Hensleyʼs problem for complex and non-Archimedean meromorphic functions

Büchiʼs problem asks if there exists a positive integer M such that all x 1 , … , x M ∈ Z satisfying the equations x r 2 − 2 x r − 1 2 + x r − 2 2 = 2 for all 3 ⩽ r ⩽ M must also satisfy x r 2 = ( x + r ) 2 for some integer x. Hensleyʼs problem asks if there exists a positive integer M such that, fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 381; číslo 2; s. 661 - 677
Hlavní autori: An, Ta Thi Hoai, Wang, Julie Tzu-Yueh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Inc 15.09.2011
Elsevier
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Büchiʼs problem asks if there exists a positive integer M such that all x 1 , … , x M ∈ Z satisfying the equations x r 2 − 2 x r − 1 2 + x r − 2 2 = 2 for all 3 ⩽ r ⩽ M must also satisfy x r 2 = ( x + r ) 2 for some integer x. Hensleyʼs problem asks if there exists a positive integer M such that, for any integers ν and a, if ( ν + r ) 2 − a is a square for 1 ⩽ r ⩽ M , then a = 0 . It is not difficult to see that a positive answer to Hensleyʼs problem implies a positive answer to Büchiʼs problem. One can ask a more general version of the Hensleyʼs problem by replacing the square by n-th power for any integer n ⩾ 2 which is called the Hensleyʼs n-th power problem. In this paper we will solve Hensleyʼs n-th power problem for complex meromorphic functions and non-Archimedean meromorphic functions.
AbstractList Büchiʼs problem asks if there exists a positive integer M such that all x 1 , … , x M ∈ Z satisfying the equations x r 2 − 2 x r − 1 2 + x r − 2 2 = 2 for all 3 ⩽ r ⩽ M must also satisfy x r 2 = ( x + r ) 2 for some integer x. Hensleyʼs problem asks if there exists a positive integer M such that, for any integers ν and a, if ( ν + r ) 2 − a is a square for 1 ⩽ r ⩽ M , then a = 0 . It is not difficult to see that a positive answer to Hensleyʼs problem implies a positive answer to Büchiʼs problem. One can ask a more general version of the Hensleyʼs problem by replacing the square by n-th power for any integer n ⩾ 2 which is called the Hensleyʼs n-th power problem. In this paper we will solve Hensleyʼs n-th power problem for complex meromorphic functions and non-Archimedean meromorphic functions.
Author An, Ta Thi Hoai
Wang, Julie Tzu-Yueh
Author_xml – sequence: 1
  givenname: Ta Thi Hoai
  surname: An
  fullname: An, Ta Thi Hoai
  email: tthan@math.ac.vn
  organization: Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Viet Nam
– sequence: 2
  givenname: Julie Tzu-Yueh
  surname: Wang
  fullname: Wang, Julie Tzu-Yueh
  email: jwang@math.sinica.edu.tw
  organization: Institute of Mathematics, Academia Sinica, 6F, Astronomy–Mathematics Building, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24285166$$DView record in Pascal Francis
BookMark eNp9kL9OwzAQhy1UJNrCCzBlYUw420mcSixVBRSpEgtIbJbjnFVXiR3ZAdF34wl4KlIVFoYOp1t-3_35ZmTivENCrilkFGh5u8t2nVIZA0oz4Bmw4oxMKSzKFCrKJ2QKwFjKcvF2QWYx7mAMFoJOyXqNLra4__6KSR983WKXGB8S7bu-xc9EuSYZd6XLoLe2wwaVSzoMvvOh31qdmHenB-tdvCTnRrURr377nLw-3L-s1unm-fFptdykmnMYUiFMWQs6VikaxqhmwhSK01oJusirCjQCYEUXRkFtclUWeSlqkS-04gWnwOfk5ji3V1Gr1gTltI2yD7ZTYS9ZzqqCluWYq445HXyMAY3UdlCHU4egbCspyIM5uZMHc_JgTgKXo7kRZf_Qv-knobsjhOPzHxaDjNqi09jYgHqQjben8B8eZYoO
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_jnt_2013_03_001
crossref_primary_10_4153_S0008439519000225
crossref_primary_10_1007_s00209_012_0997_9
Cites_doi 10.1112/jlms/jdq002
10.1006/jnth.1996.0071
10.1090/S0002-9939-09-10259-9
10.4064/aa136-4-4
10.1112/S0024610706023283
10.1090/conm/270/04378
10.1016/j.jalgebra.2011.01.008
10.1007/s10958-010-0181-x
10.4064/fm185-2-4
10.1017/S0305004100066184
10.1090/S0002-9939-00-05680-X
10.1090/S0002-9939-06-08591-1
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2011.03.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 677
ExternalDocumentID 24285166
10_1016_j_jmaa_2011_03_025
S0022247X11002460
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-77f6b716b767d221c27f5a31ba7194880ce00e819fa0bf4a65467b749ca353103
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290972700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Wed Apr 02 07:17:08 EDT 2025
Sat Nov 29 02:56:00 EST 2025
Tue Nov 18 21:25:50 EST 2025
Fri Feb 23 02:23:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hilbertʼs tenth problem
Buchiʼs problem
Value distribution theory
Non-Archimedean meromorphic functions
Hensleyʼs problem
Meromorphic functions
Nevanlinna theory
Complex function
Integer
Mathematical analysis
Distribution function
Hensley's problem
Meromorphic function
Buchi's problem
Hilbert's tenth problem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-77f6b716b767d221c27f5a31ba7194880ce00e819fa0bf4a65467b749ca353103
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2011.03.025
PageCount 17
ParticipantIDs pascalfrancis_primary_24285166
crossref_citationtrail_10_1016_j_jmaa_2011_03_025
crossref_primary_10_1016_j_jmaa_2011_03_025
elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_03_025
PublicationCentury 2000
PublicationDate 2011-09-15
PublicationDateYYYYMMDD 2011-09-15
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Brownawell, Masser (br0020) 1986; 100
J.T.-Y. Wang, Hensleyʼs problem for function fields, preprint.
Shlapentokh, Vidaux (br0160) 2011; 330
An (br0010) 2007; 135
Pheidas, Vidaux (br0130) 2010; 82
Cherry, Toropu (br0030) 2009; 136
Ru (br0140) 2001
Ru (br0150) 2001; 129
Hu, Yang (br0040) 2000; vol. 1
Nochka (br0070) 1983; 269
Pheidas, Vidaux (br0110) 2005; 185
Vojta (br0170) 2000; 270
Lipshitz (br0050) 1990
Matiyasevich (br0060) 1970; 191
Pasten, Pheidas, Vidaux (br0100) 2010; 171
Pasten (br0080) 2010; 138
Pheidas, Vidaux (br0120) 2006; 75
Wang (br0180) 1996; 58
Pasten (br0090)
Pheidas (10.1016/j.jmaa.2011.03.025_br0130) 2010; 82
Pasten (10.1016/j.jmaa.2011.03.025_br0100) 2010; 171
Cherry (10.1016/j.jmaa.2011.03.025_br0030) 2009; 136
Hu (10.1016/j.jmaa.2011.03.025_br0040) 2000; vol. 1
Nochka (10.1016/j.jmaa.2011.03.025_br0070) 1983; 269
Wang (10.1016/j.jmaa.2011.03.025_br0180) 1996; 58
Matiyasevich (10.1016/j.jmaa.2011.03.025_br0060) 1970; 191
10.1016/j.jmaa.2011.03.025_br0190
Brownawell (10.1016/j.jmaa.2011.03.025_br0020) 1986; 100
Pasten (10.1016/j.jmaa.2011.03.025_br0090)
Ru (10.1016/j.jmaa.2011.03.025_br0150) 2001; 129
Ru (10.1016/j.jmaa.2011.03.025_br0140) 2001
An (10.1016/j.jmaa.2011.03.025_br0010) 2007; 135
Pheidas (10.1016/j.jmaa.2011.03.025_br0110) 2005; 185
Shlapentokh (10.1016/j.jmaa.2011.03.025_br0160) 2011; 330
Vojta (10.1016/j.jmaa.2011.03.025_br0170) 2000; 270
Lipshitz (10.1016/j.jmaa.2011.03.025_br0050) 1990
Pheidas (10.1016/j.jmaa.2011.03.025_br0120) 2006; 75
Pasten (10.1016/j.jmaa.2011.03.025_br0080) 2010; 138
References_xml – volume: 138
  start-page: 1549
  year: 2010
  end-page: 1557
  ident: br0080
  article-title: An extension of Büchiʼs problem for polynomial rings in zero characteristic
  publication-title: Proc. Amer. Math. Soc.
– volume: 171
  start-page: 765
  year: 2010
  end-page: 781
  ident: br0100
  article-title: A survey on Büchiʼs problem: New presentations and open problems
  publication-title: J. Math. Sci.
– volume: 270
  start-page: 261
  year: 2000
  end-page: 274
  ident: br0170
  article-title: Diagonal quadratic forms and Hilbertʼs Tenth Problem
  publication-title: Contemp. Math.
– start-page: 677
  year: 1990
  end-page: 680
  ident: br0050
  article-title: Quadratic forms, the five squares problem, and Diophantine equations
  publication-title: The Collected Works of J. Richard Büchi
– volume: 75
  start-page: 545
  year: 2006
  end-page: 565
  ident: br0120
  article-title: The analogue of Büchiʼs problem for rational functions
  publication-title: J. Lond. Math. Soc.
– volume: 185
  start-page: 171
  year: 2005
  end-page: 194
  ident: br0110
  article-title: Extensions of Büchiʼs problem: Questions of decidability for addition and
  publication-title: Fund. Math.
– volume: 82
  start-page: 273
  year: 2010
  end-page: 278
  ident: br0130
  article-title: Corrigendum: The analogue of Büchiʼs problem for rational functions
  publication-title: J. Lond. Math. Soc.
– volume: 191
  start-page: 279
  year: 1970
  end-page: 282
  ident: br0060
  article-title: The Diophantine of enumerable sets
  publication-title: Dokl. Akad. Nauk SSSR
– ident: br0090
  article-title: Representation of squares by monic second degree polynomials in the field of
– volume: vol. 1
  year: 2000
  ident: br0040
  article-title: Meromorphic Functions over Non-Archimedean Fields
  publication-title: Math. Appl.
– volume: 129
  start-page: 1263
  year: 2001
  end-page: 1269
  ident: br0150
  article-title: A note on
  publication-title: Proc. Amer. Math. Soc.
– volume: 269
  start-page: 547
  year: 1983
  end-page: 552
  ident: br0070
  article-title: On the theory of meromorphic curves
  publication-title: Dokl. Akad. Nauk SSSR
– year: 2001
  ident: br0140
  article-title: Nevanlinna Theory and Its Relation to Diophantine Approximation
– volume: 330
  start-page: 482
  year: 2011
  end-page: 506
  ident: br0160
  article-title: The analogue of Büchiʼs problem for function fields
  publication-title: J. Algebra
– reference: J.T.-Y. Wang, Hensleyʼs problem for function fields, preprint.
– volume: 135
  start-page: 1255
  year: 2007
  end-page: 1261
  ident: br0010
  article-title: A defect relation for non-Archimedean analytic curves in arbitrary projective varieties
  publication-title: Proc. Amer. Math. Soc.
– volume: 58
  start-page: 137
  year: 1996
  end-page: 159
  ident: br0180
  article-title: The truncated second main theorem of function fields
  publication-title: J. Number Theory
– volume: 100
  start-page: 427
  year: 1986
  end-page: 434
  ident: br0020
  article-title: Vanishing sums in function fields
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 136
  start-page: 351
  year: 2009
  end-page: 384
  ident: br0030
  article-title: Generalized ABC theorem for non-Archimedean entire functions of several variables in arbitrary characteristic
  publication-title: Acta Arith.
– volume: 82
  start-page: 273
  year: 2010
  ident: 10.1016/j.jmaa.2011.03.025_br0130
  article-title: Corrigendum: The analogue of Büchiʼs problem for rational functions
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/jdq002
– start-page: 677
  year: 1990
  ident: 10.1016/j.jmaa.2011.03.025_br0050
  article-title: Quadratic forms, the five squares problem, and Diophantine equations
– volume: 58
  start-page: 137
  year: 1996
  ident: 10.1016/j.jmaa.2011.03.025_br0180
  article-title: The truncated second main theorem of function fields
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1996.0071
– volume: 269
  start-page: 547
  issue: 3
  year: 1983
  ident: 10.1016/j.jmaa.2011.03.025_br0070
  article-title: On the theory of meromorphic curves
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 138
  start-page: 1549
  year: 2010
  ident: 10.1016/j.jmaa.2011.03.025_br0080
  article-title: An extension of Büchiʼs problem for polynomial rings in zero characteristic
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-09-10259-9
– volume: 136
  start-page: 351
  year: 2009
  ident: 10.1016/j.jmaa.2011.03.025_br0030
  article-title: Generalized ABC theorem for non-Archimedean entire functions of several variables in arbitrary characteristic
  publication-title: Acta Arith.
  doi: 10.4064/aa136-4-4
– volume: 191
  start-page: 279
  year: 1970
  ident: 10.1016/j.jmaa.2011.03.025_br0060
  article-title: The Diophantine of enumerable sets
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 75
  start-page: 545
  year: 2006
  ident: 10.1016/j.jmaa.2011.03.025_br0120
  article-title: The analogue of Büchiʼs problem for rational functions
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610706023283
– year: 2001
  ident: 10.1016/j.jmaa.2011.03.025_br0140
– volume: 270
  start-page: 261
  year: 2000
  ident: 10.1016/j.jmaa.2011.03.025_br0170
  article-title: Diagonal quadratic forms and Hilbertʼs Tenth Problem
  publication-title: Contemp. Math.
  doi: 10.1090/conm/270/04378
– ident: 10.1016/j.jmaa.2011.03.025_br0190
– volume: 330
  start-page: 482
  year: 2011
  ident: 10.1016/j.jmaa.2011.03.025_br0160
  article-title: The analogue of Büchiʼs problem for function fields
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2011.01.008
– volume: 171
  start-page: 765
  issue: 6
  year: 2010
  ident: 10.1016/j.jmaa.2011.03.025_br0100
  article-title: A survey on Büchiʼs problem: New presentations and open problems
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-010-0181-x
– volume: 185
  start-page: 171
  year: 2005
  ident: 10.1016/j.jmaa.2011.03.025_br0110
  article-title: Extensions of Büchiʼs problem: Questions of decidability for addition and k-th powers
  publication-title: Fund. Math.
  doi: 10.4064/fm185-2-4
– volume: 100
  start-page: 427
  year: 1986
  ident: 10.1016/j.jmaa.2011.03.025_br0020
  article-title: Vanishing sums in function fields
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100066184
– volume: 129
  start-page: 1263
  year: 2001
  ident: 10.1016/j.jmaa.2011.03.025_br0150
  article-title: A note on p-adic Nevanlinna theory
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-00-05680-X
– volume: 135
  start-page: 1255
  year: 2007
  ident: 10.1016/j.jmaa.2011.03.025_br0010
  article-title: A defect relation for non-Archimedean analytic curves in arbitrary projective varieties
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-06-08591-1
– volume: vol. 1
  year: 2000
  ident: 10.1016/j.jmaa.2011.03.025_br0040
  article-title: Meromorphic Functions over Non-Archimedean Fields
– ident: 10.1016/j.jmaa.2011.03.025_br0090
SSID ssj0011571
Score 2.0103998
Snippet Büchiʼs problem asks if there exists a positive integer M such that all x 1 , … , x M ∈ Z satisfying the equations x r 2 − 2 x r − 1 2 + x r − 2 2 = 2 for all...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 661
SubjectTerms Buchiʼs problem
Exact sciences and technology
Functions of a complex variable
Hensleyʼs problem
Hilbertʼs tenth problem
Mathematical analysis
Mathematics
Meromorphic functions
Nevanlinna theory
Non-Archimedean meromorphic functions
Partial differential equations
Sciences and techniques of general use
Several complex variables and analytic spaces
Value distribution theory
Title Hensleyʼs problem for complex and non-Archimedean meromorphic functions
URI https://dx.doi.org/10.1016/j.jmaa.2011.03.025
Volume 381
WOSCitedRecordID wos000290972700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4eNMvbJuo_ih-3JuMiSLVmPaejIBiuDZZA9GcmWWUKThTopofRP21_Qv6qnDztuyso22IsJJrLM3c-n0-nudwi9EzQDm1fICD6dMkoSpSNVYR3FWlaxYixTSWWbTfCTk2w8Fl96vcumFub8lM_n2XotFv9V1XAPlG1KZ_9C3e1D4Qb8BqXDFdQO1z9S_BA2piYQPei_PxrUoe8YY9MJbf64XtsDA9j2R5Z2FpZDE42faZOYB1KfFKFZ7DaBvNuu66zlerVMA57WxNK-ds7DNxEGCwppeoSGw59ysgni-3TgFTjC4ehiFX1f6R_dOIQJrIrIVWK64FhTIHMjf9MWC5CEj91y42wsNnnPmStBbYwwdY1bPNpIx6QyR9buV2fmmr7cMvwuBjE9nM6k9MSs9BC7muotQu2vtgAY3smw5ZGE4Xtol_BUgE3c7X88Hn9qT6HilMcN27wZ4IuuXH7g9ky_c2z2FrIGbVSuT0rHeRk9Ro-86oK-Q8sT1NPzp-jh51aN9TM09Li5-lUHHjMBYCbwmAlAu8EWZoIOZoIWM8_Rtw_Ho8Ew8m02ooJSvIT9VcUUbJsVZ7wkJC4Ir1JJYyV5LIx9LzTGGjzHSmJVJdKUv3HFE1FImpo2dS_QDsyvX6KgFGlJJaep5GWiJPjeTEhCKqIYlSLV-yhuZJQXnoPetEI5zZtkw2lu5JobueaY5iDXfRS2YxaOgeXOf6eN6HPvQzrfMAek3Dnu4Iae2qnAhYVNCWOv_vHBr9GDzdfyBu0sz1b6LbpfnC8n9dmBR9w1MfCi6A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hensley%CA%BCs+problem+for+complex+and+non-Archimedean+meromorphic+functions&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=An%2C+Ta+Thi+Hoai&rft.au=Wang%2C+Julie+Tzu-Yueh&rft.date=2011-09-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=381&rft.issue=2&rft.spage=661&rft.epage=677&rft_id=info:doi/10.1016%2Fj.jmaa.2011.03.025&rft.externalDocID=S0022247X11002460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon