Temperature-based thermo-electric coupling maximum power point tracking algorithm for thermoelectric generation systems under transient conditions

•The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering Jg. 230; S. 120684
Hauptverfasser: Ding, Ning, Cai, Yeyun, Deng, Fang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 25.07.2023
Schlagworte:
ISSN:1359-4311
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•The disturbance step size of the new algorithm is divided into the step size affected by temperature and by algorithm.•New algorithm has better performance in a variety system conditions. The applications of thermoelectric generators (TEGs) are expanding from stable to complex environments. Traditional maximum power point tracking (MPPT) algorithms observe the electrical characteristics of TEG, and make judgments based on historical data. In a system with transient temperature conditions, the influence of system temperature on the electrical characteristics of TEG becomes the main effect, which confuses traditional algorithms and causes misjudgment. To address this issue, this paper proposes a temperature-based thermo-electric coupling MPPT (TTEC-MPPT) algorithm that considers temperature information during TEG operation. The algorithm uses Lagrange Interpolation Polynomial to predict the temperature difference of TEG and divides the disturbance step into two parts based on the temperature and algorithm. Experimental results show that the proposed algorithm outperforms four traditional algorithms and three sets of fixed pulse width modulation (PWM) conditions in five different cases, with an average power increase of 11.9211% and 20.1128% compared to traditional algorithms and fixed PWM respectively in transient cases. By considering the effect of temperature, the TTEC-MPPT algorithm has an advantage in dealing with complex transient temperature conditions compared to existing algorithms.
AbstractList •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical characteristics of TEG with transient temperature conditions.•The Lagrange Interpolation Polynomial is used to predict the temperature difference of TEG.•The disturbance step size of the new algorithm is divided into the step size affected by temperature and by algorithm.•New algorithm has better performance in a variety system conditions. The applications of thermoelectric generators (TEGs) are expanding from stable to complex environments. Traditional maximum power point tracking (MPPT) algorithms observe the electrical characteristics of TEG, and make judgments based on historical data. In a system with transient temperature conditions, the influence of system temperature on the electrical characteristics of TEG becomes the main effect, which confuses traditional algorithms and causes misjudgment. To address this issue, this paper proposes a temperature-based thermo-electric coupling MPPT (TTEC-MPPT) algorithm that considers temperature information during TEG operation. The algorithm uses Lagrange Interpolation Polynomial to predict the temperature difference of TEG and divides the disturbance step into two parts based on the temperature and algorithm. Experimental results show that the proposed algorithm outperforms four traditional algorithms and three sets of fixed pulse width modulation (PWM) conditions in five different cases, with an average power increase of 11.9211% and 20.1128% compared to traditional algorithms and fixed PWM respectively in transient cases. By considering the effect of temperature, the TTEC-MPPT algorithm has an advantage in dealing with complex transient temperature conditions compared to existing algorithms.
ArticleNumber 120684
Author Deng, Fang
Ding, Ning
Cai, Yeyun
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0002-6507-0566
  surname: Ding
  fullname: Ding, Ning
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Yeyun
  surname: Cai
  fullname: Cai, Yeyun
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Fang
  surname: Deng
  fullname: Deng, Fang
  organization: State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
BookMark eNqNkMtOAjEUhrvAREDfYRZuB3uZS0ncKBE1IXGD66Z0zkBxpp20ReU1fGI7QEx0xaZn0fN_J_83QgNjDSB0Q_CEYFLcbiey65qwAdfKBsx6QjFlE0JxwbMBGhKWT9OMEXKJRt5vMSaUl9kQfS-h7cDJsHOQrqSHKjkwbAoNqOC0SpTddY0266SVX7rdtUlnP8HFV5uQBCfVe_8pm7V1OmzapLbuxPhFrMH0N7Q1id_7AK1PdqaKkBg3XkMEKWsq3W_4K3RRy8bD9WmO0dv8cTl7ThevTy-z-0WqGMMhLTktOGFA-YqRulbFagV0SjNcVlCymsppnfGMyzxXcbUEDjnFKudZznA9LSgbo7sjVznrvYNadE630u0FwaJ3Krbir1PROxVHpzH-8C-udDh0jKV0cy5kfoRALPqhwQmvog4FlXbRnaisPg_0A9AeqPI
CitedBy_id crossref_primary_10_1016_j_egyr_2025_04_061
crossref_primary_10_1002_ep_14621
crossref_primary_10_1016_j_applthermaleng_2023_121290
crossref_primary_10_3390_math13172900
crossref_primary_10_1016_j_csite_2024_104878
crossref_primary_10_1016_j_apenergy_2024_123881
crossref_primary_10_1016_j_seta_2024_103843
crossref_primary_10_1016_j_applthermaleng_2025_125916
Cites_doi 10.1016/j.esd.2017.01.003
10.1016/j.chemosphere.2021.131631
10.1016/j.applthermaleng.2022.119823
10.1002/er.6329
10.1109/TEC.2018.2830796
10.1109/TPEL.2020.3023852
10.1109/TCSI.2020.3023252
10.1109/TPEL.2021.3134367
10.1109/TPEL.2014.2313294
10.1007/s11432-020-2895-3
10.1109/LSP.2007.898856
10.1007/978-3-030-37884-4_2
10.1109/TPEL.2017.2694548
10.1002/er.6728
10.1109/TIE.2015.2414393
10.1016/j.enconman.2021.114561
10.1016/j.enconman.2019.111832
10.1016/j.jclepro.2019.119301
10.1016/j.enconman.2009.09.030
10.1016/j.enconman.2015.03.068
10.1016/j.enconman.2021.114329
10.1016/j.epsr.2021.107426
10.1007/s11431-022-2159-8
10.1016/j.energy.2022.124083
10.1109/TPEL.2012.2231098
10.1007/s11432-020-3176-x
10.1038/s41563-021-01064-6
10.1016/j.renene.2016.05.001
10.1016/j.enconman.2021.114694
10.1016/j.applthermaleng.2022.119782
10.1109/TEC.2020.2967511
10.1109/TIE.2018.2885742
10.1109/TPEL.2019.2912030
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2023.120684
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2023_120684
S1359431123007135
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c330t-7826813e28b31ffc6bbe292407de73f2a9f4848a55c7827e8e520c584530f9623
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001275000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Tue Nov 18 21:42:02 EST 2025
Sat Nov 29 07:04:56 EST 2025
Tue Dec 03 03:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Renewable energy harvesting
Thermoelectric generator
Transient working condition
Maximum power point tracking
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-7826813e28b31ffc6bbe292407de73f2a9f4848a55c7827e8e520c584530f9623
ORCID 0000-0002-6507-0566
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2023_120684
crossref_citationtrail_10_1016_j_applthermaleng_2023_120684
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2023_120684
PublicationCentury 2000
PublicationDate 2023-07-25
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-25
  day: 25
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Chiu, Huang, Wang (b0130) 2016; 97
Aly, Rezk (b0160) 2021; 45
Cai, Ye, Liu, Romagnoli, Ji (b0035) 2023; 221
Ahiska, Ahiska (b0175) 2010; 51
Yahya, Alomari (b0095) 2021; 45
Zoui, Bentouba, Velauthapillai, Zioui, Bourouis (b0040) 2022; 253
Mansoor, Mirza, Duan, Zhu, Yin, Ling (b0155) 2021; 246
Bijukumar, Raam, Ganesan, Nagamani (b0120) 2018; 33
Bahman, Ma, Blaabjerg (b0070) 2017; 33
Montecucco, Knox (b0100) 2014; 30
Yahya, Bilgin, Erfidan (b0115) 2018; 18
Li, Lin, Yu, Li, Wang, Zhang, Yang, Wu (b0165) 2021; 199
Kilani, Mohammad, Alhawari, Saleh, Ismail (b0045) 2020
Mamur, Ahiska (b0080) 2015; 97
Cai, Rezania, Deng, Rosendahl, Chen (b0075) 2021; 245
Twaha, Zhu, Yan, Li, Huang (b0085) 2017; 37
Rodriguez, Guo, Preindl, Cotton, Emadi (b0135) 2019; 198
Kim, Kim (b0110) 2012; 28
Coleman, Steele (b0180) 2018
Jeong, Shim, Maeng, Park, Kim (b0140) 2019; 35
Yang, Zhang, Zhang, Wang, Shu, Li, He, Yang, Yu (b0145) 2020; 248
Zhao, Chen, Wang, Liu (b0010) 2021; 64
Selvam S, Paramasivan (b0005) 2022; 286
Dalala, Zahid (b0125) 2015
Hu, Wu, Liao, Cai, Yu (b0015) 2023; 220
Deng, Ding, Ye, Cai, Chen (b0025) 2021; 64
Tao, Mao, Luo, Zeng, Heng (b0055) 2022; 37
Zhou, Lee, Yu, Byun, Luo, Lee, Ge, Lee, Chen, Lee, Cojocaru-Mirédin, Chang, Im, Cho, Wuttig, Dravid, Kanatzidis, Chung (b0030) 2021; 20
Zhang, Yang, Yu, Jiang (b0150) 2020; 35
Tran-Dinh, Pham, Pham-Nguyen, Lee, Le (b0050) 2020; 68
Peng, Zhang, Liu, Li, Mou, Xu, Chen (b0060) 2021; 243
Bond, Park (b0105) 2015; 62
Qi, He (b0065) 2018; 66
Cai, Deng, Zhao, Ding, Chen (b0090) 2020; 36
Valimaki, Haghparast (b0170) 2007; 14
Ding, Wang, Xian, Cai, Liu, Deng (b0020) 2023; 66
Deng (10.1016/j.applthermaleng.2023.120684_b0025) 2021; 64
Mamur (10.1016/j.applthermaleng.2023.120684_b0080) 2015; 97
Tao (10.1016/j.applthermaleng.2023.120684_b0055) 2022; 37
Ahiska (10.1016/j.applthermaleng.2023.120684_b0175) 2010; 51
Selvam S (10.1016/j.applthermaleng.2023.120684_b0005) 2022; 286
Yahya (10.1016/j.applthermaleng.2023.120684_b0095) 2021; 45
Rodriguez (10.1016/j.applthermaleng.2023.120684_b0135) 2019; 198
Zoui (10.1016/j.applthermaleng.2023.120684_b0040) 2022; 253
Dalala (10.1016/j.applthermaleng.2023.120684_b0125) 2015
Yahya (10.1016/j.applthermaleng.2023.120684_b0115) 2018; 18
Jeong (10.1016/j.applthermaleng.2023.120684_b0140) 2019; 35
Montecucco (10.1016/j.applthermaleng.2023.120684_b0100) 2014; 30
Zhang (10.1016/j.applthermaleng.2023.120684_b0150) 2020; 35
Peng (10.1016/j.applthermaleng.2023.120684_b0060) 2021; 243
Yang (10.1016/j.applthermaleng.2023.120684_b0145) 2020; 248
Kim (10.1016/j.applthermaleng.2023.120684_b0110) 2012; 28
Aly (10.1016/j.applthermaleng.2023.120684_b0160) 2021; 45
Valimaki (10.1016/j.applthermaleng.2023.120684_b0170) 2007; 14
Ding (10.1016/j.applthermaleng.2023.120684_b0020) 2023; 66
Cai (10.1016/j.applthermaleng.2023.120684_b0075) 2021; 245
Bond (10.1016/j.applthermaleng.2023.120684_b0105) 2015; 62
Li (10.1016/j.applthermaleng.2023.120684_b0165) 2021; 199
Cai (10.1016/j.applthermaleng.2023.120684_b0035) 2023; 221
Tran-Dinh (10.1016/j.applthermaleng.2023.120684_b0050) 2020; 68
Liu (10.1016/j.applthermaleng.2023.120684_b0130) 2016; 97
Kilani (10.1016/j.applthermaleng.2023.120684_b0045) 2020
Mansoor (10.1016/j.applthermaleng.2023.120684_b0155) 2021; 246
Bijukumar (10.1016/j.applthermaleng.2023.120684_b0120) 2018; 33
Hu (10.1016/j.applthermaleng.2023.120684_b0015) 2023; 220
Zhou (10.1016/j.applthermaleng.2023.120684_b0030) 2021; 20
Twaha (10.1016/j.applthermaleng.2023.120684_b0085) 2017; 37
Cai (10.1016/j.applthermaleng.2023.120684_b0090) 2020; 36
Zhao (10.1016/j.applthermaleng.2023.120684_b0010) 2021; 64
Bahman (10.1016/j.applthermaleng.2023.120684_b0070) 2017; 33
Coleman (10.1016/j.applthermaleng.2023.120684_b0180) 2018
Qi (10.1016/j.applthermaleng.2023.120684_b0065) 2018; 66
References_xml – volume: 33
  start-page: 1641
  year: 2018
  end-page: 1649
  ident: b0120
  article-title: A linear extrapolation-based mppt algorithm for thermoelectric generators under dynamically varying temperature conditions
  publication-title: IEEE Trans. Energy Convers.
– start-page: 1062
  year: 2015
  end-page: 1067
  ident: b0125
  article-title: New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators
  publication-title: 2015 IEEE Energy Conversion Congress and Exposition (ECCE)
– volume: 253
  start-page: 124083
  year: 2022
  ident: b0040
  article-title: Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery
  publication-title: Energy
– volume: 14
  start-page: 816
  year: 2007
  end-page: 819
  ident: b0170
  article-title: Fractional delay filter design based on truncated lagrange interpolation
  publication-title: IEEE Signal Process Lett.
– volume: 45
  start-page: 13897
  year: 2021
  end-page: 13910
  ident: b0160
  article-title: A mppt based on optimized flc using manta ray foraging optimization algorithm for thermo-electric generation systems
  publication-title: Int. J. Energy Res.
– volume: 64
  start-page: 1
  year: 2021
  end-page: 23
  ident: b0010
  article-title: A review of system modeling, assessment and operational optimization for integrated energy systems
  publication-title: SCIENCE CHINA Inf. Sci.
– volume: 37
  start-page: 86
  year: 2017
  end-page: 98
  ident: b0085
  article-title: Performance analysis of thermo-electric generator using dc-dc converter with incremental conductance based maximum power point tracking
  publication-title: Energy Sustain. Dev.
– volume: 36
  start-page: 4187
  year: 2020
  end-page: 4197
  ident: b0090
  article-title: An mptd-specialized mppt algorithm used for a novel medium-power thermoelectric system
  publication-title: IEEE Trans. Power Electron.
– volume: 286
  start-page: 131631
  year: 2022
  ident: b0005
  article-title: Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review
  publication-title: Chemosphere
– volume: 66
  start-page: 9628
  year: 2018
  end-page: 9631
  ident: b0065
  article-title: Further efficiency improvement of power amplifiers using thermal energy harvesting
  publication-title: IEEE Trans. Ind. Electron.
– volume: 199
  start-page: 107426
  year: 2021
  ident: b0165
  article-title: Adaptive rapid neural optimization: A data-driven approach to mppt for centralized teg systems
  publication-title: Electr. Pow. Syst. Res.
– volume: 18
  start-page: 1201
  year: 2018
  end-page: 1210
  ident: b0115
  article-title: Practical implementation of maximum power tracking based short-current pulse method for thermoelectric generators systems
  publication-title: J. Power Electron.
– volume: 35
  start-page: 347
  year: 2019
  end-page: 358
  ident: b0140
  article-title: A high-efficiency charger with adaptive input ripple mppt for low-power thermoelectric energy harvesting achieving 21% efficiency improvement
  publication-title: IEEE Trans. Power Electron.
– volume: 198
  start-page: 111832
  year: 2019
  ident: b0135
  article-title: High frequency injection maximum power point tracking for thermoelectric generators
  publication-title: Energ. Conver. Manage.
– volume: 37
  start-page: 4968
  year: 2022
  end-page: 4972
  ident: b0055
  article-title: A fully integrated power converter for thermoelectric energy harvesting with 81% peak efficiency and 6.4-mv minimum input voltage
  publication-title: IEEE Trans. Power Electron.
– volume: 220
  start-page: 119782
  year: 2023
  ident: b0015
  article-title: Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ices
  publication-title: Appl. Therm. Eng.
– volume: 245
  start-page: 114561
  year: 2021
  ident: b0075
  article-title: Comprehensive experimental study of thermoelectric generators under transient boundary conditions
  publication-title: Energ. Conver. Manage.
– volume: 221
  start-page: 119823
  year: 2023
  ident: b0035
  article-title: Sizing optimization of thermoelectric generator for low-grade thermal energy utilization: Module level and system level
  publication-title: Appl. Therm. Eng.
– volume: 62
  start-page: 5539
  year: 2015
  end-page: 5548
  ident: b0105
  article-title: Current-sensorless power estimation and mppt implementation for thermoelectric generators
  publication-title: IEEE Trans. Ind. Electron.
– volume: 97
  start-page: 306
  year: 2016
  end-page: 318
  ident: b0130
  article-title: A novel maximum power point tracker for thermoelectric generation system
  publication-title: Renew. Energy.
– volume: 35
  start-page: 966
  year: 2020
  end-page: 976
  ident: b0150
  article-title: Dynamic surrogate model based optimization for mppt of centralized thermoelectric generation systems under heterogeneous temperature difference
  publication-title: IEEE Trans. Energy Convers.
– volume: 64
  start-page: 1
  year: 2021
  end-page: 3
  ident: b0025
  article-title: Wearable ubiquitous energy system
  publication-title: SCIENCE CHINA Inf. Sci.
– volume: 33
  start-page: 2518
  year: 2017
  end-page: 2530
  ident: b0070
  article-title: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power igbt modules
  publication-title: IEEE Trans. Power Electron.
– volume: 30
  start-page: 828
  year: 2014
  end-page: 839
  ident: b0100
  article-title: Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators
  publication-title: IEEE Trans. Power Electron.
– volume: 248
  start-page: 119301
  year: 2020
  ident: b0145
  article-title: Fast atom search optimization based mppt design of centralized thermoelectric generation system under heterogeneous temperature difference
  publication-title: J. Clean. Prod.
– volume: 246
  start-page: 114694
  year: 2021
  ident: b0155
  article-title: Maximum energy harvesting of centralized thermoelectric power generation systems with non-uniform temperature distribution based on novel equilibrium optimizer
  publication-title: Energ. Conver. Manage.
– volume: 20
  start-page: 1378
  year: 2021
  end-page: 1384
  ident: b0030
  article-title: Polycrystalline snse with a thermoelectric figure of merit greater than the single crystal
  publication-title: Nat. Mater.
– volume: 45
  start-page: 7476
  year: 2021
  end-page: 7486
  ident: b0095
  article-title: A new maximum power point tracking algorithm based on power differentials method for thermoelectric generators
  publication-title: Int. J. Energy Res.
– volume: 97
  start-page: 265
  year: 2015
  end-page: 272
  ident: b0080
  article-title: Application of a dcdc boost converter with maximum power point tracking for low power thermoelectric generators
  publication-title: Energ. Conver. Manage.
– volume: 66
  start-page: 599
  year: 2023
  end-page: 629
  ident: b0020
  article-title: Photovoltaic, thermoelectric and electromagnetic generation technologies applied in power systems for mobile unmanned systems
  publication-title: Sci. China Technol. Sci.
– volume: 28
  start-page: 3827
  year: 2012
  end-page: 3833
  ident: b0110
  article-title: A dc–dc boost converter with variation-tolerant mppt technique and efficient zcs circuit for thermoelectric energy harvesting applications
  publication-title: IEEE Trans. Power Electron.
– volume: 51
  start-page: 338
  year: 2010
  end-page: 345
  ident: b0175
  article-title: New method for investigation of parameters of real thermoelectric modules
  publication-title: Energ. Conver. Manage.
– start-page: 15
  year: 2020
  end-page: 29
  ident: b0045
  article-title: Introduction to teg-based power management unit
  publication-title: Power Management for Wearable Electronic Devices
– year: 2018
  ident: b0180
  article-title: Experimentation, validation, and uncertainty analysis for engineers
– volume: 243
  start-page: 114329
  year: 2021
  ident: b0060
  article-title: Waste heat recycling of high-power lighting through chips on thermoelectric generator
  publication-title: Energ. Conver. Manage.
– volume: 68
  start-page: 103
  year: 2020
  end-page: 113
  ident: b0050
  article-title: Power management ic with a three-phase cold self-start for thermoelectric generators
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 37
  start-page: 86
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120684_b0085
  article-title: Performance analysis of thermo-electric generator using dc-dc converter with incremental conductance based maximum power point tracking
  publication-title: Energy Sustain. Dev.
  doi: 10.1016/j.esd.2017.01.003
– volume: 286
  start-page: 131631
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120684_b0005
  article-title: Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131631
– volume: 221
  start-page: 119823
  year: 2023
  ident: 10.1016/j.applthermaleng.2023.120684_b0035
  article-title: Sizing optimization of thermoelectric generator for low-grade thermal energy utilization: Module level and system level
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119823
– volume: 45
  start-page: 7476
  issue: 5
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0095
  article-title: A new maximum power point tracking algorithm based on power differentials method for thermoelectric generators
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6329
– volume: 33
  start-page: 1641
  issue: 4
  year: 2018
  ident: 10.1016/j.applthermaleng.2023.120684_b0120
  article-title: A linear extrapolation-based mppt algorithm for thermoelectric generators under dynamically varying temperature conditions
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2018.2830796
– volume: 36
  start-page: 4187
  issue: 4
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120684_b0090
  article-title: An mptd-specialized mppt algorithm used for a novel medium-power thermoelectric system
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3023852
– volume: 68
  start-page: 103
  issue: 1
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120684_b0050
  article-title: Power management ic with a three-phase cold self-start for thermoelectric generators
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2020.3023252
– volume: 37
  start-page: 4968
  issue: 5
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120684_b0055
  article-title: A fully integrated power converter for thermoelectric energy harvesting with 81% peak efficiency and 6.4-mv minimum input voltage
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2021.3134367
– volume: 18
  start-page: 1201
  issue: 4
  year: 2018
  ident: 10.1016/j.applthermaleng.2023.120684_b0115
  article-title: Practical implementation of maximum power tracking based short-current pulse method for thermoelectric generators systems
  publication-title: J. Power Electron.
– year: 2018
  ident: 10.1016/j.applthermaleng.2023.120684_b0180
– volume: 30
  start-page: 828
  issue: 2
  year: 2014
  ident: 10.1016/j.applthermaleng.2023.120684_b0100
  article-title: Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2313294
– volume: 64
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0025
  article-title: Wearable ubiquitous energy system
  publication-title: SCIENCE CHINA Inf. Sci.
  doi: 10.1007/s11432-020-2895-3
– volume: 14
  start-page: 816
  issue: 11
  year: 2007
  ident: 10.1016/j.applthermaleng.2023.120684_b0170
  article-title: Fractional delay filter design based on truncated lagrange interpolation
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2007.898856
– start-page: 15
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120684_b0045
  article-title: Introduction to teg-based power management unit
  publication-title: Power Management for Wearable Electronic Devices
  doi: 10.1007/978-3-030-37884-4_2
– start-page: 1062
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120684_b0125
  article-title: New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators
– volume: 33
  start-page: 2518
  issue: 3
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120684_b0070
  article-title: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power igbt modules
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2017.2694548
– volume: 45
  start-page: 13897
  issue: 9
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0160
  article-title: A mppt based on optimized flc using manta ray foraging optimization algorithm for thermo-electric generation systems
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6728
– volume: 62
  start-page: 5539
  issue: 9
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120684_b0105
  article-title: Current-sensorless power estimation and mppt implementation for thermoelectric generators
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2414393
– volume: 245
  start-page: 114561
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0075
  article-title: Comprehensive experimental study of thermoelectric generators under transient boundary conditions
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.114561
– volume: 198
  start-page: 111832
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120684_b0135
  article-title: High frequency injection maximum power point tracking for thermoelectric generators
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.111832
– volume: 248
  start-page: 119301
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120684_b0145
  article-title: Fast atom search optimization based mppt design of centralized thermoelectric generation system under heterogeneous temperature difference
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119301
– volume: 51
  start-page: 338
  issue: 2
  year: 2010
  ident: 10.1016/j.applthermaleng.2023.120684_b0175
  article-title: New method for investigation of parameters of real thermoelectric modules
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2009.09.030
– volume: 97
  start-page: 265
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120684_b0080
  article-title: Application of a dcdc boost converter with maximum power point tracking for low power thermoelectric generators
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2015.03.068
– volume: 243
  start-page: 114329
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0060
  article-title: Waste heat recycling of high-power lighting through chips on thermoelectric generator
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.114329
– volume: 199
  start-page: 107426
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0165
  article-title: Adaptive rapid neural optimization: A data-driven approach to mppt for centralized teg systems
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2021.107426
– volume: 66
  start-page: 599
  issue: 3
  year: 2023
  ident: 10.1016/j.applthermaleng.2023.120684_b0020
  article-title: Photovoltaic, thermoelectric and electromagnetic generation technologies applied in power systems for mobile unmanned systems
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-022-2159-8
– volume: 253
  start-page: 124083
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120684_b0040
  article-title: Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124083
– volume: 28
  start-page: 3827
  issue: 8
  year: 2012
  ident: 10.1016/j.applthermaleng.2023.120684_b0110
  article-title: A dc–dc boost converter with variation-tolerant mppt technique and efficient zcs circuit for thermoelectric energy harvesting applications
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2012.2231098
– volume: 64
  start-page: 1
  issue: 9
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0010
  article-title: A review of system modeling, assessment and operational optimization for integrated energy systems
  publication-title: SCIENCE CHINA Inf. Sci.
  doi: 10.1007/s11432-020-3176-x
– volume: 20
  start-page: 1378
  issue: 10
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0030
  article-title: Polycrystalline snse with a thermoelectric figure of merit greater than the single crystal
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 97
  start-page: 306
  year: 2016
  ident: 10.1016/j.applthermaleng.2023.120684_b0130
  article-title: A novel maximum power point tracker for thermoelectric generation system
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2016.05.001
– volume: 246
  start-page: 114694
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120684_b0155
  article-title: Maximum energy harvesting of centralized thermoelectric power generation systems with non-uniform temperature distribution based on novel equilibrium optimizer
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.114694
– volume: 220
  start-page: 119782
  year: 2023
  ident: 10.1016/j.applthermaleng.2023.120684_b0015
  article-title: Heating and storage: A review on exhaust thermal management applications for a better trade-off between environment and economy in ices
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119782
– volume: 35
  start-page: 966
  issue: 2
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120684_b0150
  article-title: Dynamic surrogate model based optimization for mppt of centralized thermoelectric generation systems under heterogeneous temperature difference
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2020.2967511
– volume: 66
  start-page: 9628
  issue: 12
  year: 2018
  ident: 10.1016/j.applthermaleng.2023.120684_b0065
  article-title: Further efficiency improvement of power amplifiers using thermal energy harvesting
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2885742
– volume: 35
  start-page: 347
  issue: 1
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120684_b0140
  article-title: A high-efficiency charger with adaptive input ripple mppt for low-power thermoelectric energy harvesting achieving 21% efficiency improvement
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2912030
SSID ssj0012874
Score 2.4448528
Snippet •The traditional algorithms cause misjudgment with transient temperature conditions.•The system temperature has great influence on the electrical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120684
SubjectTerms Maximum power point tracking
Renewable energy harvesting
Thermoelectric generator
Transient working condition
Title Temperature-based thermo-electric coupling maximum power point tracking algorithm for thermoelectric generation systems under transient conditions
URI https://dx.doi.org/10.1016/j.applthermaleng.2023.120684
Volume 230
WOSCitedRecordID wos001001275000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFyE4IJ5iecmHva1StU6c2OKAVsuuAKGKw4LKKUpce8nSpFWarsrf4D_wPxk_4rS7IBUkLlZl2eO089WejGe-QehAETjk43gKu18og4hMecDzXARJrGLtc5DUMPB9_pCMx2wy4R97vZ9tLszlLKkqtl7zxX9VNfSBsnXq7F-o2wuFDvgMSocW1A7tboqXYAlbpuRAn1EmQLIu54GteFOIQzFfLUwWepmti3JVHi50qTRoi6rRNSPEN5O5ODuf10XztWwjEUGGF3Fu2KoNdiwX9NIU1K319Gqpcyx1PPu06NyBLdOts3qNPICH7PgQvU3tyqyMN_qObdXsL_L7yqP5jbTjTjM3zjkvSKi9ojbR2e23IeUB2DCjzQ2ZuJsau6WOyDC2VeSu7fbW8XAx0Hf97rFh5YFeaNBN2ybZvnL4-ZDENtrtIt2WlmppqZV2A-2RhHLWR3tH704m7_11lS4aYN7s3be5hQ66QMI_P93vbaEN--bsHrrrXkzwkQXUfdST1QN0Z4Ou8iH6cQ1a-Aq0cAst7KCFDbSwgRZuoYU9tDBAC29DC3fQwg5a2EALe2jhDlqP0KfTk7Pjt4Gr6RGIMBw2ARikMRuFkrA8HCkl4jyXhGu3wlQmoSIZVxGLWEapgKGJZJKSoQArmYZDxcFWf4z61bySTxCWglNF40yT7EWMs0xEKoIDSAuiGc320av2102FI7zXdVdm6S663kfUz15Y4pcd571uFZk6I9YapymgdicJT_9x5WfodvcXe476Tb2SL9BNcdkUy_qlg-wvJIDS7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-based+thermo-electric+coupling+maximum+power+point+tracking+algorithm+for+thermoelectric+generation+systems+under+transient+conditions&rft.jtitle=Applied+thermal+engineering&rft.au=Ding%2C+Ning&rft.au=Cai%2C+Yeyun&rft.au=Deng%2C+Fang&rft.date=2023-07-25&rft.issn=1359-4311&rft.volume=230&rft.spage=120684&rft_id=info:doi/10.1016%2Fj.applthermaleng.2023.120684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2023_120684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon