On certain subclasses of multivalent functions associated with an extended fractional differintegral operator
In the present paper an extended fractional differintegral operator Ω z ( λ , p ) ( − ∞ < λ < p + 1 ; p ∈ N ) , suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investig...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 332; číslo 1; s. 109 - 122 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.08.2007
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the present paper an extended fractional differintegral operator
Ω
z
(
λ
,
p
)
(
−
∞
<
λ
<
p
+
1
;
p
∈
N
)
, suitable for the study of multivalent functions is introduced. Various mapping properties and inclusion relationships between certain subclasses of multivalent functions are investigated by applying the techniques of differential subordination. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2006.09.067 |