An elementary approach to tight worst case complexity analysis of gradient based methods
This work presents a novel analysis that allows to achieve tight complexity bounds of gradient-based methods for convex optimization. We start by identifying some of the pitfalls rooted in the classical complexity analysis of the gradient descent method, and show how they can be remedied. Our method...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 201; číslo 1-2; s. 63 - 96 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This work presents a novel analysis that allows to achieve tight complexity bounds of gradient-based methods for convex optimization. We start by identifying some of the pitfalls rooted in the classical complexity analysis of the gradient descent method, and show how they can be remedied. Our methodology hinges on elementary and direct arguments in the spirit of the classical analysis. It allows us to establish some new (and reproduce known) tight complexity results for several fundamental algorithms including, gradient descent, proximal point and proximal gradient methods which previously could be proven only through computer-assisted convergence proof arguments. |
|---|---|
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-022-01899-0 |