No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians
We consider the oracle complexity of computing an approximate stationary point of a Lipschitz function. When the function is smooth, it is well known that the simple deterministic gradient method has finite dimension-free oracle complexity. However, when the function can be nonsmooth, it is only rec...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 208; číslo 1-2; s. 51 - 74 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the oracle complexity of computing an approximate stationary point of a Lipschitz function. When the function is smooth, it is well known that the simple deterministic gradient method has finite dimension-free oracle complexity. However, when the function can be nonsmooth, it is only recently that a randomized algorithm with finite dimension-free oracle complexity has been developed. In this paper, we show that no deterministic algorithm can do the same. Moreover, even without the dimension-free requirement, we show that any finite-time deterministic method cannot be general zero-respecting. In particular, this implies that a natural derandomization of the aforementioned randomized algorithm cannot have finite-time complexity. Our results reveal a fundamental hurdle in modern large-scale nonconvex nonsmooth optimization. |
|---|---|
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-023-02031-6 |