On certain subclasses of multivalent functions associated with an extended fractional differintegral operator

In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 332; číslo 1; s. 109 - 122
Hlavní autoři: Patel, J., Mishra, A.K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.08.2007
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investigated by applying the techniques of differential subordination. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2006.09.067