Hensleyʼs problem for complex and non-Archimedean meromorphic functions
Büchiʼs problem asks if there exists a positive integer M such that all x 1 , … , x M ∈ Z satisfying the equations x r 2 − 2 x r − 1 2 + x r − 2 2 = 2 for all 3 ⩽ r ⩽ M must also satisfy x r 2 = ( x + r ) 2 for some integer x. Hensleyʼs problem asks if there exists a positive integer M such that, fo...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 381; číslo 2; s. 661 - 677 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
15.09.2011
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Büchiʼs problem asks if there exists a positive integer
M such that all
x
1
,
…
,
x
M
∈
Z
satisfying the equations
x
r
2
−
2
x
r
−
1
2
+
x
r
−
2
2
=
2
for all
3
⩽
r
⩽
M
must also satisfy
x
r
2
=
(
x
+
r
)
2
for some integer
x. Hensleyʼs problem asks if there exists a positive integer
M such that, for any integers
ν and
a, if
(
ν
+
r
)
2
−
a
is a square for
1
⩽
r
⩽
M
, then
a
=
0
. It is not difficult to see that a positive answer to Hensleyʼs problem implies a positive answer to Büchiʼs problem. One can ask a more general version of the Hensleyʼs problem by replacing the square by
n-th power for any integer
n
⩾
2
which is called the Hensleyʼs
n-th power problem. In this paper we will solve Hensleyʼs
n-th power problem for complex meromorphic functions and non-Archimedean meromorphic functions. |
|---|---|
| AbstractList | Büchiʼs problem asks if there exists a positive integer
M such that all
x
1
,
…
,
x
M
∈
Z
satisfying the equations
x
r
2
−
2
x
r
−
1
2
+
x
r
−
2
2
=
2
for all
3
⩽
r
⩽
M
must also satisfy
x
r
2
=
(
x
+
r
)
2
for some integer
x. Hensleyʼs problem asks if there exists a positive integer
M such that, for any integers
ν and
a, if
(
ν
+
r
)
2
−
a
is a square for
1
⩽
r
⩽
M
, then
a
=
0
. It is not difficult to see that a positive answer to Hensleyʼs problem implies a positive answer to Büchiʼs problem. One can ask a more general version of the Hensleyʼs problem by replacing the square by
n-th power for any integer
n
⩾
2
which is called the Hensleyʼs
n-th power problem. In this paper we will solve Hensleyʼs
n-th power problem for complex meromorphic functions and non-Archimedean meromorphic functions. |
| Author | An, Ta Thi Hoai Wang, Julie Tzu-Yueh |
| Author_xml | – sequence: 1 givenname: Ta Thi Hoai surname: An fullname: An, Ta Thi Hoai email: tthan@math.ac.vn organization: Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Viet Nam – sequence: 2 givenname: Julie Tzu-Yueh surname: Wang fullname: Wang, Julie Tzu-Yueh email: jwang@math.sinica.edu.tw organization: Institute of Mathematics, Academia Sinica, 6F, Astronomy–Mathematics Building, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24285166$$DView record in Pascal Francis |
| BookMark | eNp9kL9OwzAQhy1UJNrCCzBlYUw420mcSixVBRSpEgtIbJbjnFVXiR3ZAdF34wl4KlIVFoYOp1t-3_35ZmTivENCrilkFGh5u8t2nVIZA0oz4Bmw4oxMKSzKFCrKJ2QKwFjKcvF2QWYx7mAMFoJOyXqNLra4__6KSR983WKXGB8S7bu-xc9EuSYZd6XLoLe2wwaVSzoMvvOh31qdmHenB-tdvCTnRrURr377nLw-3L-s1unm-fFptdykmnMYUiFMWQs6VikaxqhmwhSK01oJusirCjQCYEUXRkFtclUWeSlqkS-04gWnwOfk5ji3V1Gr1gTltI2yD7ZTYS9ZzqqCluWYq445HXyMAY3UdlCHU4egbCspyIM5uZMHc_JgTgKXo7kRZf_Qv-knobsjhOPzHxaDjNqi09jYgHqQjben8B8eZYoO |
| CODEN | JMANAK |
| CitedBy_id | crossref_primary_10_1016_j_jnt_2013_03_001 crossref_primary_10_4153_S0008439519000225 crossref_primary_10_1007_s00209_012_0997_9 |
| Cites_doi | 10.1112/jlms/jdq002 10.1006/jnth.1996.0071 10.1090/S0002-9939-09-10259-9 10.4064/aa136-4-4 10.1112/S0024610706023283 10.1090/conm/270/04378 10.1016/j.jalgebra.2011.01.008 10.1007/s10958-010-0181-x 10.4064/fm185-2-4 10.1017/S0305004100066184 10.1090/S0002-9939-00-05680-X 10.1090/S0002-9939-06-08591-1 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.jmaa.2011.03.025 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1096-0813 |
| EndPage | 677 |
| ExternalDocumentID | 24285166 10_1016_j_jmaa_2011_03_025 S0022247X11002460 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c330t-77f6b716b767d221c27f5a31ba7194880ce00e819fa0bf4a65467b749ca353103 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290972700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Wed Apr 02 07:17:08 EDT 2025 Sat Nov 29 02:56:00 EST 2025 Tue Nov 18 21:25:50 EST 2025 Fri Feb 23 02:23:22 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Hilbertʼs tenth problem Buchiʼs problem Value distribution theory Non-Archimedean meromorphic functions Hensleyʼs problem Meromorphic functions Nevanlinna theory Complex function Integer Mathematical analysis Distribution function Hensley's problem Meromorphic function Buchi's problem Hilbert's tenth problem |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-77f6b716b767d221c27f5a31ba7194880ce00e819fa0bf4a65467b749ca353103 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmaa.2011.03.025 |
| PageCount | 17 |
| ParticipantIDs | pascalfrancis_primary_24285166 crossref_citationtrail_10_1016_j_jmaa_2011_03_025 crossref_primary_10_1016_j_jmaa_2011_03_025 elsevier_sciencedirect_doi_10_1016_j_jmaa_2011_03_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-15 |
| PublicationDateYYYYMMDD | 2011-09-15 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Brownawell, Masser (br0020) 1986; 100 J.T.-Y. Wang, Hensleyʼs problem for function fields, preprint. Shlapentokh, Vidaux (br0160) 2011; 330 An (br0010) 2007; 135 Pheidas, Vidaux (br0130) 2010; 82 Cherry, Toropu (br0030) 2009; 136 Ru (br0140) 2001 Ru (br0150) 2001; 129 Hu, Yang (br0040) 2000; vol. 1 Nochka (br0070) 1983; 269 Pheidas, Vidaux (br0110) 2005; 185 Vojta (br0170) 2000; 270 Lipshitz (br0050) 1990 Matiyasevich (br0060) 1970; 191 Pasten, Pheidas, Vidaux (br0100) 2010; 171 Pasten (br0080) 2010; 138 Pheidas, Vidaux (br0120) 2006; 75 Wang (br0180) 1996; 58 Pasten (br0090) Pheidas (10.1016/j.jmaa.2011.03.025_br0130) 2010; 82 Pasten (10.1016/j.jmaa.2011.03.025_br0100) 2010; 171 Cherry (10.1016/j.jmaa.2011.03.025_br0030) 2009; 136 Hu (10.1016/j.jmaa.2011.03.025_br0040) 2000; vol. 1 Nochka (10.1016/j.jmaa.2011.03.025_br0070) 1983; 269 Wang (10.1016/j.jmaa.2011.03.025_br0180) 1996; 58 Matiyasevich (10.1016/j.jmaa.2011.03.025_br0060) 1970; 191 10.1016/j.jmaa.2011.03.025_br0190 Brownawell (10.1016/j.jmaa.2011.03.025_br0020) 1986; 100 Pasten (10.1016/j.jmaa.2011.03.025_br0090) Ru (10.1016/j.jmaa.2011.03.025_br0150) 2001; 129 Ru (10.1016/j.jmaa.2011.03.025_br0140) 2001 An (10.1016/j.jmaa.2011.03.025_br0010) 2007; 135 Pheidas (10.1016/j.jmaa.2011.03.025_br0110) 2005; 185 Shlapentokh (10.1016/j.jmaa.2011.03.025_br0160) 2011; 330 Vojta (10.1016/j.jmaa.2011.03.025_br0170) 2000; 270 Lipshitz (10.1016/j.jmaa.2011.03.025_br0050) 1990 Pheidas (10.1016/j.jmaa.2011.03.025_br0120) 2006; 75 Pasten (10.1016/j.jmaa.2011.03.025_br0080) 2010; 138 |
| References_xml | – volume: 138 start-page: 1549 year: 2010 end-page: 1557 ident: br0080 article-title: An extension of Büchiʼs problem for polynomial rings in zero characteristic publication-title: Proc. Amer. Math. Soc. – volume: 171 start-page: 765 year: 2010 end-page: 781 ident: br0100 article-title: A survey on Büchiʼs problem: New presentations and open problems publication-title: J. Math. Sci. – volume: 270 start-page: 261 year: 2000 end-page: 274 ident: br0170 article-title: Diagonal quadratic forms and Hilbertʼs Tenth Problem publication-title: Contemp. Math. – start-page: 677 year: 1990 end-page: 680 ident: br0050 article-title: Quadratic forms, the five squares problem, and Diophantine equations publication-title: The Collected Works of J. Richard Büchi – volume: 75 start-page: 545 year: 2006 end-page: 565 ident: br0120 article-title: The analogue of Büchiʼs problem for rational functions publication-title: J. Lond. Math. Soc. – volume: 185 start-page: 171 year: 2005 end-page: 194 ident: br0110 article-title: Extensions of Büchiʼs problem: Questions of decidability for addition and publication-title: Fund. Math. – volume: 82 start-page: 273 year: 2010 end-page: 278 ident: br0130 article-title: Corrigendum: The analogue of Büchiʼs problem for rational functions publication-title: J. Lond. Math. Soc. – volume: 191 start-page: 279 year: 1970 end-page: 282 ident: br0060 article-title: The Diophantine of enumerable sets publication-title: Dokl. Akad. Nauk SSSR – ident: br0090 article-title: Representation of squares by monic second degree polynomials in the field of – volume: vol. 1 year: 2000 ident: br0040 article-title: Meromorphic Functions over Non-Archimedean Fields publication-title: Math. Appl. – volume: 129 start-page: 1263 year: 2001 end-page: 1269 ident: br0150 article-title: A note on publication-title: Proc. Amer. Math. Soc. – volume: 269 start-page: 547 year: 1983 end-page: 552 ident: br0070 article-title: On the theory of meromorphic curves publication-title: Dokl. Akad. Nauk SSSR – year: 2001 ident: br0140 article-title: Nevanlinna Theory and Its Relation to Diophantine Approximation – volume: 330 start-page: 482 year: 2011 end-page: 506 ident: br0160 article-title: The analogue of Büchiʼs problem for function fields publication-title: J. Algebra – reference: J.T.-Y. Wang, Hensleyʼs problem for function fields, preprint. – volume: 135 start-page: 1255 year: 2007 end-page: 1261 ident: br0010 article-title: A defect relation for non-Archimedean analytic curves in arbitrary projective varieties publication-title: Proc. Amer. Math. Soc. – volume: 58 start-page: 137 year: 1996 end-page: 159 ident: br0180 article-title: The truncated second main theorem of function fields publication-title: J. Number Theory – volume: 100 start-page: 427 year: 1986 end-page: 434 ident: br0020 article-title: Vanishing sums in function fields publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 136 start-page: 351 year: 2009 end-page: 384 ident: br0030 article-title: Generalized ABC theorem for non-Archimedean entire functions of several variables in arbitrary characteristic publication-title: Acta Arith. – volume: 82 start-page: 273 year: 2010 ident: 10.1016/j.jmaa.2011.03.025_br0130 article-title: Corrigendum: The analogue of Büchiʼs problem for rational functions publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/jdq002 – start-page: 677 year: 1990 ident: 10.1016/j.jmaa.2011.03.025_br0050 article-title: Quadratic forms, the five squares problem, and Diophantine equations – volume: 58 start-page: 137 year: 1996 ident: 10.1016/j.jmaa.2011.03.025_br0180 article-title: The truncated second main theorem of function fields publication-title: J. Number Theory doi: 10.1006/jnth.1996.0071 – volume: 269 start-page: 547 issue: 3 year: 1983 ident: 10.1016/j.jmaa.2011.03.025_br0070 article-title: On the theory of meromorphic curves publication-title: Dokl. Akad. Nauk SSSR – volume: 138 start-page: 1549 year: 2010 ident: 10.1016/j.jmaa.2011.03.025_br0080 article-title: An extension of Büchiʼs problem for polynomial rings in zero characteristic publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-09-10259-9 – volume: 136 start-page: 351 year: 2009 ident: 10.1016/j.jmaa.2011.03.025_br0030 article-title: Generalized ABC theorem for non-Archimedean entire functions of several variables in arbitrary characteristic publication-title: Acta Arith. doi: 10.4064/aa136-4-4 – volume: 191 start-page: 279 year: 1970 ident: 10.1016/j.jmaa.2011.03.025_br0060 article-title: The Diophantine of enumerable sets publication-title: Dokl. Akad. Nauk SSSR – volume: 75 start-page: 545 year: 2006 ident: 10.1016/j.jmaa.2011.03.025_br0120 article-title: The analogue of Büchiʼs problem for rational functions publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610706023283 – year: 2001 ident: 10.1016/j.jmaa.2011.03.025_br0140 – volume: 270 start-page: 261 year: 2000 ident: 10.1016/j.jmaa.2011.03.025_br0170 article-title: Diagonal quadratic forms and Hilbertʼs Tenth Problem publication-title: Contemp. Math. doi: 10.1090/conm/270/04378 – ident: 10.1016/j.jmaa.2011.03.025_br0190 – volume: 330 start-page: 482 year: 2011 ident: 10.1016/j.jmaa.2011.03.025_br0160 article-title: The analogue of Büchiʼs problem for function fields publication-title: J. Algebra doi: 10.1016/j.jalgebra.2011.01.008 – volume: 171 start-page: 765 issue: 6 year: 2010 ident: 10.1016/j.jmaa.2011.03.025_br0100 article-title: A survey on Büchiʼs problem: New presentations and open problems publication-title: J. Math. Sci. doi: 10.1007/s10958-010-0181-x – volume: 185 start-page: 171 year: 2005 ident: 10.1016/j.jmaa.2011.03.025_br0110 article-title: Extensions of Büchiʼs problem: Questions of decidability for addition and k-th powers publication-title: Fund. Math. doi: 10.4064/fm185-2-4 – volume: 100 start-page: 427 year: 1986 ident: 10.1016/j.jmaa.2011.03.025_br0020 article-title: Vanishing sums in function fields publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100066184 – volume: 129 start-page: 1263 year: 2001 ident: 10.1016/j.jmaa.2011.03.025_br0150 article-title: A note on p-adic Nevanlinna theory publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-00-05680-X – volume: 135 start-page: 1255 year: 2007 ident: 10.1016/j.jmaa.2011.03.025_br0010 article-title: A defect relation for non-Archimedean analytic curves in arbitrary projective varieties publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-06-08591-1 – volume: vol. 1 year: 2000 ident: 10.1016/j.jmaa.2011.03.025_br0040 article-title: Meromorphic Functions over Non-Archimedean Fields – ident: 10.1016/j.jmaa.2011.03.025_br0090 |
| SSID | ssj0011571 |
| Score | 2.0103998 |
| Snippet | Büchiʼs problem asks if there exists a positive integer
M such that all
x
1
,
…
,
x
M
∈
Z
satisfying the equations
x
r
2
−
2
x
r
−
1
2
+
x
r
−
2
2
=
2
for all... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 661 |
| SubjectTerms | Buchiʼs problem Exact sciences and technology Functions of a complex variable Hensleyʼs problem Hilbertʼs tenth problem Mathematical analysis Mathematics Meromorphic functions Nevanlinna theory Non-Archimedean meromorphic functions Partial differential equations Sciences and techniques of general use Several complex variables and analytic spaces Value distribution theory |
| Title | Hensleyʼs problem for complex and non-Archimedean meromorphic functions |
| URI | https://dx.doi.org/10.1016/j.jmaa.2011.03.025 |
| Volume | 381 |
| WOSCitedRecordID | wos000290972700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0813 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011571 issn: 0022-247X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZu4eNMvbJuo_ih-3JuMiSLVmPaejIBiuDZZA9GcmWWUKThTopofRP21_Qv6qnDztuyso22IsJJrLM3c-n0-nudwi9EzQDm1fICD6dMkoSpSNVYR3FWlaxYixTSWWbTfCTk2w8Fl96vcumFub8lM_n2XotFv9V1XAPlG1KZ_9C3e1D4Qb8BqXDFdQO1z9S_BA2piYQPei_PxrUoe8YY9MJbf64XtsDA9j2R5Z2FpZDE42faZOYB1KfFKFZ7DaBvNuu66zlerVMA57WxNK-ds7DNxEGCwppeoSGw59ysgni-3TgFTjC4ehiFX1f6R_dOIQJrIrIVWK64FhTIHMjf9MWC5CEj91y42wsNnnPmStBbYwwdY1bPNpIx6QyR9buV2fmmr7cMvwuBjE9nM6k9MSs9BC7muotQu2vtgAY3smw5ZGE4Xtol_BUgE3c7X88Hn9qT6HilMcN27wZ4IuuXH7g9ky_c2z2FrIGbVSuT0rHeRk9Ro-86oK-Q8sT1NPzp-jh51aN9TM09Li5-lUHHjMBYCbwmAlAu8EWZoIOZoIWM8_Rtw_Ho8Ew8m02ooJSvIT9VcUUbJsVZ7wkJC4Ir1JJYyV5LIx9LzTGGjzHSmJVJdKUv3HFE1FImpo2dS_QDsyvX6KgFGlJJaep5GWiJPjeTEhCKqIYlSLV-yhuZJQXnoPetEI5zZtkw2lu5JobueaY5iDXfRS2YxaOgeXOf6eN6HPvQzrfMAek3Dnu4Iae2qnAhYVNCWOv_vHBr9GDzdfyBu0sz1b6LbpfnC8n9dmBR9w1MfCi6A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hensley%CA%BCs+problem+for+complex+and+non-Archimedean+meromorphic+functions&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=An%2C+Ta+Thi+Hoai&rft.au=Wang%2C+Julie+Tzu-Yueh&rft.date=2011-09-15&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=381&rft.issue=2&rft.spage=661&rft.epage=677&rft_id=info:doi/10.1016%2Fj.jmaa.2011.03.025&rft.externalDocID=S0022247X11002460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |