021_01248_y
crossref_primary_10_1016_j_ins_2019_08_069
crossref_primary_10_3390_app12105060
crossref_primary_10_1016_j_knosys_2018_06_004
crossref_primary_10_1016_j_jclepro_2019_119536
crossref_primary_10_1007_s00521_018_3872_8
crossref_primary_10_1016_j_engappai_2017_04_018
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1080_23799927_2023_2227147
crossref_primary_10_1007_s10489_017_0927_y
crossref_primary_10_1007_s12559_025_10486_2
crossref_primary_10_1080_00207543_2018_1437288
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1109_ACCESS_2020_3023744
crossref_primary_10_1109_TEM_2017_2774281
crossref_primary_10_3390_w14152329
crossref_primary_10_1016_j_neucom_2023_126898
crossref_primary_10_1109_ACCESS_2018_2869040
crossref_primary_10_1109_TEM_2019_2918050
crossref_primary_10_1007_s00500_015_1866_3
crossref_primary_10_1016_j_ins_2015_06_044
crossref_primary_10_1155_2018_1806947
crossref_primary_10_1016_j_jksuci_2020_12_014
crossref_primary_10_1016_j_eswa_2024_125760
Cites_doi 10.1109/CEC.2009.4983177
10.1109/TSMCA.2007.914767
10.1016/j.engappai.2012.02.016
10.1016/j.ins.2011.04.004
10.1016/j.ins.2010.09.026
10.1109/CEC.2009.4983178
10.1145/2001858.2001917
10.1016/j.engappai.2012.11.006
10.1109/CEC.2009.4983180
10.1109/CEC.2009.4983311
10.1016/j.ins.2013.09.009
10.1016/j.apm.2012.03.043
10.1109/TSMCB.2008.925757
10.1016/j.engappai.2014.01.016
10.1109/CEC.2009.4983309
10.1016/j.ins.2012.12.013
10.1109/TEVC.2008.2011743
10.1016/j.swevo.2011.03.001
10.1109/CEC.2009.4982950
10.1109/4235.996017
10.1109/CEC.2009.4983310
10.1109/CEC.2009.4983176
10.1007/978-3-642-27172-4_82
10.1109/JSYST.2012.2183276
10.1109/TEVC.2004.826067
10.1109/CEC.2009.4983179
10.1109/CEC.2009.4982949
10.1016/j.ins.2013.11.023
10.1109/CEC.2009.4982948
10.1109/CEC.2009.4983312
10.1016/j.cad.2010.12.015
10.1016/j.swevo.2011.02.002
10.1016/j.ins.2011.08.006
10.1016/j.ins.2013.08.049
10.1016/j.ins.2012.06.007
10.1016/j.swevo.2011.08.001
10.1016/j.ins.2011.08.027
10.1080/0305215X.2011.652103
10.1109/CEC.2010.5586057
10.1080/0305215X.2010.493937
10.1162/106365605774666895
10.1109/CEC.2009.4982947
10.1016/j.ins.2013.12.045
10.1109/ICACTE.2010.5579761
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2014.05.049
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 200
ExternalDocumentID 10_1016_j_ins_2014_05_049
S0020025514006124
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-7be0dbd26cb2e31f851f40eb7681d78b6b22f0c84e7ad2b92ea7faf171a65def3
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377324500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Thu Oct 02 07:03:21 EDT 2025
Tue Nov 18 22:11:29 EST 2025
Sat Nov 29 07:58:42 EST 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Improved teaching–learning based optimization
Multi-objective optimization
Inverted generational distance
Teaching–learning based optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-7be0dbd26cb2e31f851f40eb7681d78b6b22f0c84e7ad2b92ea7faf171a65def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816009419
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1816009419
crossref_primary_10_1016_j_ins_2014_05_049
crossref_citationtrail_10_1016_j_ins_2014_05_049
elsevier_sciencedirect_doi_10_1016_j_ins_2014_05_049
PublicationCentury 2000
PublicationDate 2016-08-20
PublicationDateYYYYMMDD 2016-08-20
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rao, Patel (b0175) 2013; 26
Rao, Patel (b0180) 2013; 37
Zhou, Qu, Li, Zhao, Suganthan, Zhang (b0275) 2011; 1
F. Zeng, J. Decraene, M.Y.H. Low, P. Hingston, C. Wentong, Z. Suiping, M. Chandramohan, Autonomous bee colony optimization for multi-objective function, in: Proceedings of Congress on Evolutionary Computation 18–23 July 2010, IEEE Press, Barcelona, Spain, 2010, pp. 1–8.
R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, K. Ziarati, A multi-objective artificial bee colony for optimizing multi-objective problems, in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) 20–22 August 2010, vol. 5, IEEE Press, Chengdu, China, 2010, pp. 271–281.
Krishnanand, Panigrahi, Rout, Mohapatra (b0090) 2011; 7076
Rao, Savsani, Vakharia (b0200) 2011; 183
Chen, Zou (b0030) 2014; 262
V.L. Huang, S.Z. Zhao, R. Mallipeddi, P.N. Suganthan, Multi-objective optimization using self-adaptive differential evolution algorithm, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 190–194.
Adra, Dodd, Griffin, Fleming (b0005) 2009; 13
H. Liu, X. Li, The multi-objective evolutionary algorithm based on determined weight and sub-regional search, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1928–1934.
C.M. Chen, Y. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 209–216.
Wang, Fleming, Purshouse (b0245) 2014; 258
A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self adaptation and local search for constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 192–202.
K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2919–2926.
Coello Coello, Pulido, Lechuga (b0045) 2004; 8
Medina, Das, Coello Coello, Ramírez (b0135) 2014; 32
Rao, Patel (b0165) 2012; 3
Deb, Mohan, Mishra (b0050) 2005; 13
Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 203–208.
Martin, Rosete, Alcalá-Fdez, Herrera (b0130) 2014; 258
K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nanyang Technological University, Singapore, 2010.
Qu, Suganthan (b0160) 2011; 43
Srinivasan, Seow (b0210) 2003; 3
Rao, Patel (b0170) 2013; 4
B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2934–2939.
Tan, Jiao, Li, Wang (b0220) 2012; 213
S. Tiwari, G. Fadel, P. Koch, K. Deb, Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1935–1942.
Coello Coello, Lamont, Van Veldhuizen (b0040) 2007
Deb, Pratap, Agarwal, Meyarivan (b0055) 2002; 6
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, A. Chen, Y.P. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, 2005.
Niknam, Golestaneh, Sadeghi (b0145) 2012; 6
W. Zou, Y. Zhu, H. Chen, H. Shen, A novel multi-objective optimization algorithm based on artificial bee colony, in: N. Krasnogor et al. (Eds.), Genetic and Evolutionary Computation Conference (GECCO’11) 12–16 July 2011, Dublin, Ireland, 2011, pp. 103–104.
Rao, Savsani, Balic (b0190) 2012; 44
Leong, Yen (b0105) 2008; 38
J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A.C. Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-parameter Optimization, Technical Report. Nanyang Technological University, Singapore, 2006.
Agrawal, Dashora, Tiwari, Son (b0010) 2008; 38
Jiao, wang, Shang, Liu (b0085) 2013; 228
Kundu, Suresh, Ghosh, Das, Panigrahi, Das (b0100) 2011; 181
Mostaghim, Teich (b0140) 2004; 2
Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2927–2933.
Akbari, Ziarati (b0020) 2012; 8
Pedro, Takahashi (b0150) 2014; 268
L.Y. Tseng, C. Chen, Multiple trajectory search for unconstrained/constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1951–1958.
Yen, Leong (b0250) 2009; 39
Akbari, Hedayatzadeh, Ziarati, Hasanizadeh (b0015) 2012; 2
Chen, Zou, Xie (b0035) 2011; 181
Zou, Wang, Hei, Chen, Wang (b0280) 2013; 26
Rao, Savsani, Vakharia (b0195) 2011; 43
Li, Kwong, Cao, Li, Zheng, Shen (b0110) 2012; 182
Derrac, Garcia, Molina, Herrera (b0060) 2011; 1
Rao, Patel (b0185) 2013; 20
S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1943–1950.
Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the Congress on Evolutionary Computation 2009 (CEC 2009) Special Session and Competition, Working Report CES-887, University of Essex, UK, 2009.
S. Gao, S. Zeng, B. Xiao, L. Zhang, Y. Shi, X. Tian, Y. Yang, H. Long, X. Yang, D. Yu, Z. Yan, An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1959–1964.
Holm (b0075) 1979; 6
M. Liu, X. Zou, Y. Chen, Z. Wu, Performance assessment of DMOEA-DD with CEC 2009 moea competition test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2913–2918.
Kundu (10.1016/j.ins.2014.05.049_b0100) 2011; 181
Agrawal (10.1016/j.ins.2014.05.049_b0010) 2008; 38
Deb (10.1016/j.ins.2014.05.049_b0050) 2005; 13
Rao (10.1016/j.ins.2014.05.049_b0195) 2011; 43
Rao (10.1016/j.ins.2014.05.049_b0200) 2011; 183
Akbari (10.1016/j.ins.2014.05.049_b0020) 2012; 8
10.1016/j.ins.2014.05.049_b0205
Tan (10.1016/j.ins.2014.05.049_b0220) 2012; 213
Chen (10.1016/j.ins.2014.05.049_b0035) 2011; 181
10.1016/j.ins.2014.05.049_b0125
10.1016/j.ins.2014.05.049_b0255
Holm (10.1016/j.ins.2014.05.049_b0075) 1979; 6
Rao (10.1016/j.ins.2014.05.049_b0185) 2013; 20
10.1016/j.ins.2014.05.049_b0095
Medina (10.1016/j.ins.2014.05.049_b0135) 2014; 32
Chen (10.1016/j.ins.2014.05.049_b0030) 2014; 262
Derrac (10.1016/j.ins.2014.05.049_b0060) 2011; 1
10.1016/j.ins.2014.05.049_b0215
10.1016/j.ins.2014.05.049_b0025
10.1016/j.ins.2014.05.049_b0265
10.1016/j.ins.2014.05.049_b0065
Mostaghim (10.1016/j.ins.2014.05.049_b0140) 2004; 2
10.1016/j.ins.2014.05.049_b0260
Srinivasan (10.1016/j.ins.2014.05.049_b0210) 2003; 3
Li (10.1016/j.ins.2014.05.049_b0110) 2012; 182
Martin (10.1016/j.ins.2014.05.049_b0130) 2014; 258
Rao (10.1016/j.ins.2014.05.049_b0170) 2013; 4
Zhou (10.1016/j.ins.2014.05.049_b0275) 2011; 1
Rao (10.1016/j.ins.2014.05.049_b0180) 2013; 37
Deb (10.1016/j.ins.2014.05.049_b0055) 2002; 6
10.1016/j.ins.2014.05.049_b0225
Qu (10.1016/j.ins.2014.05.049_b0160) 2011; 43
10.1016/j.ins.2014.05.049_b0155
Akbari (10.1016/j.ins.2014.05.049_b0015) 2012; 2
Coello Coello (10.1016/j.ins.2014.05.049_b0040) 2007
10.1016/j.ins.2014.05.049_b0230
Leong (10.1016/j.ins.2014.05.049_b0105) 2008; 38
Rao (10.1016/j.ins.2014.05.049_b0175) 2013; 26
10.1016/j.ins.2014.05.049_b0270
10.1016/j.ins.2014.05.049_b0070
Niknam (10.1016/j.ins.2014.05.049_b0145) 2012; 6
Rao (10.1016/j.ins.2014.05.049_b0165) 2012; 3
Rao (10.1016/j.ins.2014.05.049_b0190) 2012; 44
10.1016/j.ins.2014.05.049_b0115
10.1016/j.ins.2014.05.049_b0235
Yen (10.1016/j.ins.2014.05.049_b0250) 2009; 39
10.1016/j.ins.2014.05.049_b0120
Wang (10.1016/j.ins.2014.05.049_b0245) 2014; 258
10.1016/j.ins.2014.05.049_b0285
10.1016/j.ins.2014.05.049_b0240
Coello Coello (10.1016/j.ins.2014.05.049_b0045) 2004; 8
Pedro (10.1016/j.ins.2014.05.049_b0150) 2014; 268
Krishnanand (10.1016/j.ins.2014.05.049_b0090) 2011; 7076
10.1016/j.ins.2014.05.049_b0080
Zou (10.1016/j.ins.2014.05.049_b0280) 2013; 26
Adra (10.1016/j.ins.2014.05.049_b0005) 2009; 13
Jiao (10.1016/j.ins.2014.05.049_b0085) 2013; 228
References_xml – volume: 182
  start-page: 220
  year: 2012
  end-page: 242
  ident: b0110
  article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm
  publication-title: Inform. Sci.
– reference: M. Liu, X. Zou, Y. Chen, Z. Wu, Performance assessment of DMOEA-DD with CEC 2009 moea competition test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2913–2918.
– volume: 3
  start-page: 2292
  year: 2003
  end-page: 2297
  ident: b0210
  article-title: Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization problem
  publication-title: Proc. Cong. Evol. Comput.
– volume: 258
  start-page: 29
  year: 2014
  end-page: 53
  ident: b0245
  article-title: General framework for localized multi-objective evolutionary algorithms
  publication-title: Inform. Sci.
– reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, A. Chen, Y.P. Auger, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore, 2005.
– reference: F. Zeng, J. Decraene, M.Y.H. Low, P. Hingston, C. Wentong, Z. Suiping, M. Chandramohan, Autonomous bee colony optimization for multi-objective function, in: Proceedings of Congress on Evolutionary Computation 18–23 July 2010, IEEE Press, Barcelona, Spain, 2010, pp. 1–8.
– volume: 26
  start-page: 1291
  year: 2013
  end-page: 1300
  ident: b0280
  article-title: Multi-objective optimization using teaching–learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7076
  start-page: 697
  year: 2011
  end-page: 705
  ident: b0090
  article-title: Application of multi-objective teaching–learning-based algorithm to an economic load dispatch problem with incommensurable objectives
  publication-title: Swarm Evol. Memetic Comput.
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: b0275
  article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art
  publication-title: Swarm Evol. Comput.
– volume: 6
  start-page: 65
  year: 1979
  end-page: 70
  ident: b0075
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat.
– volume: 38
  start-page: 1270
  year: 2008
  end-page: 1293
  ident: b0105
  article-title: PSO-based multi-objective optimization with dynamic population size and adaptive local archives
  publication-title: IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.)
– reference: L.Y. Tseng, C. Chen, Multiple trajectory search for unconstrained/constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1951–1958.
– reference: C.M. Chen, Y. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 209–216.
– volume: 39
  start-page: 1013
  year: 2009
  end-page: 1027
  ident: b0250
  article-title: Dynamic multiple swarms in multi-objective particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.)
– reference: S. Gao, S. Zeng, B. Xiao, L. Zhang, Y. Shi, X. Tian, Y. Yang, H. Long, X. Yang, D. Yu, Z. Yan, An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1959–1964.
– volume: 183
  start-page: 1
  year: 2011
  end-page: 15
  ident: b0200
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
– reference: B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2934–2939.
– volume: 258
  start-page: 1
  year: 2014
  end-page: 28
  ident: b0130
  article-title: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules
  publication-title: Inform. Sci.
– volume: 181
  start-page: 2441
  year: 2011
  end-page: 2454
  ident: b0100
  article-title: Multi-objective optimization with artificial weed colonies
  publication-title: Inform. Sci.
– reference: K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2919–2926.
– reference: K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nanyang Technological University, Singapore, 2010.
– volume: 13
  start-page: 501
  year: 2005
  end-page: 525
  ident: b0050
  article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
– reference: J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A.C. Coello, K. Deb, Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-parameter Optimization, Technical Report. Nanyang Technological University, Singapore, 2006.
– volume: 8
  start-page: 715
  year: 2012
  end-page: 726
  ident: b0020
  article-title: Multi-objective bee swarm optimization
  publication-title: Int. J. Innovative Comput. Inform. Control
– reference: S. Tiwari, G. Fadel, P. Koch, K. Deb, Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1935–1942.
– volume: 4
  start-page: 29
  year: 2013
  end-page: 50
  ident: b0170
  article-title: Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int. J. Indust. Eng. Comput.
– reference: V.L. Huang, S.Z. Zhao, R. Mallipeddi, P.N. Suganthan, Multi-objective optimization using self-adaptive differential evolution algorithm, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 190–194.
– volume: 228
  start-page: 90
  year: 2013
  end-page: 112
  ident: b0085
  article-title: A co-evolutionary multi-objective optimization algorithm based on direction vectors
  publication-title: Inform. Sci.
– volume: 181
  start-page: 3336
  year: 2011
  end-page: 3355
  ident: b0035
  article-title: Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front
  publication-title: Inform. Sci.
– reference: Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 2927–2933.
– reference: Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective Optimization Test Instances for the Congress on Evolutionary Computation 2009 (CEC 2009) Special Session and Competition, Working Report CES-887, University of Essex, UK, 2009.
– volume: 38
  start-page: 258
  year: 2008
  end-page: 277
  ident: b0010
  article-title: Interactive particle swarm: a Pareto-adaptive meta heuristic to multi-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.)
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0060
  article-title: A Practical tutorial on the use of nonparametric statistical tests as methodology for comparing evolutionary intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 44
  start-page: 1447
  year: 2012
  end-page: 1462
  ident: b0190
  article-title: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems
  publication-title: Eng. Optim.
– reference: A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self adaptation and local search for constrained multi-objective optimization, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 192–202.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0045
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 268
  start-page: 202
  year: 2014
  end-page: 219
  ident: b0150
  article-title: INSPM: an interactive evolutionary multi-objective algorithm with preference model
  publication-title: Inform. Sci.
– volume: 3
  start-page: 535
  year: 2012
  end-page: 560
  ident: b0165
  article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int. J. Indust. Eng. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0055
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: H. Liu, X. Li, The multi-objective evolutionary algorithm based on determined weight and sub-regional search, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1928–1934.
– volume: 2
  start-page: 39
  year: 2012
  end-page: 52
  ident: b0015
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
– volume: 213
  start-page: 14
  year: 2012
  end-page: 38
  ident: b0220
  article-title: A modification to MOEA/D-DE for multi objective optimization problems with complicated Pareto sets
  publication-title: Inform. Sci.
– volume: 37
  start-page: 1147
  year: 2013
  end-page: 1162
  ident: b0180
  article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm
  publication-title: Appl. Math. Model.
– volume: 26
  start-page: 430
  year: 2013
  end-page: 445
  ident: b0175
  article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
– year: 2007
  ident: b0040
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– reference: S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution with a given set of constrained multi-objective test problems, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 1943–1950.
– volume: 6
  start-page: 341
  year: 2012
  end-page: 352
  ident: b0145
  article-title: -multiobjective teaching–learning-based optimization for dynamic economic emission dispatch
  publication-title: IEEE Syst. J.
– volume: 32
  start-page: 10
  year: 2014
  end-page: 20
  ident: b0135
  article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow – a comparative study
  publication-title: Eng. Appl. Artif. Intell.
– volume: 20
  start-page: 710
  year: 2013
  end-page: 720
  ident: b0185
  article-title: An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Scientia Iranica
– volume: 2
  start-page: 1404
  year: 2004
  end-page: 1411
  ident: b0140
  article-title: Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization
  publication-title: Proc. Cong. Evol. Comput.
– reference: R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, K. Ziarati, A multi-objective artificial bee colony for optimizing multi-objective problems, in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) 20–22 August 2010, vol. 5, IEEE Press, Chengdu, China, 2010, pp. 271–281.
– volume: 43
  start-page: 403
  year: 2011
  end-page: 434
  ident: b0160
  article-title: Constrained multi-objective optimization algorithm with ensemble of constraint handling methods
  publication-title: Eng. Optim.
– volume: 262
  start-page: 62
  year: 2014
  end-page: 77
  ident: b0030
  article-title: Runtime analysis of a multi-objective evolutionary algorithm for obtaining finite approximations of Pareto fronts
  publication-title: Inform. Sci.
– reference: W. Zou, Y. Zhu, H. Chen, H. Shen, A novel multi-objective optimization algorithm based on artificial bee colony, in: N. Krasnogor et al. (Eds.), Genetic and Evolutionary Computation Conference (GECCO’11) 12–16 July 2011, Dublin, Ireland, 2011, pp. 103–104.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0195
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 13
  start-page: 825
  year: 2009
  end-page: 847
  ident: b0005
  article-title: Convergence acceleration operator for multi objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation 18–21 May 2009, IEEE Press, Trondheim, Norway, 2009, pp. 203–208.
– ident: 10.1016/j.ins.2014.05.049_b0230
  doi: 10.1109/CEC.2009.4983177
– volume: 38
  start-page: 258
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2014.05.049_b0010
  article-title: Interactive particle swarm: a Pareto-adaptive meta heuristic to multi-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.)
  doi: 10.1109/TSMCA.2007.914767
– volume: 26
  start-page: 430
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0175
  article-title: Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.02.016
– volume: 181
  start-page: 3336
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0035
  article-title: Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.04.004
– volume: 181
  start-page: 2441
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0100
  article-title: Multi-objective optimization with artificial weed colonies
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.09.026
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: 10.1016/j.ins.2014.05.049_b0075
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat.
– year: 2007
  ident: 10.1016/j.ins.2014.05.049_b0040
– ident: 10.1016/j.ins.2014.05.049_b0095
  doi: 10.1109/CEC.2009.4983178
– ident: 10.1016/j.ins.2014.05.049_b0285
  doi: 10.1145/2001858.2001917
– volume: 26
  start-page: 1291
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0280
  article-title: Multi-objective optimization using teaching–learning-based optimization algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.11.006
– ident: 10.1016/j.ins.2014.05.049_b0225
– ident: 10.1016/j.ins.2014.05.049_b0065
  doi: 10.1109/CEC.2009.4983180
– volume: 3
  start-page: 2292
  year: 2003
  ident: 10.1016/j.ins.2014.05.049_b0210
  article-title: Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization problem
  publication-title: Proc. Cong. Evol. Comput.
– ident: 10.1016/j.ins.2014.05.049_b0240
  doi: 10.1109/CEC.2009.4983311
– volume: 258
  start-page: 1
  year: 2014
  ident: 10.1016/j.ins.2014.05.049_b0130
  article-title: QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.09.009
– volume: 37
  start-page: 1147
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0180
  article-title: Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.03.043
– volume: 39
  start-page: 1013
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2014.05.049_b0250
  article-title: Dynamic multiple swarms in multi-objective particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part A (Syst. Hum.)
– volume: 38
  start-page: 1270
  issue: 5
  year: 2008
  ident: 10.1016/j.ins.2014.05.049_b0105
  article-title: PSO-based multi-objective optimization with dynamic population size and adaptive local archives
  publication-title: IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.)
  doi: 10.1109/TSMCB.2008.925757
– volume: 32
  start-page: 10
  year: 2014
  ident: 10.1016/j.ins.2014.05.049_b0135
  article-title: Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow – a comparative study
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.01.016
– ident: 10.1016/j.ins.2014.05.049_b0125
  doi: 10.1109/CEC.2009.4983309
– volume: 228
  start-page: 90
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0085
  article-title: A co-evolutionary multi-objective optimization algorithm based on direction vectors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.12.013
– volume: 13
  start-page: 825
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2014.05.049_b0005
  article-title: Convergence acceleration operator for multi objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2011743
– ident: 10.1016/j.ins.2014.05.049_b0115
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0275
  article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– ident: 10.1016/j.ins.2014.05.049_b0025
  doi: 10.1109/CEC.2009.4982950
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2014.05.049_b0055
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.ins.2014.05.049_b0205
  doi: 10.1109/CEC.2009.4983310
– ident: 10.1016/j.ins.2014.05.049_b0120
  doi: 10.1109/CEC.2009.4983176
– volume: 4
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0170
  article-title: Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Int. J. Indust. Eng. Comput.
– volume: 7076
  start-page: 697
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0090
  article-title: Application of multi-objective teaching–learning-based algorithm to an economic load dispatch problem with incommensurable objectives
  publication-title: Swarm Evol. Memetic Comput.
  doi: 10.1007/978-3-642-27172-4_82
– volume: 6
  start-page: 341
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0145
  article-title: θ-multiobjective teaching–learning-based optimization for dynamic economic emission dispatch
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2012.2183276
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2014.05.049_b0045
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 2
  start-page: 1404
  year: 2004
  ident: 10.1016/j.ins.2014.05.049_b0140
  article-title: Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization
  publication-title: Proc. Cong. Evol. Comput.
– ident: 10.1016/j.ins.2014.05.049_b0235
  doi: 10.1109/CEC.2009.4983179
– ident: 10.1016/j.ins.2014.05.049_b0265
  doi: 10.1109/CEC.2009.4982949
– volume: 262
  start-page: 62
  year: 2014
  ident: 10.1016/j.ins.2014.05.049_b0030
  article-title: Runtime analysis of a multi-objective evolutionary algorithm for obtaining finite approximations of Pareto fronts
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.11.023
– ident: 10.1016/j.ins.2014.05.049_b0255
  doi: 10.1109/CEC.2009.4982948
– ident: 10.1016/j.ins.2014.05.049_b0155
  doi: 10.1109/CEC.2009.4983312
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0195
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0060
  article-title: A Practical tutorial on the use of nonparametric statistical tests as methodology for comparing evolutionary intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 183
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0200
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 258
  start-page: 29
  year: 2014
  ident: 10.1016/j.ins.2014.05.049_b0245
  article-title: General framework for localized multi-objective evolutionary algorithms
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.08.049
– volume: 213
  start-page: 14
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0220
  article-title: A modification to MOEA/D-DE for multi objective optimization problems with complicated Pareto sets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.06.007
– volume: 3
  start-page: 535
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0165
  article-title: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int. J. Indust. Eng. Comput.
– volume: 8
  start-page: 715
  issue: 1-B
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0020
  article-title: Multi-objective bee swarm optimization
  publication-title: Int. J. Innovative Comput. Inform. Control
– volume: 2
  start-page: 39
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0015
  article-title: A multi-objective artificial bee colony algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.08.001
– volume: 20
  start-page: 710
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2014.05.049_b0185
  article-title: An improved teaching–learning-based optimization algorithm for solving unconstrained optimization problems
  publication-title: Scientia Iranica
– volume: 182
  start-page: 220
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0110
  article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.027
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  ident: 10.1016/j.ins.2014.05.049_b0190
  article-title: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.652103
– ident: 10.1016/j.ins.2014.05.049_b0260
  doi: 10.1109/CEC.2010.5586057
– volume: 43
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2014.05.049_b0160
  article-title: Constrained multi-objective optimization algorithm with ensemble of constraint handling methods
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.493937
– ident: 10.1016/j.ins.2014.05.049_b0215
– volume: 13
  start-page: 501
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2014.05.049_b0050
  article-title: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666895
– ident: 10.1016/j.ins.2014.05.049_b0080
  doi: 10.1109/CEC.2009.4982947
– ident: 10.1016/j.ins.2014.05.049_b0270
– volume: 268
  start-page: 202
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2014.05.049_b0150
  article-title: INSPM: an interactive evolutionary multi-objective algorithm with preference model
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.12.045
– ident: 10.1016/j.ins.2014.05.049_b0070
  doi: 10.1109/ICACTE.2010.5579761
SSID ssj0004766
Score 2.4843524
Snippet This paper presents an efficient multi-objective improved teaching–learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization...
This paper presents an efficient multi-objective improved teaching-learning based optimization (MO-ITLBO) algorithm for solving multi-objective optimization...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 182
SubjectTerms Algorithms
Dominance
Improved teaching–learning based optimization
Inverted generational distance
Mathematical models
Molybdenum
Multi-objective optimization
Optimization
Pareto optimality
Rank tests
State of the art
Teaching–learning based optimization
Title A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO)
URI https://dx.doi.org/10.1016/j.ins.2014.05.049
https://www.proquest.com/docview/1816009419
Volume 357
WOSCitedRecordID wos000377324500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHVAqoBVoZCSFglSp2Hk6O26qI8mh7WKq9WbbjQJfdpNpNVz3yH_iH_BLGsZ1dFlEBEpcoylueL-NvxvNA6FmeF6xMtQIzVRRBnMCeFEIERADfSBImFFFtswl2fJwNh_mpW2ifte0EWFVlV1f5xX8VNRwDYZvU2b8Qd_dQOAD7IHTYgthh-0eC79sgwaCWI6vMTCbktJ4Ds2xc6KSPcIjG3jFiJrOiV4P-mLjEzJ4Yf6qn583niSGhH06Co8H7_RPvOBj5APgu-bHn5tKOo58Ci239y2fwDV967_Y6Z46Yz2wnKTg1MX7IvWXfA0mNM5WGC4eYT4r5KWbTMNDAmCp2irF6NWM0SKltzOUVb2RLUzvVSWwTIjcL2_qlvyp462sYgVViaq2TuC27aouertTNNsvQrcUEJqThcfFNtE5ZkoP2Xu8fHQ7fLtJnmV3S9t_tF7_bMMCVF_2OvqxM5C07GWygu86swH0Lh3vohq420Z2lYpObaMelqODneEls2Cn3--isj1eAgz1wsAfO96_fPGRwCxm8DBncQQa_8IB5-QB9fH04OHgTuK4bgYqisAmY1GEhC5oqSXVESqDkZRxqCXYpKVgmU0lpGaos1kwUVOZUC1aKkjAi0qTQZfQQrVV1pbcQ1nkcSV2qTCkWg6ksE5oVRMm0hOtiLbZR6AeTK1eS3nRGGXMfezjiMP7cjD8PEw7jv41edbdc2Hos110cewlx9xNYosgBTtfd9tRLk4OyNStootL15YwDHU5NLC7JH_3box-j24v_6Alaa6aXegfdUvPmfDbddcD8AcWqpi8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+improved+teaching%E2%80%93learning+based+optimization+algorithm+%28MO-ITLBO%29&rft.jtitle=Information+sciences&rft.au=Patel%2C+Vivek+K.&rft.au=Savsani%2C+Vimal+J.&rft.date=2016-08-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=357&rft.spage=182&rft.epage=200&rft_id=info:doi/10.1016%2Fj.ins.2014.05.049&rft.externalDocID=S0020025514006124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon