On certain subclasses of multivalent functions associated with an extended fractional differintegral operator

In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investig...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematical analysis and applications Ročník 332; číslo 1; s. 109 - 122
Hlavní autori: Patel, J., Mishra, A.K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Diego, CA Elsevier Inc 01.08.2007
Elsevier
Predmet:
ISSN:0022-247X, 1096-0813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investigated by applying the techniques of differential subordination. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2006.09.067