Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica

•Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail. Lithium bromide absorption refrigeration system (ARS) is promising in utilizing...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 225; p. 120106
Main Authors: Zhou, Yujie, Pan, Lei, Han, Xu, Sun, Li
Format: Journal Article
Language:English
Published: Elsevier Ltd 05.05.2023
Subjects:
ISSN:1359-4311
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail. Lithium bromide absorption refrigeration system (ARS) is promising in utilizing industrial exhaust heat and improving energy efficiency. ARS consists of a generator, absorber, condenser, evaporator, solution heat exchanger, pump, and valves. To better operate ARS in a changing environment, it is essential to conduct dynamic modeling and analysis, which might be challenging and cumbersome with conventional modeling tools. Object-oriented, acausal modeling language Modelica can effectively address the modeling limitations on this multi-domain energy system, which provides an opportunity for rapid prototyping and dynamic modeling. Therefore, a customized Modelica library for dynamic modeling of the single-effect lithium bromide ARS is developed. Specifically, the dynamics of the main components including the generator, absorber and heat exchangers are modeled based on the mass/energy/momentum conservation laws. To capture the alteration of the medium state, the finite volume method is adopted in the modeling of heat exchangers. The model is well-validated under on-design and off-design conditions. Then, energy analysis is conducted to find the optimal working point. The COP reaches the maximum value of 0.793 when hot/cold water flowrate is 0.9 m3/h and 3 m3/h. And exergy analysis supports the above analysis from the perspective of the second law. At last, dynamic responses of the hot/cold water flowrate/temperature are investigated. Dynamic simulation reveals the response rapidity of variables, strong coupling, and different transient trends (overshoot or initial inverse). Additionally, the maximum/minimum vapor quality at the evaporator/condenser outlet is 1.005/0.022.
AbstractList •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail. Lithium bromide absorption refrigeration system (ARS) is promising in utilizing industrial exhaust heat and improving energy efficiency. ARS consists of a generator, absorber, condenser, evaporator, solution heat exchanger, pump, and valves. To better operate ARS in a changing environment, it is essential to conduct dynamic modeling and analysis, which might be challenging and cumbersome with conventional modeling tools. Object-oriented, acausal modeling language Modelica can effectively address the modeling limitations on this multi-domain energy system, which provides an opportunity for rapid prototyping and dynamic modeling. Therefore, a customized Modelica library for dynamic modeling of the single-effect lithium bromide ARS is developed. Specifically, the dynamics of the main components including the generator, absorber and heat exchangers are modeled based on the mass/energy/momentum conservation laws. To capture the alteration of the medium state, the finite volume method is adopted in the modeling of heat exchangers. The model is well-validated under on-design and off-design conditions. Then, energy analysis is conducted to find the optimal working point. The COP reaches the maximum value of 0.793 when hot/cold water flowrate is 0.9 m3/h and 3 m3/h. And exergy analysis supports the above analysis from the perspective of the second law. At last, dynamic responses of the hot/cold water flowrate/temperature are investigated. Dynamic simulation reveals the response rapidity of variables, strong coupling, and different transient trends (overshoot or initial inverse). Additionally, the maximum/minimum vapor quality at the evaporator/condenser outlet is 1.005/0.022.
ArticleNumber 120106
Author Sun, Li
Pan, Lei
Zhou, Yujie
Han, Xu
Author_xml – sequence: 1
  givenname: Yujie
  surname: Zhou
  fullname: Zhou, Yujie
  organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Lei
  surname: Pan
  fullname: Pan, Lei
  organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China
– sequence: 3
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: Center for Green Buildings and Cities, Graduate School of Design, Harvard University, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Li
  surname: Sun
  fullname: Sun, Li
  email: sunli12@seu.edu.cn
  organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China
BookMark eNqNkD1PwzAQhj0UibbwHzywptj5ciKxQKGAVMQCs3WxL62rxI7sFCn_njbtAlOn0-n0PnrvmZGJdRYJueNswRnP73cL6Lqm36JvoUG7WcQsThY8ZpzlEzLlSVZGacL5NZmFsGOMx4VIp6R9Hiy0RtHWaWyM3VCwmo4Yp88nsNAMwQTqatqYfmv2La28a41GClVwvuuNs9Rj7c0GPYxbGEKPLd2HI_NjhCu4IVc1NAFvz3NOvlcvX8u3aP35-r58XEcqSVgfZZWqFaSghagYQskKJUqRC5ZkeSG4rriIy7yATOWVSlDnAsqUYczTEnmm02ROnk5c5V0Ih2JSmX7s1XswjeRMHqXJnfwrTR6lyZO0A-ThH6TzpgU_XBpfneJ4ePTHoJdBGbQKtfGoeqmduQz0C2bFmlg
CitedBy_id crossref_primary_10_1016_j_enconman_2024_118760
crossref_primary_10_1016_j_energy_2024_132674
crossref_primary_10_1016_j_applthermaleng_2024_123296
crossref_primary_10_1016_j_tust_2025_106627
crossref_primary_10_1016_j_enconman_2024_118379
crossref_primary_10_1016_j_renene_2024_122327
crossref_primary_10_1016_j_applthermaleng_2024_124756
crossref_primary_10_1016_j_applthermaleng_2023_120394
crossref_primary_10_1016_j_jobe_2025_112338
crossref_primary_10_3390_en17164038
Cites_doi 10.1016/j.ijrefrig.2020.06.030
10.1109/ACCESS.2019.2913657
10.1016/j.enbuild.2012.12.015
10.1016/j.rser.2018.03.099
10.1016/j.apenergy.2014.10.054
10.3390/su13052987
10.1016/j.enconman.2012.04.007
10.1016/j.enconman.2019.112370
10.1016/j.applthermaleng.2018.11.092
10.1016/j.ijrefrig.2009.07.003
10.1016/j.ijrefrig.2012.10.013
10.1016/j.applthermaleng.2011.04.004
10.1016/j.applthermaleng.2020.116435
10.1016/j.ijrefrig.2007.06.009
10.3390/en9050339
10.1016/j.enconman.2017.01.020
10.1016/j.enconman.2017.08.005
10.1016/S0140-7007(00)00039-6
10.3390/app7080797
10.1016/j.ijrefrig.2005.10.007
10.1016/j.enbuild.2019.06.037
10.1016/j.apenergy.2020.115766
10.1016/j.rser.2020.109920
10.1016/j.ijrefrig.2020.08.030
10.1016/j.ijrefrig.2018.08.026
10.1016/j.ijrefrig.2022.04.015
10.1016/j.energy.2013.07.062
10.1016/j.enconman.2021.114769
10.1016/j.apenergy.2021.117337
10.1016/j.ijrefrig.2016.07.018
10.1080/19401490902818259
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2023.120106
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2023_120106
S1359431123001357
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c330t-5bcfca4ad77b0ea908c797670356871db172968a5c6bc3ed67a940e2149e15d43
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990476500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 07:46:54 EST 2025
Tue Nov 18 22:44:02 EST 2025
Sat Jul 05 17:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite volume method
Modelica
Lithium bromide absorption refrigeration
Energy and exergy analysis
Dynamic modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-5bcfca4ad77b0ea908c797670356871db172968a5c6bc3ed67a940e2149e15d43
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2023_120106
crossref_primary_10_1016_j_applthermaleng_2023_120106
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2023_120106
PublicationCentury 2000
PublicationDate 2023-05-05
PublicationDateYYYYMMDD 2023-05-05
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alcântara, Lima, Ochoa (b0035) 2022; 13
Misenheimer, Terry (b0100) 2017; 150
Fischer, Dutra, Rohatgi (b0040) 2020; 120
Altamirano, Le Pierrès, Stutz (b0030) 2021; 185
Wen, Wu, Liu (b0085) 2019; 7
Fu, Zuo, Wetter (b0125) 2019; 198
Liu, Xie, Yang (b0015) 2020; 205
Jalalizadeh, Fayaz, Delfani (b0105) 2021; 43
Han, Chen, Lin (b0025) 2015; 138
Liu, Cheng, Cheng (b0090) 2021; 247
Desideri, Dechesne, Wronski (b0155) 2016; 9
Myat, Thu, Kim (b0150) 2011; 31
Fan, Hinkelman, Fu (b0120) 2021; 299
Pátek, Klomfar (b0165) 2006; 29
Mo, Liu (b0115) 2020; 279
Abas, Kalair, Khan (b0010) 2018; 90
Wang, Shang, Li (b0045) 2017; 7
Kaita (b0160) 2001; 24
Gibelhaus, Postweiler, Bardow (b0135) 2022
Yıldız, Ersöz (b0140) 2013; 60
Matsushima, Fujii, Komatsu (b0060) 2010; 33
Iranmanesh, Mehrabian (b0020) 2013; 60
de la Calle, Roca, Bonilla (b0050) 2016; 72
Evola, Le Pierrès, Boudehenn (b0075) 2013; 36
Castro, Farnós, Papakokkinos (b0080) 2020; 120
Zabala, Febres, Sterling (b0130) 2020; 129
Takalkar, Bhosale, Mali (b0145) 2019; 148
Ochoa, Dutra, Henríquez (b0065) 2017; 136
Zinet, Rulliere, Haberschill (b0070) 2012; 62
Wetter (b0095) 2009; 2
Kohlenbach, Ziegler (b0055) 2008; 31
Goyal, Staedter, Garimella (b0170) 2019; 97
Castaño-Rosa, Barrella, Sánchez-Guevara (b0005) 2021; 13
Matsushima (10.1016/j.applthermaleng.2023.120106_b0060) 2010; 33
Pátek (10.1016/j.applthermaleng.2023.120106_b0165) 2006; 29
Myat (10.1016/j.applthermaleng.2023.120106_b0150) 2011; 31
Evola (10.1016/j.applthermaleng.2023.120106_b0075) 2013; 36
Goyal (10.1016/j.applthermaleng.2023.120106_b0170) 2019; 97
Kohlenbach (10.1016/j.applthermaleng.2023.120106_b0055) 2008; 31
Takalkar (10.1016/j.applthermaleng.2023.120106_b0145) 2019; 148
Altamirano (10.1016/j.applthermaleng.2023.120106_b0030) 2021; 185
Desideri (10.1016/j.applthermaleng.2023.120106_b0155) 2016; 9
Liu (10.1016/j.applthermaleng.2023.120106_b0090) 2021; 247
Fischer (10.1016/j.applthermaleng.2023.120106_b0040) 2020; 120
Abas (10.1016/j.applthermaleng.2023.120106_b0010) 2018; 90
Alcântara (10.1016/j.applthermaleng.2023.120106_b0035) 2022; 13
Misenheimer (10.1016/j.applthermaleng.2023.120106_b0100) 2017; 150
Fan (10.1016/j.applthermaleng.2023.120106_b0120) 2021; 299
Ochoa (10.1016/j.applthermaleng.2023.120106_b0065) 2017; 136
Wetter (10.1016/j.applthermaleng.2023.120106_b0095) 2009; 2
de la Calle (10.1016/j.applthermaleng.2023.120106_b0050) 2016; 72
Liu (10.1016/j.applthermaleng.2023.120106_b0015) 2020; 205
Yıldız (10.1016/j.applthermaleng.2023.120106_b0140) 2013; 60
Jalalizadeh (10.1016/j.applthermaleng.2023.120106_b0105) 2021; 43
Castro (10.1016/j.applthermaleng.2023.120106_b0080) 2020; 120
Zabala (10.1016/j.applthermaleng.2023.120106_b0130) 2020; 129
Castaño-Rosa (10.1016/j.applthermaleng.2023.120106_b0005) 2021; 13
Iranmanesh (10.1016/j.applthermaleng.2023.120106_b0020) 2013; 60
Fu (10.1016/j.applthermaleng.2023.120106_b0125) 2019; 198
Wang (10.1016/j.applthermaleng.2023.120106_b0045) 2017; 7
Zinet (10.1016/j.applthermaleng.2023.120106_b0070) 2012; 62
Wen (10.1016/j.applthermaleng.2023.120106_b0085) 2019; 7
Mo (10.1016/j.applthermaleng.2023.120106_b0115) 2020; 279
Gibelhaus (10.1016/j.applthermaleng.2023.120106_b0135) 2022
Kaita (10.1016/j.applthermaleng.2023.120106_b0160) 2001; 24
Han (10.1016/j.applthermaleng.2023.120106_b0025) 2015; 138
References_xml – volume: 7
  start-page: 797
  year: 2017
  ident: b0045
  article-title: Dynamic performance analysis for an absorption chiller under different working conditions
  publication-title: Appl. Sci.
– volume: 90
  start-page: 557
  year: 2018
  end-page: 569
  ident: b0010
  article-title: Natural and synthetic refrigerants, global warming: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  year: 2022
  ident: b0035
  article-title: Implementation of the characteristic equation method in quasi-dynamic simulation of absorption chillers: Modeling, validation and first results
  publication-title: Energy Convers. Manag.: X
– volume: 279
  year: 2020
  ident: b0115
  article-title: Modeling and optimization for distributed microgrid based on Modelica language
  publication-title: Appl. Energy
– volume: 9
  start-page: 339
  year: 2016
  ident: b0155
  article-title: Comparison of moving boundary and finite-volume heat exchanger models in the modelica language
  publication-title: Energies
– volume: 205
  year: 2020
  ident: b0015
  article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat
  publication-title: Energ. Conver. Manage.
– volume: 43
  year: 2021
  ident: b0105
  article-title: Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors
  publication-title: J. Build. Eng.
– volume: 60
  start-page: 47
  year: 2013
  end-page: 59
  ident: b0020
  article-title: Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses
  publication-title: Energ. Build.
– volume: 120
  start-page: 406
  year: 2020
  end-page: 419
  ident: b0080
  article-title: Transient model for the development of an air-cooled LiBr-H2O absorption chiller based on heat and mass transfer empirical correlations
  publication-title: Int. J. Refrig.
– volume: 33
  start-page: 259
  year: 2010
  end-page: 268
  ident: b0060
  article-title: Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller)
  publication-title: Int. J. Refrig.
– volume: 129
  year: 2020
  ident: b0130
  article-title: Virtual testbed for model predictive control development in district cooling systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 2405
  year: 2011
  end-page: 2413
  ident: b0150
  article-title: A second law analysis and entropy generation minimization of an absorption chiller
  publication-title: Appl. Therm. Eng.
– volume: 299
  year: 2021
  ident: b0120
  article-title: Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer
  publication-title: Appl. Energy
– volume: 185
  year: 2021
  ident: b0030
  article-title: Performance characterization methods for absorption chillers applied to an NH3-LiNO3 single-stage prototype
  publication-title: Appl. Therm. Eng.
– volume: 13
  start-page: 2987
  year: 2021
  ident: b0005
  article-title: Cooling degree models and future energy demand in the residential sector. a seven-country case study
  publication-title: Sustainability
– volume: 2
  start-page: 143
  year: 2009
  end-page: 161
  ident: b0095
  article-title: Modelica-based modelling and simulation to support research and development in building energy and control systems
  publication-title: J. Build. Perform. Simul.
– volume: 136
  start-page: 270
  year: 2017
  end-page: 282
  ident: b0065
  article-title: The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O
  publication-title: Energ. Conver. Manage.
– volume: 29
  start-page: 566
  year: 2006
  end-page: 578
  ident: b0165
  article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range
  publication-title: Int. J. Refrig.
– volume: 62
  start-page: 51
  year: 2012
  end-page: 63
  ident: b0070
  article-title: A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller
  publication-title: Energ. Conver. Manage.
– volume: 36
  start-page: 1015
  year: 2013
  end-page: 1028
  ident: b0075
  article-title: Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller
  publication-title: Int. J. Refrig.
– volume: 247
  year: 2021
  ident: b0090
  article-title: Dynamic performance analysis of a solar driving absorption chiller integrated with absorption thermal energy storage
  publication-title: Energ. Conver. Manage.
– volume: 24
  start-page: 374
  year: 2001
  end-page: 390
  ident: b0160
  article-title: Thermodynamic properties of lithium bromide–water solutions at high temperatures
  publication-title: Int. J. Refrig.
– volume: 150
  start-page: 574
  year: 2017
  end-page: 587
  ident: b0100
  article-title: The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity
  publication-title: Energ. Conver. Manage.
– volume: 120
  start-page: 420
  year: 2020
  end-page: 429
  ident: b0040
  article-title: Thermodynamic modelling of a LiBr-H2O absorption chiller by improvement of characteristic equation method
  publication-title: Int. J. Refrig.
– volume: 138
  start-page: 160
  year: 2015
  end-page: 168
  ident: b0025
  article-title: Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine
  publication-title: Appl. Energy
– volume: 72
  start-page: 171
  year: 2016
  end-page: 191
  ident: b0050
  article-title: Dynamic modeling and simulation of a double-effect absorption heat pump
  publication-title: Int. J. Refrig.
– volume: 198
  start-page: 503
  year: 2019
  end-page: 519
  ident: b0125
  article-title: Equation-based object-oriented modeling and simulation of data center cooling systems
  publication-title: Energ. Build.
– volume: 97
  start-page: 1
  year: 2019
  end-page: 20
  ident: b0170
  article-title: A review of control methodologies for vapor compression and absorption heat pumps
  publication-title: Int. J. Refrig.
– volume: 7
  start-page: 57251
  year: 2019
  end-page: 57258
  ident: b0085
  article-title: A state-space model for dynamic simulation of a single-effect LiBr/H2O absorption chiller
  publication-title: IEEE Access
– year: 2022
  ident: b0135
  article-title: Efficient modeling of adsorption chillers: avoiding discretization by operator splitting
  publication-title: Int. J. Refrig.
– volume: 60
  start-page: 407
  year: 2013
  end-page: 415
  ident: b0140
  article-title: Energy and exergy analyses of the diffusion absorption refrigeration system
  publication-title: Energy
– volume: 148
  start-page: 787
  year: 2019
  end-page: 795
  ident: b0145
  article-title: Thermodynamic analysis of EMISE–water as a working pair for absorption refrigeration system
  publication-title: Appl. Therm. Eng.
– volume: 31
  start-page: 217
  year: 2008
  end-page: 225
  ident: b0055
  article-title: A dynamic simulation model for transient absorption chiller performance. part I: the model
  publication-title: Int. J. Refrig
– volume: 120
  start-page: 420
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120106_b0040
  article-title: Thermodynamic modelling of a LiBr-H2O absorption chiller by improvement of characteristic equation method
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.06.030
– volume: 7
  start-page: 57251
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120106_b0085
  article-title: A state-space model for dynamic simulation of a single-effect LiBr/H2O absorption chiller
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913657
– volume: 60
  start-page: 47
  year: 2013
  ident: 10.1016/j.applthermaleng.2023.120106_b0020
  article-title: Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2012.12.015
– volume: 90
  start-page: 557
  year: 2018
  ident: 10.1016/j.applthermaleng.2023.120106_b0010
  article-title: Natural and synthetic refrigerants, global warming: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.099
– volume: 138
  start-page: 160
  year: 2015
  ident: 10.1016/j.applthermaleng.2023.120106_b0025
  article-title: Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.054
– volume: 13
  start-page: 2987
  issue: 5
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120106_b0005
  article-title: Cooling degree models and future energy demand in the residential sector. a seven-country case study
  publication-title: Sustainability
  doi: 10.3390/su13052987
– volume: 43
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120106_b0105
  article-title: Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors
  publication-title: J. Build. Eng.
– volume: 62
  start-page: 51
  year: 2012
  ident: 10.1016/j.applthermaleng.2023.120106_b0070
  article-title: A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2012.04.007
– volume: 205
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120106_b0015
  article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2019.112370
– volume: 148
  start-page: 787
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120106_b0145
  article-title: Thermodynamic analysis of EMISE–water as a working pair for absorption refrigeration system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.092
– volume: 33
  start-page: 259
  issue: 2
  year: 2010
  ident: 10.1016/j.applthermaleng.2023.120106_b0060
  article-title: Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller)
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.07.003
– volume: 36
  start-page: 1015
  issue: 3
  year: 2013
  ident: 10.1016/j.applthermaleng.2023.120106_b0075
  article-title: Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.10.013
– volume: 31
  start-page: 2405
  issue: 14–15
  year: 2011
  ident: 10.1016/j.applthermaleng.2023.120106_b0150
  article-title: A second law analysis and entropy generation minimization of an absorption chiller
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.04.004
– volume: 185
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120106_b0030
  article-title: Performance characterization methods for absorption chillers applied to an NH3-LiNO3 single-stage prototype
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116435
– volume: 13
  year: 2022
  ident: 10.1016/j.applthermaleng.2023.120106_b0035
  article-title: Implementation of the characteristic equation method in quasi-dynamic simulation of absorption chillers: Modeling, validation and first results
  publication-title: Energy Convers. Manag.: X
– volume: 31
  start-page: 217
  issue: 2
  year: 2008
  ident: 10.1016/j.applthermaleng.2023.120106_b0055
  article-title: A dynamic simulation model for transient absorption chiller performance. part I: the model
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2007.06.009
– volume: 9
  start-page: 339
  issue: 5
  year: 2016
  ident: 10.1016/j.applthermaleng.2023.120106_b0155
  article-title: Comparison of moving boundary and finite-volume heat exchanger models in the modelica language
  publication-title: Energies
  doi: 10.3390/en9050339
– volume: 136
  start-page: 270
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120106_b0065
  article-title: The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2017.01.020
– volume: 150
  start-page: 574
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120106_b0100
  article-title: The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2017.08.005
– volume: 24
  start-page: 374
  issue: 5
  year: 2001
  ident: 10.1016/j.applthermaleng.2023.120106_b0160
  article-title: Thermodynamic properties of lithium bromide–water solutions at high temperatures
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(00)00039-6
– volume: 7
  start-page: 797
  issue: 8
  year: 2017
  ident: 10.1016/j.applthermaleng.2023.120106_b0045
  article-title: Dynamic performance analysis for an absorption chiller under different working conditions
  publication-title: Appl. Sci.
  doi: 10.3390/app7080797
– volume: 29
  start-page: 566
  issue: 4
  year: 2006
  ident: 10.1016/j.applthermaleng.2023.120106_b0165
  article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2005.10.007
– volume: 198
  start-page: 503
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120106_b0125
  article-title: Equation-based object-oriented modeling and simulation of data center cooling systems
  publication-title: Energ. Build.
  doi: 10.1016/j.enbuild.2019.06.037
– volume: 279
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120106_b0115
  article-title: Modeling and optimization for distributed microgrid based on Modelica language
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115766
– volume: 129
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120106_b0130
  article-title: Virtual testbed for model predictive control development in district cooling systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109920
– volume: 120
  start-page: 406
  year: 2020
  ident: 10.1016/j.applthermaleng.2023.120106_b0080
  article-title: Transient model for the development of an air-cooled LiBr-H2O absorption chiller based on heat and mass transfer empirical correlations
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.08.030
– volume: 97
  start-page: 1
  year: 2019
  ident: 10.1016/j.applthermaleng.2023.120106_b0170
  article-title: A review of control methodologies for vapor compression and absorption heat pumps
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2018.08.026
– year: 2022
  ident: 10.1016/j.applthermaleng.2023.120106_b0135
  article-title: Efficient modeling of adsorption chillers: avoiding discretization by operator splitting
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2022.04.015
– volume: 60
  start-page: 407
  year: 2013
  ident: 10.1016/j.applthermaleng.2023.120106_b0140
  article-title: Energy and exergy analyses of the diffusion absorption refrigeration system
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.062
– volume: 247
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120106_b0090
  article-title: Dynamic performance analysis of a solar driving absorption chiller integrated with absorption thermal energy storage
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.114769
– volume: 299
  year: 2021
  ident: 10.1016/j.applthermaleng.2023.120106_b0120
  article-title: Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117337
– volume: 72
  start-page: 171
  year: 2016
  ident: 10.1016/j.applthermaleng.2023.120106_b0050
  article-title: Dynamic modeling and simulation of a double-effect absorption heat pump
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.07.018
– volume: 2
  start-page: 143
  issue: 2
  year: 2009
  ident: 10.1016/j.applthermaleng.2023.120106_b0095
  article-title: Modelica-based modelling and simulation to support research and development in building energy and control systems
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401490902818259
SSID ssj0012874
Score 2.46624
Snippet •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120106
SubjectTerms Dynamic modeling
Energy and exergy analysis
Finite volume method
Lithium bromide absorption refrigeration
Modelica
Title Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica
URI https://dx.doi.org/10.1016/j.applthermaleng.2023.120106
Volume 225
WOSCitedRecordID wos000990476500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED51ZZq2B8R-oAEb8gNvVao0iZNYPEyIMQFiiAcm9S2yHUdLRRNUGsQ_sf95l9hOUsSkDomXqHLrc937ev7OPt8BHNCMZm4ac9SASp1A8MhhnvAdXIqxOZWCySaJ60V0eRlPp-xqMPhj78Lc30RFET88sNsXVTW2obLrq7P_oe5WKDbga1Q6PlHt-FxL8d91jXld48ZeQaxpHjaYt3gvEwnS8N95NR-JRTnPUzXi4q5caDuCiyf67spgROd8HlXN5sLPRrgJ87FJbA2hbcZCzasu1WG3PV1WjdGvZnmLqCtz_UHlnTlsWqZVd2SlP5L3Nyk8HRJIe3bVp8xBrjLpG17Poz3TOanP5cMnrbreYJiN6zN9MwecwrgeaNx1W02m_WiRa0MPbVTbLFmVltTSEi3tFWx4EWXxEDaOzk6m5-2xVF0coPHgzWzewEEXMPjvb_c05-nxmOst2DQOCDnSwHkPA1V8gHe9tJQfYW4gRCyECEKIrECIWAiRMiMGQsRAiHQQIisQIhpCpIEQsRD6BL9-nFwfnzqmLIcjfd9dOlTITPKAp1EkXMWZG8sISS0uHTRE9zsVyIlZGHMqQyF9lYYRZ4GrPPTF1YSmgb8Nw6Is1GcggWJMSWSRsZ8FMqAcGamIFQsylfnIdHfg0P5wiTQ56-vSKTfJOmrcAdr2vtW5W9bs983qKDE8VPPLBAG5loTdZ468B2-7f88XGC4XlfoKr-X9Mr9b7Bs0_gUnirmk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+modeling+and+thermodynamic+analysis+of+lithium+bromide+absorption+refrigeration+system+using+Modelica&rft.jtitle=Applied+thermal+engineering&rft.au=Zhou%2C+Yujie&rft.au=Pan%2C+Lei&rft.au=Han%2C+Xu&rft.au=Sun%2C+Li&rft.date=2023-05-05&rft.issn=1359-4311&rft.volume=225&rft.spage=120106&rft_id=info:doi/10.1016%2Fj.applthermaleng.2023.120106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2023_120106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon