Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size

A graphic sequence π = ( d 1 , d 2 , … , d n ) is said to be potentially K r + 1 -graphic, if π has a realization G containing K r + 1 , a clique of r + 1 vertices, as a subgraph. In this paper, we give two simple sufficient conditions for a graphic sequence π = ( d 1 , d 2 , … , d n ) to be potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics Jg. 301; H. 2; S. 218 - 227
Hauptverfasser: Yin, Jian-Hua, Li, Jiong-Sheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 06.10.2005
Elsevier
Schlagworte:
ISSN:0012-365X, 1872-681X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A graphic sequence π = ( d 1 , d 2 , … , d n ) is said to be potentially K r + 1 -graphic, if π has a realization G containing K r + 1 , a clique of r + 1 vertices, as a subgraph. In this paper, we give two simple sufficient conditions for a graphic sequence π = ( d 1 , d 2 , … , d n ) to be potentially K r + 1 -graphic. We also show that the two sufficient conditions imply a theorem due to Rao [An Erdös-Gallai type result on the clique number of a realization of a degree sequence unpublished.], a theorem due to Li et al [The Erdös–Jacobson–Lehel conjecture on potentially P k -graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.], the Erdös–Jacobson–Lehel conjecture on σ ( K r + 1 , n ) which was confirmed (see [Potentially G -graphical degree sequences, in: Y. Alavi et al. (Eds.), Combinatorics, Graph Theory, and Algorithms, vol. 1, New Issues Press, Kalamazoo Michigan, 1999, pp. 451–460; The smallest degree sum that yields potentially P k -graphic sequences, J. Graph Theory 29 (1998) 63–72; An extremal problem on the potentially P k -graphic sequence, Discrete Math. 212 (2000) 223–231; The Erdös–Jacobson–Lehel conjecture on potentially P k -graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.]) and the Yin–Li–Mao conjecture on σ ( K r + 1 - e , n ) [An extremal problem on the potentially K r + 1 - e -graphic sequences, Ars Combin. 74 (2005) 151–159.], where K r + 1 - e is a graph obtained by deleting one edge from K r + 1 .
AbstractList A graphic sequence π = ( d 1 , d 2 , … , d n ) is said to be potentially K r + 1 -graphic, if π has a realization G containing K r + 1 , a clique of r + 1 vertices, as a subgraph. In this paper, we give two simple sufficient conditions for a graphic sequence π = ( d 1 , d 2 , … , d n ) to be potentially K r + 1 -graphic. We also show that the two sufficient conditions imply a theorem due to Rao [An Erdös-Gallai type result on the clique number of a realization of a degree sequence unpublished.], a theorem due to Li et al [The Erdös–Jacobson–Lehel conjecture on potentially P k -graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.], the Erdös–Jacobson–Lehel conjecture on σ ( K r + 1 , n ) which was confirmed (see [Potentially G -graphical degree sequences, in: Y. Alavi et al. (Eds.), Combinatorics, Graph Theory, and Algorithms, vol. 1, New Issues Press, Kalamazoo Michigan, 1999, pp. 451–460; The smallest degree sum that yields potentially P k -graphic sequences, J. Graph Theory 29 (1998) 63–72; An extremal problem on the potentially P k -graphic sequence, Discrete Math. 212 (2000) 223–231; The Erdös–Jacobson–Lehel conjecture on potentially P k -graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.]) and the Yin–Li–Mao conjecture on σ ( K r + 1 - e , n ) [An extremal problem on the potentially K r + 1 - e -graphic sequences, Ars Combin. 74 (2005) 151–159.], where K r + 1 - e is a graph obtained by deleting one edge from K r + 1 .
Author Yin, Jian-Hua
Li, Jiong-Sheng
Author_xml – sequence: 1
  givenname: Jian-Hua
  surname: Yin
  fullname: Yin, Jian-Hua
  email: yinjh@ustc.edu
  organization: Department of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China
– sequence: 2
  givenname: Jiong-Sheng
  surname: Li
  fullname: Li, Jiong-Sheng
  organization: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17195477$$DView record in Pascal Francis
BookMark eNp9kMtKxEAQRRtRcHz8gKveuEzsR9JJwI2ILxhwM8Lsmk6l4tQQk7G7VfTrTRxx4WJWRVH3XKhzxPb7oUfGzqRIpZDmYp02FCBVQuSp0KlQ5R6bybJQiSnlcp_NhJAq0SZfHrKjENZi3I0uZ6xefAw8vLUtAWEfOQx9Q5GGPvB28NzxZ-82KwIe8PUNe0AeB75y7ziePLqOvtyU5h8UV3zjMYCnGhsOHY15HugLT9hB67qAp7_zmD3d3iyu75P5493D9dU8Aa1FTIzUQtQGIFOuMcpVkJu8yvJaQlkjNsogZK7ErGqFrrBGVbmiMKJoC12jafQxO9_2blwA17Xe9UDBbjy9OP9pZSGrPCuKMVduc-CHEDy2Fij-fBG9o85KYSendm0np3ZyaoW2o9MRVf_Qv_Zd0OUWwvH5d0Jvw-QasCGPEG0z0C78GxNHlFk
CODEN DSMHA4
CitedBy_id crossref_primary_10_1007_s10587_007_0108_y
crossref_primary_10_1007_s10114_009_7260_2
crossref_primary_10_1007_s10114_012_9608_2
crossref_primary_10_1016_j_disc_2007_11_075
crossref_primary_10_1016_j_ejc_2019_103061
crossref_primary_10_1137_080715275
crossref_primary_10_1007_s10255_013_0243_1
crossref_primary_10_1515_math_2024_0093
crossref_primary_10_1007_s00373_013_1307_y
crossref_primary_10_1007_s00493_013_2649_z
crossref_primary_10_1016_j_amc_2019_02_003
crossref_primary_10_1016_j_disc_2015_02_001
crossref_primary_10_1007_s10100_023_00900_1
crossref_primary_10_1007_s10587_009_0012_8
crossref_primary_10_12677_AAM_2018_74053
crossref_primary_10_1007_s10255_016_0622_5
crossref_primary_10_1007_s11425_010_3124_6
crossref_primary_10_1007_s10587_009_0074_7
crossref_primary_10_1016_j_amc_2018_05_055
crossref_primary_10_1137_16M1109643
crossref_primary_10_1007_s10114_020_8300_1
crossref_primary_10_1016_j_tcs_2021_04_006
crossref_primary_10_1007_s00493_015_2986_1
crossref_primary_10_1016_j_disc_2015_07_017
crossref_primary_10_1007_s10255_021_0999_7
crossref_primary_10_1007_s10255_006_0321_8
Cites_doi 10.1007/BF02879940
10.1007/s10114-005-0676-4
10.1016/0012-365X(73)90037-X
10.1016/S0012-365X(99)00289-7
10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2005 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.disc.2005.03.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-681X
EndPage 227
ExternalDocumentID 17195477
10_1016_j_disc_2005_03_028
S0012365X05003833
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-61300b6cc42ad62a9c565945b1c8beed26ec4a8e49f039ebe29a77607f73be6d3
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000232926600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Mon Jul 21 09:14:37 EDT 2025
Sat Nov 29 06:17:27 EST 2025
Tue Nov 18 22:18:53 EST 2025
Fri Feb 23 02:29:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Potentially K r + 1 -graphic sequence
Graph
Degree sequence
Graphics
Algorithm theory
Degree sequence: Potentially Kr+1 -graphic sequence
Edge(graph)
Sufficient condition
Graph theory
Graphic sequence
Graph algorithm
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-61300b6cc42ad62a9c565945b1c8beed26ec4a8e49f039ebe29a77607f73be6d3
OpenAccessLink https://dx.doi.org/10.1016/j.disc.2005.03.028
PageCount 10
ParticipantIDs pascalfrancis_primary_17195477
crossref_citationtrail_10_1016_j_disc_2005_03_028
crossref_primary_10_1016_j_disc_2005_03_028
elsevier_sciencedirect_doi_10_1016_j_disc_2005_03_028
PublicationCentury 2000
PublicationDate 2005-10-06
PublicationDateYYYYMMDD 2005-10-06
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-06
  day: 06
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete mathematics
PublicationYear 2005
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Li, Song (bib8) 2000; 212
Erdös, Jacobson, Lehel (bib2) 1991; vol. 1
Yin, Li, Mao (bib13) 2005; 74
A.R. Rao, An Erdös–Gallai type result on the clique number of a realization of a degree sequence, unpublished.
Lai (bib6) 2001; 24
Li, Song (bib7) 1998; 29
J.S. Li, J.H. Yin, The threshold for the Erdös, Jacobson and Lehel conjecture being true, Acta Math. Sinica (2006), to appear.
Gould, Jacobson, Lehel (bib3) 1999; vol. 1
Kézdy, Lehel (bib4) 1999; vol. 2
Erdös, Gallai (bib1) 1960; 11
Li, Song, Luo (bib9) 1998; 41
Kleitman, Wang (bib5) 1973; 6
A.R. Rao, The clique number of a graph with given degree sequence, in: A.R. Rao (Ed.), Proceedings of the Symposium on Graph Theory, MacMillan and Co. India Ltd., I.S.I. Lecture Notes Series, vol. 4, 1979, pp. 251–267.
Erdös (10.1016/j.disc.2005.03.028_bib2) 1991; vol. 1
Li (10.1016/j.disc.2005.03.028_bib7) 1998; 29
Lai (10.1016/j.disc.2005.03.028_bib6) 2001; 24
Kézdy (10.1016/j.disc.2005.03.028_bib4) 1999; vol. 2
Erdös (10.1016/j.disc.2005.03.028_bib1) 1960; 11
Li (10.1016/j.disc.2005.03.028_bib8) 2000; 212
Gould (10.1016/j.disc.2005.03.028_bib3) 1999; vol. 1
Li (10.1016/j.disc.2005.03.028_bib9) 1998; 41
Kleitman (10.1016/j.disc.2005.03.028_bib5) 1973; 6
10.1016/j.disc.2005.03.028_bib11
10.1016/j.disc.2005.03.028_bib10
Yin (10.1016/j.disc.2005.03.028_bib13) 2005; 74
10.1016/j.disc.2005.03.028_bib12
References_xml – volume: 11
  start-page: 264
  year: 1960
  end-page: 274
  ident: bib1
  article-title: Graphs with given degrees of vertices
  publication-title: Math. Lapok
– volume: vol. 1
  start-page: 451
  year: 1999
  end-page: 460
  ident: bib3
  article-title: Potentially
  publication-title: Combinatorics, Graph Theory, and Algorithms
– volume: 29
  start-page: 63
  year: 1998
  end-page: 72
  ident: bib7
  article-title: The smallest degree sum that yields potentially
  publication-title: J. Graph Theory
– volume: 41
  start-page: 510
  year: 1998
  end-page: 520
  ident: bib9
  article-title: The Erdös–Jacobson–Lehel conjecture on potentially
  publication-title: Sci. China Ser. A
– volume: vol. 2
  start-page: 535
  year: 1999
  end-page: 544
  ident: bib4
  article-title: Degree sequences of graphs with prescribed clique size
  publication-title: Combinatorics, Graph Theory, and Algorithms
– volume: 212
  start-page: 223
  year: 2000
  end-page: 231
  ident: bib8
  article-title: An extremal problem on the potentially
  publication-title: Discrete Math
– volume: vol. 1
  start-page: 439
  year: 1991
  end-page: 449
  ident: bib2
  article-title: Graphs realizing the same degree sequences and their respective clique numbers
  publication-title: Graph Theory, Combinatorics and Applications
– reference: A.R. Rao, The clique number of a graph with given degree sequence, in: A.R. Rao (Ed.), Proceedings of the Symposium on Graph Theory, MacMillan and Co. India Ltd., I.S.I. Lecture Notes Series, vol. 4, 1979, pp. 251–267.
– volume: 6
  start-page: 79
  year: 1973
  end-page: 88
  ident: bib5
  article-title: Algorithm for constructing graphs and digraphs with given valences and factors
  publication-title: Discrete Math.
– reference: J.S. Li, J.H. Yin, The threshold for the Erdös, Jacobson and Lehel conjecture being true, Acta Math. Sinica (2006), to appear.
– volume: 24
  start-page: 123
  year: 2001
  end-page: 127
  ident: bib6
  article-title: A note on potentially
  publication-title: Australasian J. Combin.
– reference: A.R. Rao, An Erdös–Gallai type result on the clique number of a realization of a degree sequence, unpublished.
– volume: 74
  start-page: 151
  year: 2005
  end-page: 159
  ident: bib13
  article-title: An extremal problem on the potentially
  publication-title: Ars Combin.
– volume: vol. 1
  start-page: 451
  year: 1999
  ident: 10.1016/j.disc.2005.03.028_bib3
  article-title: Potentially G-graphical degree sequences
– volume: 41
  start-page: 510
  year: 1998
  ident: 10.1016/j.disc.2005.03.028_bib9
  article-title: The Erdös–Jacobson–Lehel conjecture on potentially Pk-graphic sequences is true
  publication-title: Sci. China Ser. A
  doi: 10.1007/BF02879940
– ident: 10.1016/j.disc.2005.03.028_bib10
  doi: 10.1007/s10114-005-0676-4
– volume: 6
  start-page: 79
  year: 1973
  ident: 10.1016/j.disc.2005.03.028_bib5
  article-title: Algorithm for constructing graphs and digraphs with given valences and factors
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(73)90037-X
– volume: 74
  start-page: 151
  year: 2005
  ident: 10.1016/j.disc.2005.03.028_bib13
  article-title: An extremal problem on the potentially Kr+1-e-graphic sequences
  publication-title: Ars Combin.
– ident: 10.1016/j.disc.2005.03.028_bib11
– ident: 10.1016/j.disc.2005.03.028_bib12
– volume: 24
  start-page: 123
  year: 2001
  ident: 10.1016/j.disc.2005.03.028_bib6
  article-title: A note on potentially K4-e-graphical sequences
  publication-title: Australasian J. Combin.
– volume: vol. 2
  start-page: 535
  year: 1999
  ident: 10.1016/j.disc.2005.03.028_bib4
  article-title: Degree sequences of graphs with prescribed clique size
– volume: vol. 1
  start-page: 439
  year: 1991
  ident: 10.1016/j.disc.2005.03.028_bib2
  article-title: Graphs realizing the same degree sequences and their respective clique numbers
– volume: 212
  start-page: 223
  year: 2000
  ident: 10.1016/j.disc.2005.03.028_bib8
  article-title: An extremal problem on the potentially Pk-graphic sequence
  publication-title: Discrete Math
  doi: 10.1016/S0012-365X(99)00289-7
– volume: 29
  start-page: 63
  year: 1998
  ident: 10.1016/j.disc.2005.03.028_bib7
  article-title: The smallest degree sum that yields potentially Pk-graphic sequences
  publication-title: J. Graph Theory
  doi: 10.1002/(SICI)1097-0118(199810)29:2<63::AID-JGT2>3.0.CO;2-A
– volume: 11
  start-page: 264
  year: 1960
  ident: 10.1016/j.disc.2005.03.028_bib1
  article-title: Graphs with given degrees of vertices
  publication-title: Math. Lapok
SSID ssj0001638
Score 1.979214
Snippet A graphic sequence π = ( d 1 , d 2 , … , d n ) is said to be potentially K r + 1 -graphic, if π has a realization G containing K r + 1 , a clique of r + 1...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Degree sequence
Exact sciences and technology
Graph
Graph theory
Mathematics
Potentially [formula omitted]-graphic sequence
Sciences and techniques of general use
Theoretical computing
Title Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size
URI https://dx.doi.org/10.1016/j.disc.2005.03.028
Volume 301
WOSCitedRecordID wos000232926600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMT4jJAG4PJD7xFmRI78eVxYkPrBBMSQypPUew6rFNJq6Ud0379jmPn0iEGPPASRY6TqD2fz_l8ci4IvRNpmgMUVEioJmGSGxlKrnQoSKxhNTGWiEndbIKfnorxWH4eDIomF-ZqxstSXF_LxX8VNYyBsG3q7D-Iu30oDMA5CB2OIHY4_p3gf86DalVXhrDf-WG_O3FhWS5gMqhLVE910ARRW_Z5bnsQ5QEQyJnPy3QOWhslC2pFASvVs7rSazW9WQseOpzCBCDewY-2_mvL0r-N6hiCE0BgeLxq9f_HkRudl9_DL-fGm87G81BXLI1Y5w7ztruvXm0FRJaO--qVemeFwxFcX1OXomd5iasS8ItSd_6Fi32bp-y9YHQ_8jnlaxW071i2Nt4w5rawHecP0AbhqRRDtHEwOhqftDbbslJns90P8OlVLhLw7nt_R2EeL_IKFlbhOqL0aMrZM_TE7y_wgcPFczQw5RZ66vca2Gvyagttfurk9QIpAA3uQIM70GAADc6xBw1uQIOXc2xBA5d6oMEWNLgDDXagwRY0L9HXD0dn749D330j1JRGy9BuLCPFtE5IPmEklxq4v0xSFWuhgFkRZnSSC5PIIqISdAGROecs4gWnyrAJfYWG5bw02wgLYGJpyhVlSWw_9IuoiIvC2LTtIiqo2EFx84dm2pemtx1SZlkTg3iRWSHYnqlpFtEMhLCDgvaehSvMcu_stJFT5qmlo4wZgOze-_bWhNq9yiPq9Z8m7KJH3dp5g4bLy5V5ix7qq-W0utzzOLwF9UqkpQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+sufficient+conditions+for+a+graphic+sequence+to+have+a+realization+with+prescribed+clique+size&rft.jtitle=Discrete+mathematics&rft.au=YIN%2C+Jian-Hua&rft.au=LI%2C+Jiong-Sheng&rft.date=2005-10-06&rft.pub=Elsevier&rft.issn=0012-365X&rft.volume=301&rft.issue=2-3&rft.spage=218&rft.epage=227&rft_id=info:doi/10.1016%2Fj.disc.2005.03.028&rft.externalDBID=n%2Fa&rft.externalDocID=17195477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon