On certain subclasses of multivalent functions associated with an extended fractional differintegral operator
In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investig...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 332; číslo 1; s. 109 - 122 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
San Diego, CA
Elsevier Inc
01.08.2007
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In the present paper an extended fractional differintegral operator
Ω
z
(
λ
,
p
)
(
−
∞
<
λ
<
p
+
1
;
p
∈
N
)
, suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investigated by applying the techniques of differential subordination. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2006.09.067 |