An elementary approach to tight worst case complexity analysis of gradient based methods

This work presents a novel analysis that allows to achieve tight complexity bounds of gradient-based methods for convex optimization. We start by identifying some of the pitfalls rooted in the classical complexity analysis of the gradient descent method, and show how they can be remedied. Our method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 201; H. 1-2; S. 63 - 96
Hauptverfasser: Teboulle, Marc, Vaisbourd, Yakov
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2023
Springer
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a novel analysis that allows to achieve tight complexity bounds of gradient-based methods for convex optimization. We start by identifying some of the pitfalls rooted in the classical complexity analysis of the gradient descent method, and show how they can be remedied. Our methodology hinges on elementary and direct arguments in the spirit of the classical analysis. It allows us to establish some new (and reproduce known) tight complexity results for several fundamental algorithms including, gradient descent, proximal point and proximal gradient methods which previously could be proven only through computer-assisted convergence proof arguments.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-022-01899-0