Temperature-based thermo-electric coupling maximum power point tracking algorithm for thermoelectric generation systems under transient conditions
•The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•...
Gespeichert in:
| Veröffentlicht in: | Applied thermal engineering Jg. 230; S. 120684 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
25.07.2023
|
| Schlagworte: | |
| ISSN: | 1359-4311 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•The disturbance step size of the new algorithm is divided into the step size affected by temperature and by algorithm.•New algorithm has better performance in a variety system conditions.
The applications of thermoelectric generators (TEGs) are expanding from stable to complex environments. Traditional maximum power point tracking (MPPT) algorithms observe the electrical characteristics of TEG, and make judgments based on historical data. In a system with transient temperature conditions, the influence of system temperature on the electrical characteristics of TEG becomes the main effect, which confuses traditional algorithms and causes misjudgment. To address this issue, this paper proposes a temperature-based thermo-electric coupling MPPT (TTEC-MPPT) algorithm that considers temperature information during TEG operation. The algorithm uses Lagrange Interpolation Polynomial to predict the temperature difference of TEG and divides the disturbance step into two parts based on the temperature and algorithm. Experimental results show that the proposed algorithm outperforms four traditional algorithms and three sets of fixed pulse width modulation (PWM) conditions in five different cases, with an average power increase of 11.9211% and 20.1128% compared to traditional algorithms and fixed PWM respectively in transient cases. By considering the effect of temperature, the TTEC-MPPT algorithm has an advantage in dealing with complex transient temperature conditions compared to existing algorithms. |
|---|---|
| AbstractList | •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•The disturbance step size of the new algorithm is divided into the step size affected by temperature and by algorithm.•New algorithm has better performance in a variety system conditions.
The applications of thermoelectric generators (TEGs) are expanding from stable to complex environments. Traditional maximum power point tracking (MPPT) algorithms observe the electrical characteristics of TEG, and make judgments based on historical data. In a system with transient temperature conditions, the influence of system temperature on the electrical characteristics of TEG becomes the main effect, which confuses traditional algorithms and causes misjudgment. To address this issue, this paper proposes a temperature-based thermo-electric coupling MPPT (TTEC-MPPT) algorithm that considers temperature information during TEG operation. The algorithm uses Lagrange Interpolation Polynomial to predict the temperature difference of TEG and divides the disturbance step into two parts based on the temperature and algorithm. Experimental results show that the proposed algorithm outperforms four traditional algorithms and three sets of fixed pulse width modulation (PWM) conditions in five different cases, with an average power increase of 11.9211% and 20.1128% compared to traditional algorithms and fixed PWM respectively in transient cases. By considering the effect of temperature, the TTEC-MPPT algorithm has an advantage in dealing with complex transient temperature conditions compared to existing algorithms. |
| ArticleNumber | 120684 |
| Author | Deng, Fang Ding, Ning Cai, Yeyun |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0002-6507-0566 surname: Ding fullname: Ding, Ning organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Yeyun surname: Cai fullname: Cai, Yeyun organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Fang surname: Deng fullname: Deng, Fang organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| BookMark | eNqNkMtOAjEUhrvAREDfYRZuB3uZS0ncKBE1IXGD66Z0zkBxpp20ReU1fGI7QEx0xaZn0fN_J_83QgNjDSB0Q_CEYFLcbiey65qwAdfKBsx6QjFlE0JxwbMBGhKWT9OMEXKJRt5vMSaUl9kQfS-h7cDJsHOQrqSHKjkwbAoNqOC0SpTddY0266SVX7rdtUlnP8HFV5uQBCfVe_8pm7V1OmzapLbuxPhFrMH0N7Q1id_7AK1PdqaKkBg3XkMEKWsq3W_4K3RRy8bD9WmO0dv8cTl7ThevTy-z-0WqGMMhLTktOGFA-YqRulbFagV0SjNcVlCymsppnfGMyzxXcbUEDjnFKudZznA9LSgbo7sjVznrvYNadE630u0FwaJ3Krbir1PROxVHpzH-8C-udDh0jKV0cy5kfoRALPqhwQmvog4FlXbRnaisPg_0A9AeqPI |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2025_04_061 crossref_primary_10_1002_ep_14621 crossref_primary_10_1016_j_applthermaleng_2023_121290 crossref_primary_10_3390_math13172900 crossref_primary_10_1016_j_csite_2024_104878 crossref_primary_10_1016_j_apenergy_2024_123881 crossref_primary_10_1016_j_seta_2024_103843 crossref_primary_10_1016_j_applthermaleng_2025_125916 |
| Cites_doi | 10.1016/j.esd.2017.01.003 10.1016/j.chemosphere.2021.131631 10.1016/j.applthermaleng.2022.119823 10.1002/er.6329 10.1109/TEC.2018.2830796 10.1109/TPEL.2020.3023852 10.1109/TCSI.2020.3023252 10.1109/TPEL.2021.3134367 10.1109/TPEL.2014.2313294 10.1007/s11432-020-2895-3 10.1109/LSP.2007.898856 10.1007/978-3-030-37884-4_2 10.1109/TPEL.2017.2694548 10.1002/er.6728 10.1109/TIE.2015.2414393 10.1016/j.enconman.2021.114561 10.1016/j.enconman.2019.111832 10.1016/j.jclepro.2019.119301 10.1016/j.enconman.2009.09.030 10.1016/j.enconman.2015.03.068 10.1016/j.enconman.2021.114329 10.1016/j.epsr.2021.107426 10.1007/s11431-022-2159-8 10.1016/j.energy.2022.124083 10.1109/TPEL.2012.2231098 10.1007/s11432-020-3176-x 10.1038/s41563-021-01064-6 10.1016/j.renene.2016.05.001 10.1016/j.enconman.2021.114694 10.1016/j.applthermaleng.2022.119782 10.1109/TEC.2020.2967511 10.1109/TIE.2018.2885742 10.1109/TPEL.2019.2912030 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2023.120684 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2023_120684 S1359431123007135 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c330t-7826813e28b31ffc6bbe292407de73f2a9f4848a55c7827e8e520c584530f9623 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001275000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Tue Nov 18 21:42:02 EST 2025 Sat Nov 29 07:04:56 EST 2025 Tue Dec 03 03:45:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Renewable energy harvesting Thermoelectric generator Transient working condition Maximum power point tracking |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-7826813e28b31ffc6bbe292407de73f2a9f4848a55c7827e8e520c584530f9623 |
| ORCID | 0000-0002-6507-0566 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2023_120684 crossref_citationtrail_10_1016_j_applthermaleng_2023_120684 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2023_120684 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-25 |
| PublicationDateYYYYMMDD | 2023-07-25 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Chiu, Huang, Wang (b0130) 2016; 97 Aly, Rezk (b0160) 2021; 45 Cai, Ye, Liu, Romagnoli, Ji (b0035) 2023; 221 Ahiska, Ahiska (b0175) 2010; 51 Yahya, Alomari (b0095) 2021; 45 Zoui, Bentouba, Velauthapillai, Zioui, Bourouis (b0040) 2022; 253 Mansoor, Mirza, Duan, Zhu, Yin, Ling (b0155) 2021; 246 Bijukumar, Raam, Ganesan, Nagamani (b0120) 2018; 33 Bahman, Ma, Blaabjerg (b0070) 2017; 33 Montecucco, Knox (b0100) 2014; 30 Yahya, Bilgin, Erfidan (b0115) 2018; 18 Li, Lin, Yu, Li, Wang, Zhang, Yang, Wu (b0165) 2021; 199 Kilani, Mohammad, Alhawari, Saleh, Ismail (b0045) 2020 Mamur, Ahiska (b0080) 2015; 97 Cai, Rezania, Deng, Rosendahl, Chen (b0075) 2021; 245 Twaha, Zhu, Yan, Li, Huang (b0085) 2017; 37 Rodriguez, Guo, Preindl, Cotton, Emadi (b0135) 2019; 198 Kim, Kim (b0110) 2012; 28 Coleman, Steele (b0180) 2018 Jeong, Shim, Maeng, Park, Kim (b0140) 2019; 35 Yang, Zhang, Zhang, Wang, Shu, Li, He, Yang, Yu (b0145) 2020; 248 Zhao, Chen, Wang, Liu (b0010) 2021; 64 Selvam S, Paramasivan (b0005) 2022; 286 Dalala, Zahid (b0125) 2015 Hu, Wu, Liao, Cai, Yu (b0015) 2023; 220 Deng, Ding, Ye, Cai, Chen (b0025) 2021; 64 Tao, Mao, Luo, Zeng, Heng (b0055) 2022; 37 Zhou, Lee, Yu, Byun, Luo, Lee, Ge, Lee, Chen, Lee, Cojocaru-Mirédin, Chang, Im, Cho, Wuttig, Dravid, Kanatzidis, Chung (b0030) 2021; 20 Zhang, Yang, Yu, Jiang (b0150) 2020; 35 Tran-Dinh, Pham, Pham-Nguyen, Lee, Le (b0050) 2020; 68 Peng, Zhang, Liu, Li, Mou, Xu, Chen (b0060) 2021; 243 Bond, Park (b0105) 2015; 62 Qi, He (b0065) 2018; 66 Cai, Deng, Zhao, Ding, Chen (b0090) 2020; 36 Valimaki, Haghparast (b0170) 2007; 14 Ding, Wang, Xian, Cai, Liu, Deng (b0020) 2023; 66 Deng (10.1016/j.applthermaleng.2023.120684_b0025) 2021; 64 Mamur (10.1016/j.applthermaleng.2023.120684_b0080) 2015; 97 Tao (10.1016/j.applthermaleng.2023.120684_b0055) 2022; 37 Ahiska (10.1016/j.applthermaleng.2023.120684_b0175) 2010; 51 Selvam S (10.1016/j.applthermaleng.2023.120684_b0005) 2022; 286 Yahya (10.1016/j.applthermaleng.2023.120684_b0095) 2021; 45 Rodriguez (10.1016/j.applthermaleng.2023.120684_b0135) 2019; 198 Zoui (10.1016/j.applthermaleng.2023.120684_b0040) 2022; 253 Dalala (10.1016/j.applthermaleng.2023.120684_b0125) 2015 Yahya (10.1016/j.applthermaleng.2023.120684_b0115) 2018; 18 Jeong (10.1016/j.applthermaleng.2023.120684_b0140) 2019; 35 Montecucco (10.1016/j.applthermaleng.2023.120684_b0100) 2014; 30 Zhang (10.1016/j.applthermaleng.2023.120684_b0150) 2020; 35 Peng (10.1016/j.applthermaleng.2023.120684_b0060) 2021; 243 Yang (10.1016/j.applthermaleng.2023.120684_b0145) 2020; 248 Kim (10.1016/j.applthermaleng.2023.120684_b0110) 2012; 28 Aly (10.1016/j.applthermaleng.2023.120684_b0160) 2021; 45 Valimaki (10.1016/j.applthermaleng.2023.120684_b0170) 2007; 14 Ding (10.1016/j.applthermaleng.2023.120684_b0020) 2023; 66 Cai (10.1016/j.applthermaleng.2023.120684_b0075) 2021; 245 Bond (10.1016/j.applthermaleng.2023.120684_b0105) 2015; 62 Li (10.1016/j.applthermaleng.2023.120684_b0165) 2021; 199 Cai (10.1016/j.applthermaleng.2023.120684_b0035) 2023; 221 Tran-Dinh (10.1016/j.applthermaleng.2023.120684_b0050) 2020; 68 Liu (10.1016/j.applthermaleng.2023.120684_b0130) 2016; 97 Kilani (10.1016/j.applthermaleng.2023.120684_b0045) 2020 Mansoor (10.1016/j.applthermaleng.2023.120684_b0155) 2021; 246 Bijukumar (10.1016/j.applthermaleng.2023.120684_b0120) 2018; 33 Hu (10.1016/j.applthermaleng.2023.120684_b0015) 2023; 220 Zhou (10.1016/j.applthermaleng.2023.120684_b0030) 2021; 20 Twaha (10.1016/j.applthermaleng.2023.120684_b0085) 2017; 37 Cai (10.1016/j.applthermaleng.2023.120684_b0090) 2020; 36 Zhao (10.1016/j.applthermaleng.2023.120684_b0010) 2021; 64 Bahman (10.1016/j.applthermaleng.2023.120684_b0070) 2017; 33 Coleman (10.1016/j.applthermaleng.2023.120684_b0180) 2018 Qi (10.1016/j.applthermaleng.2023.120684_b0065) 2018; 66 |
| References_xml | – volume: 33 start-page: 1641 year: 2018 end-page: 1649 ident: b0120 article-title: A linear extrapolation-based mppt algorithm for thermoelectric generators under dynamically varying temperature conditions publication-title: IEEE Trans. Energy Convers. – start-page: 1062 year: 2015 end-page: 1067 ident: b0125 article-title: New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators publication-title: 2015 IEEE Energy Conversion Congress and Exposition (ECCE) – volume: 253 start-page: 124083 year: 2022 ident: b0040 article-title: Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery publication-title: Energy – volume: 14 start-page: 816 year: 2007 end-page: 819 ident: b0170 article-title: Fractional delay filter design based on truncated lagrange interpolation publication-title: IEEE Signal Process Lett. – volume: 45 start-page: 13897 year: 2021 end-page: 13910 ident: b0160 article-title: A mppt based on optimized flc using manta ray foraging optimization algorithm for thermo-electric generation systems publication-title: Int. J. Energy Res. – volume: 64 start-page: 1 year: 2021 end-page: 23 ident: b0010 article-title: A review of system modeling, assessment and operational optimization for integrated energy systems publication-title: SCIENCE CHINA Inf. Sci. – volume: 37 start-page: 86 year: 2017 end-page: 98 ident: b0085 article-title: Performance analysis of thermo-electric generator using dc-dc converter with incremental conductance based maximum power point tracking publication-title: Energy Sustain. Dev. – volume: 36 start-page: 4187 year: 2020 end-page: 4197 ident: b0090 article-title: An mptd-specialized mppt algorithm used for a novel medium-power thermoelectric system publication-title: IEEE Trans. Power Electron. – volume: 286 start-page: 131631 year: 2022 ident: b0005 article-title: Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review publication-title: Chemosphere – volume: 66 start-page: 9628 year: 2018 end-page: 9631 ident: b0065 article-title: Further efficiency improvement of power amplifiers using thermal energy harvesting publication-title: IEEE Trans. Ind. Electron. – volume: 199 start-page: 107426 year: 2021 ident: b0165 article-title: Adaptive rapid neural optimization: A data-driven approach to mppt for centralized teg systems publication-title: Electr. Pow. Syst. Res. – volume: 18 start-page: 1201 year: 2018 end-page: 1210 ident: b0115 article-title: Practical implementation of maximum power tracking based short-current pulse method for thermoelectric generators systems publication-title: J. Power Electron. – volume: 35 start-page: 347 year: 2019 end-page: 358 ident: b0140 article-title: A high-efficiency charger with adaptive input ripple mppt for low-power thermoelectric energy harvesting achieving 21% efficiency improvement publication-title: IEEE Trans. Power Electron. – volume: 198 start-page: 111832 year: 2019 ident: b0135 article-title: High frequency injection maximum power point tracking for thermoelectric generators publication-title: Energ. Conver. Manage. – volume: 37 start-page: 4968 year: 2022 end-page: 4972 ident: b0055 article-title: A fully integrated power converter for thermoelectric energy harvesting with 81% peak efficiency and 6.4-mv minimum input voltage publication-title: IEEE Trans. Power Electron. – volume: 220 start-page: 119782 year: 2023 ident: b0015 article-title: Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ices publication-title: Appl. Therm. Eng. – volume: 245 start-page: 114561 year: 2021 ident: b0075 article-title: Comprehensive experimental study of thermoelectric generators under transient boundary conditions publication-title: Energ. Conver. Manage. – volume: 221 start-page: 119823 year: 2023 ident: b0035 article-title: Sizing optimization of thermoelectric generator for low-grade thermal energy utilization: Module level and system level publication-title: Appl. Therm. Eng. – volume: 62 start-page: 5539 year: 2015 end-page: 5548 ident: b0105 article-title: Current-sensorless power estimation and mppt implementation for thermoelectric generators publication-title: IEEE Trans. Ind. Electron. – volume: 97 start-page: 306 year: 2016 end-page: 318 ident: b0130 article-title: A novel maximum power point tracker for thermoelectric generation system publication-title: Renew. Energy. – volume: 35 start-page: 966 year: 2020 end-page: 976 ident: b0150 article-title: Dynamic surrogate model based optimization for mppt of centralized thermoelectric generation systems under heterogeneous temperature difference publication-title: IEEE Trans. Energy Convers. – volume: 64 start-page: 1 year: 2021 end-page: 3 ident: b0025 article-title: Wearable ubiquitous energy system publication-title: SCIENCE CHINA Inf. Sci. – volume: 33 start-page: 2518 year: 2017 end-page: 2530 ident: b0070 article-title: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power igbt modules publication-title: IEEE Trans. Power Electron. – volume: 30 start-page: 828 year: 2014 end-page: 839 ident: b0100 article-title: Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators publication-title: IEEE Trans. Power Electron. – volume: 248 start-page: 119301 year: 2020 ident: b0145 article-title: Fast atom search optimization based mppt design of centralized thermoelectric generation system under heterogeneous temperature difference publication-title: J. Clean. Prod. – volume: 246 start-page: 114694 year: 2021 ident: b0155 article-title: Maximum energy harvesting of centralized thermoelectric power generation systems with non-uniform temperature distribution based on novel equilibrium optimizer publication-title: Energ. Conver. Manage. – volume: 20 start-page: 1378 year: 2021 end-page: 1384 ident: b0030 article-title: Polycrystalline snse with a thermoelectric figure of merit greater than the single crystal publication-title: Nat. Mater. – volume: 45 start-page: 7476 year: 2021 end-page: 7486 ident: b0095 article-title: A new maximum power point tracking algorithm based on power differentials method for thermoelectric generators publication-title: Int. J. Energy Res. – volume: 97 start-page: 265 year: 2015 end-page: 272 ident: b0080 article-title: Application of a dcdc boost converter with maximum power point tracking for low power thermoelectric generators publication-title: Energ. Conver. Manage. – volume: 66 start-page: 599 year: 2023 end-page: 629 ident: b0020 article-title: Photovoltaic, thermoelectric and electromagnetic generation technologies applied in power systems for mobile unmanned systems publication-title: Sci. China Technol. Sci. – volume: 28 start-page: 3827 year: 2012 end-page: 3833 ident: b0110 article-title: A dc–dc boost converter with variation-tolerant mppt technique and efficient zcs circuit for thermoelectric energy harvesting applications publication-title: IEEE Trans. Power Electron. – volume: 51 start-page: 338 year: 2010 end-page: 345 ident: b0175 article-title: New method for investigation of parameters of real thermoelectric modules publication-title: Energ. Conver. Manage. – start-page: 15 year: 2020 end-page: 29 ident: b0045 article-title: Introduction to teg-based power management unit publication-title: Power Management for Wearable Electronic Devices – year: 2018 ident: b0180 article-title: Experimentation, validation, and uncertainty analysis for engineers – volume: 243 start-page: 114329 year: 2021 ident: b0060 article-title: Waste heat recycling of high-power lighting through chips on thermoelectric generator publication-title: Energ. Conver. Manage. – volume: 68 start-page: 103 year: 2020 end-page: 113 ident: b0050 article-title: Power management ic with a three-phase cold self-start for thermoelectric generators publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. – volume: 37 start-page: 86 year: 2017 ident: 10.1016/j.applthermaleng.2023.120684_b0085 article-title: Performance analysis of thermo-electric generator using dc-dc converter with incremental conductance based maximum power point tracking publication-title: Energy Sustain. Dev. doi: 10.1016/j.esd.2017.01.003 – volume: 286 start-page: 131631 year: 2022 ident: 10.1016/j.applthermaleng.2023.120684_b0005 article-title: Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131631 – volume: 221 start-page: 119823 year: 2023 ident: 10.1016/j.applthermaleng.2023.120684_b0035 article-title: Sizing optimization of thermoelectric generator for low-grade thermal energy utilization: Module level and system level publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119823 – volume: 45 start-page: 7476 issue: 5 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0095 article-title: A new maximum power point tracking algorithm based on power differentials method for thermoelectric generators publication-title: Int. J. Energy Res. doi: 10.1002/er.6329 – volume: 33 start-page: 1641 issue: 4 year: 2018 ident: 10.1016/j.applthermaleng.2023.120684_b0120 article-title: A linear extrapolation-based mppt algorithm for thermoelectric generators under dynamically varying temperature conditions publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2018.2830796 – volume: 36 start-page: 4187 issue: 4 year: 2020 ident: 10.1016/j.applthermaleng.2023.120684_b0090 article-title: An mptd-specialized mppt algorithm used for a novel medium-power thermoelectric system publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.3023852 – volume: 68 start-page: 103 issue: 1 year: 2020 ident: 10.1016/j.applthermaleng.2023.120684_b0050 article-title: Power management ic with a three-phase cold self-start for thermoelectric generators publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2020.3023252 – volume: 37 start-page: 4968 issue: 5 year: 2022 ident: 10.1016/j.applthermaleng.2023.120684_b0055 article-title: A fully integrated power converter for thermoelectric energy harvesting with 81% peak efficiency and 6.4-mv minimum input voltage publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2021.3134367 – volume: 18 start-page: 1201 issue: 4 year: 2018 ident: 10.1016/j.applthermaleng.2023.120684_b0115 article-title: Practical implementation of maximum power tracking based short-current pulse method for thermoelectric generators systems publication-title: J. Power Electron. – year: 2018 ident: 10.1016/j.applthermaleng.2023.120684_b0180 – volume: 30 start-page: 828 issue: 2 year: 2014 ident: 10.1016/j.applthermaleng.2023.120684_b0100 article-title: Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2014.2313294 – volume: 64 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0025 article-title: Wearable ubiquitous energy system publication-title: SCIENCE CHINA Inf. Sci. doi: 10.1007/s11432-020-2895-3 – volume: 14 start-page: 816 issue: 11 year: 2007 ident: 10.1016/j.applthermaleng.2023.120684_b0170 article-title: Fractional delay filter design based on truncated lagrange interpolation publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2007.898856 – start-page: 15 year: 2020 ident: 10.1016/j.applthermaleng.2023.120684_b0045 article-title: Introduction to teg-based power management unit publication-title: Power Management for Wearable Electronic Devices doi: 10.1007/978-3-030-37884-4_2 – start-page: 1062 year: 2015 ident: 10.1016/j.applthermaleng.2023.120684_b0125 article-title: New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators – volume: 33 start-page: 2518 issue: 3 year: 2017 ident: 10.1016/j.applthermaleng.2023.120684_b0070 article-title: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power igbt modules publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2017.2694548 – volume: 45 start-page: 13897 issue: 9 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0160 article-title: A mppt based on optimized flc using manta ray foraging optimization algorithm for thermo-electric generation systems publication-title: Int. J. Energy Res. doi: 10.1002/er.6728 – volume: 62 start-page: 5539 issue: 9 year: 2015 ident: 10.1016/j.applthermaleng.2023.120684_b0105 article-title: Current-sensorless power estimation and mppt implementation for thermoelectric generators publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2414393 – volume: 245 start-page: 114561 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0075 article-title: Comprehensive experimental study of thermoelectric generators under transient boundary conditions publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.114561 – volume: 198 start-page: 111832 year: 2019 ident: 10.1016/j.applthermaleng.2023.120684_b0135 article-title: High frequency injection maximum power point tracking for thermoelectric generators publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.111832 – volume: 248 start-page: 119301 year: 2020 ident: 10.1016/j.applthermaleng.2023.120684_b0145 article-title: Fast atom search optimization based mppt design of centralized thermoelectric generation system under heterogeneous temperature difference publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119301 – volume: 51 start-page: 338 issue: 2 year: 2010 ident: 10.1016/j.applthermaleng.2023.120684_b0175 article-title: New method for investigation of parameters of real thermoelectric modules publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2009.09.030 – volume: 97 start-page: 265 year: 2015 ident: 10.1016/j.applthermaleng.2023.120684_b0080 article-title: Application of a dcdc boost converter with maximum power point tracking for low power thermoelectric generators publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2015.03.068 – volume: 243 start-page: 114329 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0060 article-title: Waste heat recycling of high-power lighting through chips on thermoelectric generator publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.114329 – volume: 199 start-page: 107426 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0165 article-title: Adaptive rapid neural optimization: A data-driven approach to mppt for centralized teg systems publication-title: Electr. Pow. Syst. Res. doi: 10.1016/j.epsr.2021.107426 – volume: 66 start-page: 599 issue: 3 year: 2023 ident: 10.1016/j.applthermaleng.2023.120684_b0020 article-title: Photovoltaic, thermoelectric and electromagnetic generation technologies applied in power systems for mobile unmanned systems publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-022-2159-8 – volume: 253 start-page: 124083 year: 2022 ident: 10.1016/j.applthermaleng.2023.120684_b0040 article-title: Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2022.124083 – volume: 28 start-page: 3827 issue: 8 year: 2012 ident: 10.1016/j.applthermaleng.2023.120684_b0110 article-title: A dc–dc boost converter with variation-tolerant mppt technique and efficient zcs circuit for thermoelectric energy harvesting applications publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2012.2231098 – volume: 64 start-page: 1 issue: 9 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0010 article-title: A review of system modeling, assessment and operational optimization for integrated energy systems publication-title: SCIENCE CHINA Inf. Sci. doi: 10.1007/s11432-020-3176-x – volume: 20 start-page: 1378 issue: 10 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0030 article-title: Polycrystalline snse with a thermoelectric figure of merit greater than the single crystal publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 97 start-page: 306 year: 2016 ident: 10.1016/j.applthermaleng.2023.120684_b0130 article-title: A novel maximum power point tracker for thermoelectric generation system publication-title: Renew. Energy. doi: 10.1016/j.renene.2016.05.001 – volume: 246 start-page: 114694 year: 2021 ident: 10.1016/j.applthermaleng.2023.120684_b0155 article-title: Maximum energy harvesting of centralized thermoelectric power generation systems with non-uniform temperature distribution based on novel equilibrium optimizer publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.114694 – volume: 220 start-page: 119782 year: 2023 ident: 10.1016/j.applthermaleng.2023.120684_b0015 article-title: Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ices publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119782 – volume: 35 start-page: 966 issue: 2 year: 2020 ident: 10.1016/j.applthermaleng.2023.120684_b0150 article-title: Dynamic surrogate model based optimization for mppt of centralized thermoelectric generation systems under heterogeneous temperature difference publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2020.2967511 – volume: 66 start-page: 9628 issue: 12 year: 2018 ident: 10.1016/j.applthermaleng.2023.120684_b0065 article-title: Further efficiency improvement of power amplifiers using thermal energy harvesting publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2885742 – volume: 35 start-page: 347 issue: 1 year: 2019 ident: 10.1016/j.applthermaleng.2023.120684_b0140 article-title: A high-efficiency charger with adaptive input ripple mppt for low-power thermoelectric energy harvesting achieving 21% efficiency improvement publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2912030 |
| SSID | ssj0012874 |
| Score | 2.4448528 |
| Snippet | •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 120684 |
| SubjectTerms | Maximum power point tracking Renewable energy harvesting Thermoelectric generator Transient working condition |
| Title | Temperature-based thermo-electric coupling maximum power point tracking algorithm for thermoelectric generation systems under transient conditions |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2023.120684 |
| Volume | 230 |
| WOSCitedRecordID | wos001001275000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFyE4IJ5iecmHva1StU6c2OKAVsuuAKGKw4LKKUpce8nSpFWarsrf4D_wPxk_4rS7IBUkLlZl2eO089WejGe-QehAETjk43gKu18og4hMecDzXARJrGLtc5DUMPB9_pCMx2wy4R97vZ9tLszlLKkqtl7zxX9VNfSBsnXq7F-o2wuFDvgMSocW1A7tboqXYAlbpuRAn1EmQLIu54GteFOIQzFfLUwWepmti3JVHi50qTRoi6rRNSPEN5O5ODuf10XztWwjEUGGF3Fu2KoNdiwX9NIU1K319Gqpcyx1PPu06NyBLdOts3qNPICH7PgQvU3tyqyMN_qObdXsL_L7yqP5jbTjTjM3zjkvSKi9ojbR2e23IeUB2DCjzQ2ZuJsau6WOyDC2VeSu7fbW8XAx0Hf97rFh5YFeaNBN2ybZvnL4-ZDENtrtIt2WlmppqZV2A-2RhHLWR3tH704m7_11lS4aYN7s3be5hQ66QMI_P93vbaEN--bsHrrrXkzwkQXUfdST1QN0Z4Ou8iH6cQ1a-Aq0cAst7KCFDbSwgRZuoYU9tDBAC29DC3fQwg5a2EALe2jhDlqP0KfTk7Pjt4Gr6RGIMBw2ARikMRuFkrA8HCkl4jyXhGu3wlQmoSIZVxGLWEapgKGJZJKSoQArmYZDxcFWf4z61bySTxCWglNF40yT7EWMs0xEKoIDSAuiGc320av2102FI7zXdVdm6S663kfUz15Y4pcd571uFZk6I9YapymgdicJT_9x5WfodvcXe476Tb2SL9BNcdkUy_qlg-wvJIDS7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-based+thermo-electric+coupling+maximum+power+point+tracking+algorithm+for+thermoelectric+generation+systems+under+transient+conditions&rft.jtitle=Applied+thermal+engineering&rft.au=Ding%2C+Ning&rft.au=Cai%2C+Yeyun&rft.au=Deng%2C+Fang&rft.date=2023-07-25&rft.issn=1359-4311&rft.volume=230&rft.spage=120684&rft_id=info:doi/10.1016%2Fj.applthermaleng.2023.120684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2023_120684 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |