Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size
A graphic sequence π = ( d 1 , d 2 , … , d n ) is said to be potentially K r + 1 -graphic, if π has a realization G containing K r + 1 , a clique of r + 1 vertices, as a subgraph. In this paper, we give two simple sufficient conditions for a graphic sequence π = ( d 1 , d 2 , … , d n ) to be potenti...
Uloženo v:
| Vydáno v: | Discrete mathematics Ročník 301; číslo 2; s. 218 - 227 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
06.10.2005
Elsevier |
| Témata: | |
| ISSN: | 0012-365X, 1872-681X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A graphic sequence
π
=
(
d
1
,
d
2
,
…
,
d
n
)
is said to be potentially
K
r
+
1
-graphic, if
π
has a realization
G containing
K
r
+
1
, a clique of
r
+
1
vertices, as a subgraph. In this paper, we give two simple sufficient conditions for a graphic sequence
π
=
(
d
1
,
d
2
,
…
,
d
n
)
to be potentially
K
r
+
1
-graphic. We also show that the two sufficient conditions imply a theorem due to Rao [An Erdös-Gallai type result on the clique number of a realization of a degree sequence unpublished.], a theorem due to Li et al [The Erdös–Jacobson–Lehel conjecture on potentially
P
k
-graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.], the Erdös–Jacobson–Lehel conjecture on
σ
(
K
r
+
1
,
n
)
which was confirmed (see [Potentially
G
-graphical degree sequences, in: Y. Alavi et al. (Eds.), Combinatorics, Graph Theory, and Algorithms, vol. 1, New Issues Press, Kalamazoo Michigan, 1999, pp. 451–460; The smallest degree sum that yields potentially
P
k
-graphic sequences, J. Graph Theory 29 (1998) 63–72; An extremal problem on the potentially
P
k
-graphic sequence, Discrete Math. 212 (2000) 223–231; The Erdös–Jacobson–Lehel conjecture on potentially
P
k
-graphic sequences is true, Sci. China Ser. A 41 (1998) 510–520.]) and the Yin–Li–Mao conjecture on
σ
(
K
r
+
1
-
e
,
n
)
[An extremal problem on the potentially
K
r
+
1
-
e
-graphic sequences, Ars Combin. 74 (2005) 151–159.], where
K
r
+
1
-
e
is a graph obtained by deleting one edge from
K
r
+
1
. |
|---|---|
| ISSN: | 0012-365X 1872-681X |
| DOI: | 10.1016/j.disc.2005.03.028 |