Three-dimensional temperature field inversion calculation based on an artificial intelligence algorithm

•The combination of finite element algorithms and machine learning algorithms.•A temperature field reconstruction model based on discrete boundary conditions.•A finite element program with modules applicable to the large datasets generating.•The optimal settings of hyperparameters under the general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering Jg. 225; S. 120237
Hauptverfasser: Lu, Depu, Wang, Chengen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 05.05.2023
Schlagworte:
ISSN:1359-4311
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The combination of finite element algorithms and machine learning algorithms.•A temperature field reconstruction model based on discrete boundary conditions.•A finite element program with modules applicable to the large datasets generating.•The optimal settings of hyperparameters under the general model is summarised.•Data-driven temperature field calculations decoupled from the prior knowledges. An increasing number of practical problems in heat transfer area are attributed to inverse heat transfer problems (IHTPs). One of the typical applications of the inverse problem is the prediction of the temperature field of an object from discrete temperature measurements of the surface. The study combines machine learning algorithms with numerical heat transfer methods to inversely predict the heat transfer boundary conditions of a hexahedral geometry from a finite number of discrete temperature measurements on its surface and then calculate the overall temperature field distribution. For the implementation of the numerical heat transfer forward problem, we first complete the coding of the finite element program to generate a training dataset for the inverse calculation by batch inputting the predefined boundary conditions. The inverse problem is modelled by constructing a neural network (NN) approach. The model is trained by calling data from the above dataset. The discrete temperature data are brought into the trained neural network for temperature field prediction. The results are tested for accuracy and generalisability. Finally, by comparing different hyperparameters and different training methods, a method of improving the efficiency and accuracy of the reconstruction results is proposed. The inversion calculation error is finally controlled to less than 0.1. In addition, the model implements the validation of commercial software simulation data and application to aero-engine turbine blades and vapour chambers. The approach can be extended as a generalised 3D temperature field reconstruction method.
AbstractList •The combination of finite element algorithms and machine learning algorithms.•A temperature field reconstruction model based on discrete boundary conditions.•A finite element program with modules applicable to the large datasets generating.•The optimal settings of hyperparameters under the general model is summarised.•Data-driven temperature field calculations decoupled from the prior knowledges. An increasing number of practical problems in heat transfer area are attributed to inverse heat transfer problems (IHTPs). One of the typical applications of the inverse problem is the prediction of the temperature field of an object from discrete temperature measurements of the surface. The study combines machine learning algorithms with numerical heat transfer methods to inversely predict the heat transfer boundary conditions of a hexahedral geometry from a finite number of discrete temperature measurements on its surface and then calculate the overall temperature field distribution. For the implementation of the numerical heat transfer forward problem, we first complete the coding of the finite element program to generate a training dataset for the inverse calculation by batch inputting the predefined boundary conditions. The inverse problem is modelled by constructing a neural network (NN) approach. The model is trained by calling data from the above dataset. The discrete temperature data are brought into the trained neural network for temperature field prediction. The results are tested for accuracy and generalisability. Finally, by comparing different hyperparameters and different training methods, a method of improving the efficiency and accuracy of the reconstruction results is proposed. The inversion calculation error is finally controlled to less than 0.1. In addition, the model implements the validation of commercial software simulation data and application to aero-engine turbine blades and vapour chambers. The approach can be extended as a generalised 3D temperature field reconstruction method.
ArticleNumber 120237
Author Lu, Depu
Wang, Chengen
Author_xml – sequence: 1
  givenname: Depu
  surname: Lu
  fullname: Lu, Depu
  email: ludepu@sjtu.edu.cn
– sequence: 2
  givenname: Chengen
  surname: Wang
  fullname: Wang, Chengen
  email: c.wang@sjtu.edu.cn
BookMark eNqNkE1Lw0AQhvdQwbb6H3Lwmrgf-QQvWqwKBS_1vGw2k3TKZhN2twX_vYn1oidhmHlh5n1hnhVZ2MECIXeMJoyy_P6YqHE04QCuVwZsl3DKRcLmXizIkomsilPB2DVZeX-klPGySJek2x8cQNxgD9bjYJWJAvQjOBVODqIWwTQR2jO4eRtpZfTJqDDrWnlookmoqVzAFjVOdrQBjMEOrIZImW5wGA79DblqlfFw-zPX5GP7vN-8xrv3l7fN4y7WQtAQFzRNsxSyqsp10dKGp7mqc1EJ3gAr6zIFUUJdtZXOheJVzjWHqaazTLO6BLEmD5dc7QbvHbRydNgr9ykZlTMoeZS_QckZkbyAmuxPf-waw_e7wSk0_w3ZXkJgevSM4KTXOONo0IEOshnwf0Ff2DWX5A
CitedBy_id crossref_primary_10_1002_adma_202415604
crossref_primary_10_3390_jmse13050910
crossref_primary_10_1016_j_icheatmasstransfer_2025_108778
crossref_primary_10_1016_j_measurement_2024_116564
crossref_primary_10_1016_j_net_2025_103829
crossref_primary_10_1016_j_energy_2024_130357
crossref_primary_10_1049_hve2_12465
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126042
crossref_primary_10_1016_j_applthermaleng_2024_124476
crossref_primary_10_1016_j_ijthermalsci_2025_109738
crossref_primary_10_1016_j_applthermaleng_2025_127506
crossref_primary_10_1088_1361_6501_adddd2
crossref_primary_10_1016_j_applthermaleng_2025_125448
crossref_primary_10_1016_j_ijthermalsci_2024_109206
crossref_primary_10_1016_j_tws_2025_112970
crossref_primary_10_1016_j_csite_2025_106605
crossref_primary_10_1016_j_applthermaleng_2023_122042
crossref_primary_10_1016_j_applthermaleng_2024_122481
Cites_doi 10.1016/j.jppr.2013.04.004
10.1016/j.ijheatmasstransfer.2015.08.010
10.1017/jfm.2019.545
10.1016/j.icheatmasstransfer.2017.05.009
10.1016/j.ijheatmasstransfer.2018.02.039
10.1016/j.applthermaleng.2005.12.009
10.1016/j.jqsrt.2006.09.001
10.1016/j.ijheatmasstransfer.2019.01.002
10.1016/j.applthermaleng.2016.05.123
10.1016/j.applthermaleng.2013.02.040
10.1108/HFF-11-2020-0684
10.1016/j.enconman.2014.06.096
10.1016/j.jpowsour.2004.11.019
10.1016/j.icheatmasstransfer.2022.106270
10.2514/6.2020-1530
10.1016/j.applthermaleng.2013.10.066
10.1016/j.applthermaleng.2021.117392
10.1016/j.ijthermalsci.2009.06.005
10.1016/j.applthermaleng.2021.117174
10.1016/j.icheatmasstransfer.2015.06.012
10.1080/10407788208913448
10.1016/j.applthermaleng.2022.118762
10.1080/10407782.2012.644166
10.1201/9781003155157
10.1016/j.applthermaleng.2021.117819
10.1016/j.icheatmasstransfer.2006.08.013
10.1007/978-94-015-8480-7
10.1016/j.applthermaleng.2022.119406
10.1016/j.ijheatmasstransfer.2011.01.032
10.1016/j.ijthermalsci.2021.107149
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2023.120237
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2023_120237
S1359431123002661
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c330t-704454e5996c7f0d246ab63932de18b84e38eb9f9c63a2962c2ec2e2465c1b8e3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000944689300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 07:52:41 EST 2025
Tue Nov 18 20:29:13 EST 2025
Sat Jul 05 17:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Inverse heat transfer problems
Finite element method
Neural network
Temperature field reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-704454e5996c7f0d246ab63932de18b84e38eb9f9c63a2962c2ec2e2465c1b8e3
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2023_120237
crossref_citationtrail_10_1016_j_applthermaleng_2023_120237
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2023_120237
PublicationCentury 2000
PublicationDate 2023-05-05
PublicationDateYYYYMMDD 2023-05-05
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Lin, Yang (b0040) 2015; 67
Tikhonov, Andrei Nikolaevich, et al, Numerical methods for the solution of ill-posed problems, Springer Science & Business Media, 3(1995).
W. Tao, Numer. Heat Transf (Second Edition), Xi'an Jiaotong University Press, 2001.
Chang, Cheng (b0055) 2005; 142
Zalesak, Charvat, Klimes (b0135) 2021; 197
Cortés (b0155) 2007
D. Kingma, J.B. Adam, A Method for Stochastic Optimization, Computer Science, 2014. doi: 10.48550/arXiv.1412.6980.
Tian, Qi (b0070) 2022; 137
Zhou, Zhang, Chen (b0060) 2012; 61
Sun, Ji (b0080) 2022
A.V.S. Oliveira, J. Teixeira, et al., Using a linear inverse heat conduction model to estimate the boundary heat flux with a material undergoing phase transformation, Appl. Therm. Eng., 219 (2023), 119406. 10.1016/j.applthermaleng.2022.119406.
Huang, Than, Ngo (b0035) 2016; 105
Shi, Chen (b0140) 2015
Huntul, Lesnic (b0010) 2017; 85
Wang, Zhu, Chen (b0110) 2011; 54
Cao, Luo, Tang (b0130) 2022; 241
K.R. Holst, R.S. Glasby, J.T. Erwin, et al, Current status of the COFFE solver within HPCMP CREATETM-AV kestrel, AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, 2020. 10.2514/6.2020-153.
Das (b0015) 2014; 87
Cebula, Taler (b0025) 2014; 63
Kowsary, Mohammadzaheri, Irano (b0120) 2006; 33
Chen, Yang (b0100) 2010; 49
Gostimirovic, Sekulic (b0020) 2021; 195
Rukolaine (b0045) 2007; 104
S. Liu, Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle, Harbin Institute of Technology, Heilongjiang. https://kns.cnki.net/kcms2/article/abstract?v=C1uazonQNNhMXDnNywSHHBOx9cEiw2OSVhvxoYC4tkvzfIF7W4kfjG-OCxy6ReuoIfoy6-tQrceUTiCWuE2r0_PC8vQYgJHy13NXwoKRccP46BQJ39YpSg==&uniplatform=NZKPT&language=CHS.
R. Lohner, et al. Deep learning or interpolation for inverse modelling of heat and fluid flow problems, Int J Numer Methods Heat Fluid Flow. (in press). doi:10.1108/HFF-11-2020-0684.
Huang, Lo (b0105) 2006; 26
.
N.S. Keskar, R. Socher, Improving Generalization Performance by Switching from Adam to SGD, 2017. doi:10.48550/arXiv.1712.07628.
Zeng, Wang, Zhang, Cai, Li (b0125) 2019; 134
Beck, Litkouhi, Clair (b0095) 1982; 5
Gossard, Lartigue (b0115) 2013; 54
G. Guennebaud, B. Jacob, Eigen v3.
Yu, Xu, Yao (b0030) 2018; 122
https://keras.io, Retrieved August 13, 2021.
Reyhani, Alizadeh (b0085) 2013; 2
Wen, Zhu, Lu (b0160) 2021; 170
M.Ö. Necati, R. Helcio et al., Inverse heat transfer: fundamentals and applications, CRC Press, 2021. doi:10.1201/9781003155157.
Tian, Qi (b0065) 2022; 201
Najafi, Woodbury (b0150) 2015; 91
Huang, Liu, Cai (b0075) 2019; 875
Beck (10.1016/j.applthermaleng.2023.120237_b0095) 1982; 5
10.1016/j.applthermaleng.2023.120237_b0005
Zalesak (10.1016/j.applthermaleng.2023.120237_b0135) 2021; 197
Huang (10.1016/j.applthermaleng.2023.120237_b0105) 2006; 26
Zhou (10.1016/j.applthermaleng.2023.120237_b0060) 2012; 61
Cebula (10.1016/j.applthermaleng.2023.120237_b0025) 2014; 63
Tian (10.1016/j.applthermaleng.2023.120237_b0065) 2022; 201
Sun (10.1016/j.applthermaleng.2023.120237_b0080) 2022
Zeng (10.1016/j.applthermaleng.2023.120237_b0125) 2019; 134
10.1016/j.applthermaleng.2023.120237_b0190
Tian (10.1016/j.applthermaleng.2023.120237_b0070) 2022; 137
10.1016/j.applthermaleng.2023.120237_b0090
Huang (10.1016/j.applthermaleng.2023.120237_b0075) 2019; 875
Najafi (10.1016/j.applthermaleng.2023.120237_b0150) 2015; 91
10.1016/j.applthermaleng.2023.120237_b0170
Chen (10.1016/j.applthermaleng.2023.120237_b0100) 2010; 49
Wang (10.1016/j.applthermaleng.2023.120237_b0110) 2011; 54
10.1016/j.applthermaleng.2023.120237_b0050
10.1016/j.applthermaleng.2023.120237_b0195
Kowsary (10.1016/j.applthermaleng.2023.120237_b0120) 2006; 33
10.1016/j.applthermaleng.2023.120237_b0175
Wen (10.1016/j.applthermaleng.2023.120237_b0160) 2021; 170
Huang (10.1016/j.applthermaleng.2023.120237_b0035) 2016; 105
Rukolaine (10.1016/j.applthermaleng.2023.120237_b0045) 2007; 104
Wang (10.1016/j.applthermaleng.2023.120237_b0040) 2015; 67
Das (10.1016/j.applthermaleng.2023.120237_b0015) 2014; 87
Reyhani (10.1016/j.applthermaleng.2023.120237_b0085) 2013; 2
Chang (10.1016/j.applthermaleng.2023.120237_b0055) 2005; 142
Huntul (10.1016/j.applthermaleng.2023.120237_b0010) 2017; 85
Gostimirovic (10.1016/j.applthermaleng.2023.120237_b0020) 2021; 195
Gossard (10.1016/j.applthermaleng.2023.120237_b0115) 2013; 54
10.1016/j.applthermaleng.2023.120237_b0180
Shi (10.1016/j.applthermaleng.2023.120237_b0140) 2015
10.1016/j.applthermaleng.2023.120237_b0185
Cao (10.1016/j.applthermaleng.2023.120237_b0130) 2022; 241
10.1016/j.applthermaleng.2023.120237_b0165
Yu (10.1016/j.applthermaleng.2023.120237_b0030) 2018; 122
10.1016/j.applthermaleng.2023.120237_b0145
Cortés (10.1016/j.applthermaleng.2023.120237_b0155) 2007
References_xml – reference: K.R. Holst, R.S. Glasby, J.T. Erwin, et al, Current status of the COFFE solver within HPCMP CREATETM-AV kestrel, AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, 2020. 10.2514/6.2020-153.
– volume: 91
  start-page: 808
  year: 2015
  end-page: 817
  ident: b0150
  article-title: Online heat flux estimation using artificial neural network as a digital filter approach
  publication-title: Int. J. Heat Mass Transf.
– reference: G. Guennebaud, B. Jacob, Eigen v3.
– volume: 197
  start-page: 117392
  year: 2021
  ident: b0135
  article-title: Identification of the effective heat capacity–temperature relationship and the phase change hysteresis in PCMs by means of an inverse heat transfer problem solved with metaheuristic methods
  publication-title: Appl. Therm. Eng.
– volume: 142
  start-page: 200
  year: 2005
  end-page: 210
  ident: b0055
  article-title: Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs
  publication-title: J. Power Sources
– reference: W. Tao, Numer. Heat Transf (Second Edition), Xi'an Jiaotong University Press, 2001.
– volume: 5
  start-page: 275
  year: 1982
  end-page: 286
  ident: b0095
  article-title: Efficient sequential solution of the nonlinear inverse heat conduction problem
  publication-title: Numer. Heat Transf.
– reference: R. Lohner, et al. Deep learning or interpolation for inverse modelling of heat and fluid flow problems, Int J Numer Methods Heat Fluid Flow. (in press). doi:10.1108/HFF-11-2020-0684.
– year: 2007
  ident: b0155
  publication-title: Artificial neural networks for inverse heat transfer problems, Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007)
– volume: 201
  start-page: 117819
  year: 2022
  ident: b0065
  article-title: A novel parametric level set method coupled with Tikhonov regularization for tomographic laser absorption reconstruction
  publication-title: Appl. Therm. Eng.
– volume: 26
  start-page: 1515
  year: 2006
  end-page: 1529
  ident: b0105
  article-title: A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors
  publication-title: Appl. Therm. Eng.
– volume: 2
  start-page: 148
  year: 2013
  end-page: 161
  ident: b0085
  article-title: Turbine blade temperature calculation and life estimation – a sensitivity analysis
  publication-title: Propul. Power Res.
– year: 2015
  ident: b0140
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Proces. Syst.
– reference: M.Ö. Necati, R. Helcio et al., Inverse heat transfer: fundamentals and applications, CRC Press, 2021. doi:10.1201/9781003155157.
– volume: 105
  start-page: 65
  year: 2016
  end-page: 76
  ident: b0035
  article-title: An inverse method for estimating heat sources in a high speed spindle
  publication-title: Appl. Therm. Eng
– volume: 241
  start-page: 118762
  year: 2022
  ident: b0130
  article-title: A Bayesian model to solve a two-dimensional inverse heat transfer problem of gas turbine discs
  publication-title: Appl. Therm. Eng.
– volume: 54
  start-page: 2782
  year: 2011
  end-page: 2788
  ident: b0110
  article-title: A decentralized fuzzy inference method for solving the two-dimensional steady inverse heat conduction problem of estimating boundary condition
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 549
  year: 2013
  end-page: 558
  ident: b0115
  article-title: Three-dimensional conjugate heat transfer in partitioned enclosures: Determination of geometrical and thermal properties by an inverse method
  publication-title: Appl. Therm. Eng.
– volume: 195
  start-page: 117174
  year: 2021
  ident: b0020
  article-title: Stability analysis of the inverse heat transfer problem in the optimization of the machining process
  publication-title: Appl. Therm. Eng.
– volume: 63
  start-page: 158
  year: 2014
  end-page: 169
  ident: b0025
  article-title: Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points
  publication-title: Appl. Therm. Eng
– reference: A.V.S. Oliveira, J. Teixeira, et al., Using a linear inverse heat conduction model to estimate the boundary heat flux with a material undergoing phase transformation, Appl. Therm. Eng., 219 (2023), 119406. 10.1016/j.applthermaleng.2022.119406.
– volume: 61
  start-page: 85
  year: 2012
  end-page: 100
  ident: b0060
  article-title: Inverse Estimation of Surface Temperature Induced by a Moving Heat Source in a 3-D Object Based on Back Surface Temperature with Random Measurement Errors
  publication-title: Numer. Heat Transf. Part A Appl.
– reference: https://keras.io, Retrieved August 13, 2021.
– reference: S. Liu, Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle, Harbin Institute of Technology, Heilongjiang. https://kns.cnki.net/kcms2/article/abstract?v=C1uazonQNNhMXDnNywSHHBOx9cEiw2OSVhvxoYC4tkvzfIF7W4kfjG-OCxy6ReuoIfoy6-tQrceUTiCWuE2r0_PC8vQYgJHy13NXwoKRccP46BQJ39YpSg==&uniplatform=NZKPT&language=CHS.
– reference: D. Kingma, J.B. Adam, A Method for Stochastic Optimization, Computer Science, 2014. doi: 10.48550/arXiv.1412.6980.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0040
  article-title: Geometry estimation for the inner surface in a furnace wall made of functionally graded materials
  publication-title: Int. Commun. Heat Mass
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0080
  article-title: Reconstruction of surface laser power and internal temperature of biological tissue during laser-induced thermal therapy
  publication-title: Numer. Heat Transf., Part A: Appl.
– reference: .
– volume: 170
  start-page: 107149
  year: 2021
  ident: b0160
  article-title: Experimental and artificial neural network based study on the heat transfer and flow performance of ZnO-EG/water nanofluid in a mini-channel with serrated fins
  publication-title: Int. J. Therm. Sci.
– volume: 875
  start-page: R2
  year: 2019
  ident: b0075
  article-title: Online in Situ Prediction of 3-D Flame Evolution from Its History 2-D Projections via Deep Learning
  publication-title: J. Fluid Mech.
– volume: 134
  start-page: 185
  year: 2019
  end-page: 197
  ident: b0125
  article-title: A novel adaptive approximate Bayesian computation method for inverse heat conduction problem
  publication-title: Int. J. Heat Mass Transf.
– reference: N.S. Keskar, R. Socher, Improving Generalization Performance by Switching from Adam to SGD, 2017. doi:10.48550/arXiv.1712.07628.
– reference: Tikhonov, Andrei Nikolaevich, et al, Numerical methods for the solution of ill-posed problems, Springer Science & Business Media, 3(1995).
– volume: 33
  start-page: 1291
  year: 2006
  end-page: 1296
  ident: b0120
  article-title: Training based, moving digital filter method for real time heat flux function estimation
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 104
  start-page: 171
  year: 2007
  end-page: 195
  ident: b0045
  article-title: Regularization of inverse boundary design radiative heat transfer problems
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 87
  start-page: 496
  year: 2014
  end-page: 1106
  ident: b0015
  article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin
  publication-title: Energ. Conver. Manage.
– volume: 85
  start-page: 147
  year: 2017
  end-page: 154
  ident: b0010
  article-title: An inverse problem of finding the time-dependent thermal conductivity from boundary data
  publication-title: Int. Commun. Heat Mass
– volume: 49
  start-page: 86
  year: 2010
  end-page: 98
  ident: b0100
  article-title: Inverse estimation for unknown fouling-layer profiles with arbitrary geometries on the inner wall of a forced-convection duct
  publication-title: Int. J. Therm. Sci.
– volume: 122
  start-page: 823
  year: 2018
  end-page: 845
  ident: b0030
  article-title: Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration
  publication-title: Int. J. Heat Mass Transf.
– volume: 137
  start-page: 106270
  year: 2022
  ident: b0070
  article-title: Three-dimensional rapid visualization of flame temperature field via compression and noise reduction of light field imaging
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 2
  start-page: 148
  issue: 2
  year: 2013
  ident: 10.1016/j.applthermaleng.2023.120237_b0085
  article-title: Turbine blade temperature calculation and life estimation – a sensitivity analysis
  publication-title: Propul. Power Res.
  doi: 10.1016/j.jppr.2013.04.004
– volume: 91
  start-page: 808
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120237_b0150
  article-title: Online heat flux estimation using artificial neural network as a digital filter approach
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.010
– volume: 875
  start-page: R2
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120237_b0075
  article-title: Online in Situ Prediction of 3-D Flame Evolution from Its History 2-D Projections via Deep Learning
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.545
– volume: 85
  start-page: 147
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120237_b0010
  article-title: An inverse problem of finding the time-dependent thermal conductivity from boundary data
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2017.05.009
– volume: 122
  start-page: 823
  year: 2018
  ident: 10.1016/j.applthermaleng.2023.120237_b0030
  article-title: Estimation of boundary condition on the furnace inner wall based on precise integration BEM without iteration
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.02.039
– volume: 26
  start-page: 1515
  issue: 14-15
  year: 2006
  ident: 10.1016/j.applthermaleng.2023.120237_b0105
  article-title: A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.12.009
– volume: 104
  start-page: 171
  year: 2007
  ident: 10.1016/j.applthermaleng.2023.120237_b0045
  article-title: Regularization of inverse boundary design radiative heat transfer problems
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2006.09.001
– volume: 134
  start-page: 185
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120237_b0125
  article-title: A novel adaptive approximate Bayesian computation method for inverse heat conduction problem
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.002
– volume: 105
  start-page: 65
  year: 2016
  ident: 10.1016/j.applthermaleng.2023.120237_b0035
  article-title: An inverse method for estimating heat sources in a high speed spindle
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2016.05.123
– start-page: 1
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120237_b0080
  article-title: Reconstruction of surface laser power and internal temperature of biological tissue during laser-induced thermal therapy
  publication-title: Numer. Heat Transf., Part A: Appl.
– volume: 54
  start-page: 549
  issue: 2
  year: 2013
  ident: 10.1016/j.applthermaleng.2023.120237_b0115
  article-title: Three-dimensional conjugate heat transfer in partitioned enclosures: Determination of geometrical and thermal properties by an inverse method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.02.040
– ident: 10.1016/j.applthermaleng.2023.120237_b0180
– ident: 10.1016/j.applthermaleng.2023.120237_b0050
– ident: 10.1016/j.applthermaleng.2023.120237_b0145
  doi: 10.1108/HFF-11-2020-0684
– volume: 87
  start-page: 496
  year: 2014
  ident: 10.1016/j.applthermaleng.2023.120237_b0015
  article-title: Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2014.06.096
– volume: 142
  start-page: 200
  issue: 1
  year: 2005
  ident: 10.1016/j.applthermaleng.2023.120237_b0055
  article-title: Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.11.019
– volume: 137
  start-page: 106270
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120237_b0070
  article-title: Three-dimensional rapid visualization of flame temperature field via compression and noise reduction of light field imaging
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106270
– ident: 10.1016/j.applthermaleng.2023.120237_b0175
  doi: 10.2514/6.2020-1530
– ident: 10.1016/j.applthermaleng.2023.120237_b0195
– volume: 63
  start-page: 158
  issue: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2023.120237_b0025
  article-title: Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2013.10.066
– volume: 197
  start-page: 117392
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120237_b0135
  article-title: Identification of the effective heat capacity–temperature relationship and the phase change hysteresis in PCMs by means of an inverse heat transfer problem solved with metaheuristic methods
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117392
– volume: 49
  start-page: 86
  issue: 1
  year: 2010
  ident: 10.1016/j.applthermaleng.2023.120237_b0100
  article-title: Inverse estimation for unknown fouling-layer profiles with arbitrary geometries on the inner wall of a forced-convection duct
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.06.005
– volume: 195
  start-page: 117174
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120237_b0020
  article-title: Stability analysis of the inverse heat transfer problem in the optimization of the machining process
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117174
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120237_b0040
  article-title: Geometry estimation for the inner surface in a furnace wall made of functionally graded materials
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2015.06.012
– volume: 5
  start-page: 275
  issue: 3
  year: 1982
  ident: 10.1016/j.applthermaleng.2023.120237_b0095
  article-title: Efficient sequential solution of the nonlinear inverse heat conduction problem
  publication-title: Numer. Heat Transf.
  doi: 10.1080/10407788208913448
– volume: 241
  start-page: 118762
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120237_b0130
  article-title: A Bayesian model to solve a two-dimensional inverse heat transfer problem of gas turbine discs
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118762
– volume: 61
  start-page: 85
  issue: 2
  year: 2012
  ident: 10.1016/j.applthermaleng.2023.120237_b0060
  article-title: Inverse Estimation of Surface Temperature Induced by a Moving Heat Source in a 3-D Object Based on Back Surface Temperature with Random Measurement Errors
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2012.644166
– ident: 10.1016/j.applthermaleng.2023.120237_b0005
  doi: 10.1201/9781003155157
– volume: 201
  start-page: 117819
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120237_b0065
  article-title: A novel parametric level set method coupled with Tikhonov regularization for tomographic laser absorption reconstruction
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117819
– volume: 33
  start-page: 1291
  year: 2006
  ident: 10.1016/j.applthermaleng.2023.120237_b0120
  article-title: Training based, moving digital filter method for real time heat flux function estimation
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2006.08.013
– ident: 10.1016/j.applthermaleng.2023.120237_b0090
  doi: 10.1007/978-94-015-8480-7
– year: 2015
  ident: 10.1016/j.applthermaleng.2023.120237_b0140
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Proces. Syst.
– ident: 10.1016/j.applthermaleng.2023.120237_b0185
– ident: 10.1016/j.applthermaleng.2023.120237_b0170
  doi: 10.1016/j.applthermaleng.2022.119406
– ident: 10.1016/j.applthermaleng.2023.120237_b0165
– ident: 10.1016/j.applthermaleng.2023.120237_b0190
– volume: 54
  start-page: 2782
  issue: 13-14
  year: 2011
  ident: 10.1016/j.applthermaleng.2023.120237_b0110
  article-title: A decentralized fuzzy inference method for solving the two-dimensional steady inverse heat conduction problem of estimating boundary condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.032
– volume: 170
  start-page: 107149
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120237_b0160
  article-title: Experimental and artificial neural network based study on the heat transfer and flow performance of ZnO-EG/water nanofluid in a mini-channel with serrated fins
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107149
– year: 2007
  ident: 10.1016/j.applthermaleng.2023.120237_b0155
SSID ssj0012874
Score 2.4947424
Snippet •The combination of finite element algorithms and machine learning algorithms.•A temperature field reconstruction model based on discrete boundary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120237
SubjectTerms Finite element method
Inverse heat transfer problems
Neural network
Temperature field reconstruction
Title Three-dimensional temperature field inversion calculation based on an artificial intelligence algorithm
URI https://dx.doi.org/10.1016/j.applthermaleng.2023.120237
Volume 225
WOSCitedRecordID wos000944689300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA-6ieiD-InzizzsrfSSpk2T4IOMMVGRITjhvpU2Pd06tu5yP8b-fE-atI1M4YoIJZTS5JT82tNfkpPfIWRf1wnUkDO76K7iLFcsrkql4wqE4KBYWZlexPWrPD5W87n-5vPdr_p0ArLr1M2NXvxXqPEagm23zv4F3GOjeAHPEXQsEXYstwR-CRDXVrV_5YPJAbmx006O-oi1qO2u3TxZhBAZn8Ersn-0OurDk632UevFJdpQtbO8OL1atuuzy5DVDlTWkslLrAGTyOEY8LNx3m2xmabwnZs5PLOBtV04_cBdsJ-Y5sSGfTFTEJJ1o6nQMVKTJPSz3O1wvuWz3fTB-cyu2PvnRLsza2yW2FJO_6oxgvC7NWEt4BCKWZJxl-xyKTQ6tt2Dz0fzL-NSkhX070fd_pHuk_0pyO_PNn_PUwLucfKYPPKDBnrgwH5C7kD3lDwMpCSfkdNbsNMAdtrDTkfYaQA77WGneFLiMcJOQ9jpCPtz8uPj0cnhp9gn0YhNmrJ1LFmWiQysCo-RDat5lpcV0tKU15CoSmWQKqh0o02ellzn3HDAA28TJqkUpC_ITnfVwUtCK9bkIEE3tawyU5bIZLmERtUslbwRbI-8H7qsMF5h3iY6uSiGUMLz4tcOL2xXF67D94gYay-c0sqW9T4M6BSeNTo2WOALtlULr_65hdfkwfRtvCE76-UG3pJ75nrdrpbv_Bv5E5lhob0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+temperature+field+inversion+calculation+based+on+an+artificial+intelligence+algorithm&rft.jtitle=Applied+thermal+engineering&rft.au=Lu%2C+Depu&rft.au=Wang%2C+Chengen&rft.date=2023-05-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=225&rft_id=info:doi/10.1016%2Fj.applthermaleng.2023.120237&rft.externalDocID=S1359431123002661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon