Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica
•Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail. Lithium bromide absorption refrigeration system (ARS) is promising in utilizing...
Saved in:
| Published in: | Applied thermal engineering Vol. 225; p. 120106 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
05.05.2023
|
| Subjects: | |
| ISSN: | 1359-4311 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail.
Lithium bromide absorption refrigeration system (ARS) is promising in utilizing industrial exhaust heat and improving energy efficiency. ARS consists of a generator, absorber, condenser, evaporator, solution heat exchanger, pump, and valves. To better operate ARS in a changing environment, it is essential to conduct dynamic modeling and analysis, which might be challenging and cumbersome with conventional modeling tools. Object-oriented, acausal modeling language Modelica can effectively address the modeling limitations on this multi-domain energy system, which provides an opportunity for rapid prototyping and dynamic modeling. Therefore, a customized Modelica library for dynamic modeling of the single-effect lithium bromide ARS is developed. Specifically, the dynamics of the main components including the generator, absorber and heat exchangers are modeled based on the mass/energy/momentum conservation laws. To capture the alteration of the medium state, the finite volume method is adopted in the modeling of heat exchangers. The model is well-validated under on-design and off-design conditions. Then, energy analysis is conducted to find the optimal working point. The COP reaches the maximum value of 0.793 when hot/cold water flowrate is 0.9 m3/h and 3 m3/h. And exergy analysis supports the above analysis from the perspective of the second law. At last, dynamic responses of the hot/cold water flowrate/temperature are investigated. Dynamic simulation reveals the response rapidity of variables, strong coupling, and different transient trends (overshoot or initial inverse). Additionally, the maximum/minimum vapor quality at the evaporator/condenser outlet is 1.005/0.022. |
|---|---|
| AbstractList | •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state simulation.•Dynamic responses of components and system are discussed in detail.
Lithium bromide absorption refrigeration system (ARS) is promising in utilizing industrial exhaust heat and improving energy efficiency. ARS consists of a generator, absorber, condenser, evaporator, solution heat exchanger, pump, and valves. To better operate ARS in a changing environment, it is essential to conduct dynamic modeling and analysis, which might be challenging and cumbersome with conventional modeling tools. Object-oriented, acausal modeling language Modelica can effectively address the modeling limitations on this multi-domain energy system, which provides an opportunity for rapid prototyping and dynamic modeling. Therefore, a customized Modelica library for dynamic modeling of the single-effect lithium bromide ARS is developed. Specifically, the dynamics of the main components including the generator, absorber and heat exchangers are modeled based on the mass/energy/momentum conservation laws. To capture the alteration of the medium state, the finite volume method is adopted in the modeling of heat exchangers. The model is well-validated under on-design and off-design conditions. Then, energy analysis is conducted to find the optimal working point. The COP reaches the maximum value of 0.793 when hot/cold water flowrate is 0.9 m3/h and 3 m3/h. And exergy analysis supports the above analysis from the perspective of the second law. At last, dynamic responses of the hot/cold water flowrate/temperature are investigated. Dynamic simulation reveals the response rapidity of variables, strong coupling, and different transient trends (overshoot or initial inverse). Additionally, the maximum/minimum vapor quality at the evaporator/condenser outlet is 1.005/0.022. |
| ArticleNumber | 120106 |
| Author | Sun, Li Pan, Lei Zhou, Yujie Han, Xu |
| Author_xml | – sequence: 1 givenname: Yujie surname: Zhou fullname: Zhou, Yujie organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Lei surname: Pan fullname: Pan, Lei organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China – sequence: 3 givenname: Xu surname: Han fullname: Han, Xu organization: Center for Green Buildings and Cities, Graduate School of Design, Harvard University, Cambridge, MA 02138, USA – sequence: 4 givenname: Li surname: Sun fullname: Sun, Li email: sunli12@seu.edu.cn organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing 210096, China |
| BookMark | eNqNkD1PwzAQhj0UibbwHzywptj5ciKxQKGAVMQCs3WxL62rxI7sFCn_njbtAlOn0-n0PnrvmZGJdRYJueNswRnP73cL6Lqm36JvoUG7WcQsThY8ZpzlEzLlSVZGacL5NZmFsGOMx4VIp6R9Hiy0RtHWaWyM3VCwmo4Yp88nsNAMwQTqatqYfmv2La28a41GClVwvuuNs9Rj7c0GPYxbGEKPLd2HI_NjhCu4IVc1NAFvz3NOvlcvX8u3aP35-r58XEcqSVgfZZWqFaSghagYQskKJUqRC5ZkeSG4rriIy7yATOWVSlDnAsqUYczTEnmm02ROnk5c5V0Ih2JSmX7s1XswjeRMHqXJnfwrTR6lyZO0A-ThH6TzpgU_XBpfneJ4ePTHoJdBGbQKtfGoeqmduQz0C2bFmlg |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2024_118760 crossref_primary_10_1016_j_energy_2024_132674 crossref_primary_10_1016_j_applthermaleng_2024_123296 crossref_primary_10_1016_j_tust_2025_106627 crossref_primary_10_1016_j_enconman_2024_118379 crossref_primary_10_1016_j_renene_2024_122327 crossref_primary_10_1016_j_applthermaleng_2024_124756 crossref_primary_10_1016_j_applthermaleng_2023_120394 crossref_primary_10_1016_j_jobe_2025_112338 crossref_primary_10_3390_en17164038 |
| Cites_doi | 10.1016/j.ijrefrig.2020.06.030 10.1109/ACCESS.2019.2913657 10.1016/j.enbuild.2012.12.015 10.1016/j.rser.2018.03.099 10.1016/j.apenergy.2014.10.054 10.3390/su13052987 10.1016/j.enconman.2012.04.007 10.1016/j.enconman.2019.112370 10.1016/j.applthermaleng.2018.11.092 10.1016/j.ijrefrig.2009.07.003 10.1016/j.ijrefrig.2012.10.013 10.1016/j.applthermaleng.2011.04.004 10.1016/j.applthermaleng.2020.116435 10.1016/j.ijrefrig.2007.06.009 10.3390/en9050339 10.1016/j.enconman.2017.01.020 10.1016/j.enconman.2017.08.005 10.1016/S0140-7007(00)00039-6 10.3390/app7080797 10.1016/j.ijrefrig.2005.10.007 10.1016/j.enbuild.2019.06.037 10.1016/j.apenergy.2020.115766 10.1016/j.rser.2020.109920 10.1016/j.ijrefrig.2020.08.030 10.1016/j.ijrefrig.2018.08.026 10.1016/j.ijrefrig.2022.04.015 10.1016/j.energy.2013.07.062 10.1016/j.enconman.2021.114769 10.1016/j.apenergy.2021.117337 10.1016/j.ijrefrig.2016.07.018 10.1080/19401490902818259 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2023.120106 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2023_120106 S1359431123001357 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSH SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c330t-5bcfca4ad77b0ea908c797670356871db172968a5c6bc3ed67a940e2149e15d43 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990476500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sat Nov 29 07:46:54 EST 2025 Tue Nov 18 22:44:02 EST 2025 Sat Jul 05 17:11:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite volume method Modelica Lithium bromide absorption refrigeration Energy and exergy analysis Dynamic modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-5bcfca4ad77b0ea908c797670356871db172968a5c6bc3ed67a940e2149e15d43 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2023_120106 crossref_primary_10_1016_j_applthermaleng_2023_120106 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2023_120106 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-05 |
| PublicationDateYYYYMMDD | 2023-05-05 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Alcântara, Lima, Ochoa (b0035) 2022; 13 Misenheimer, Terry (b0100) 2017; 150 Fischer, Dutra, Rohatgi (b0040) 2020; 120 Altamirano, Le Pierrès, Stutz (b0030) 2021; 185 Wen, Wu, Liu (b0085) 2019; 7 Fu, Zuo, Wetter (b0125) 2019; 198 Liu, Xie, Yang (b0015) 2020; 205 Jalalizadeh, Fayaz, Delfani (b0105) 2021; 43 Han, Chen, Lin (b0025) 2015; 138 Liu, Cheng, Cheng (b0090) 2021; 247 Desideri, Dechesne, Wronski (b0155) 2016; 9 Myat, Thu, Kim (b0150) 2011; 31 Fan, Hinkelman, Fu (b0120) 2021; 299 Pátek, Klomfar (b0165) 2006; 29 Mo, Liu (b0115) 2020; 279 Abas, Kalair, Khan (b0010) 2018; 90 Wang, Shang, Li (b0045) 2017; 7 Kaita (b0160) 2001; 24 Gibelhaus, Postweiler, Bardow (b0135) 2022 Yıldız, Ersöz (b0140) 2013; 60 Matsushima, Fujii, Komatsu (b0060) 2010; 33 Iranmanesh, Mehrabian (b0020) 2013; 60 de la Calle, Roca, Bonilla (b0050) 2016; 72 Evola, Le Pierrès, Boudehenn (b0075) 2013; 36 Castro, Farnós, Papakokkinos (b0080) 2020; 120 Zabala, Febres, Sterling (b0130) 2020; 129 Takalkar, Bhosale, Mali (b0145) 2019; 148 Ochoa, Dutra, Henríquez (b0065) 2017; 136 Zinet, Rulliere, Haberschill (b0070) 2012; 62 Wetter (b0095) 2009; 2 Kohlenbach, Ziegler (b0055) 2008; 31 Goyal, Staedter, Garimella (b0170) 2019; 97 Castaño-Rosa, Barrella, Sánchez-Guevara (b0005) 2021; 13 Matsushima (10.1016/j.applthermaleng.2023.120106_b0060) 2010; 33 Pátek (10.1016/j.applthermaleng.2023.120106_b0165) 2006; 29 Myat (10.1016/j.applthermaleng.2023.120106_b0150) 2011; 31 Evola (10.1016/j.applthermaleng.2023.120106_b0075) 2013; 36 Goyal (10.1016/j.applthermaleng.2023.120106_b0170) 2019; 97 Kohlenbach (10.1016/j.applthermaleng.2023.120106_b0055) 2008; 31 Takalkar (10.1016/j.applthermaleng.2023.120106_b0145) 2019; 148 Altamirano (10.1016/j.applthermaleng.2023.120106_b0030) 2021; 185 Desideri (10.1016/j.applthermaleng.2023.120106_b0155) 2016; 9 Liu (10.1016/j.applthermaleng.2023.120106_b0090) 2021; 247 Fischer (10.1016/j.applthermaleng.2023.120106_b0040) 2020; 120 Abas (10.1016/j.applthermaleng.2023.120106_b0010) 2018; 90 Alcântara (10.1016/j.applthermaleng.2023.120106_b0035) 2022; 13 Misenheimer (10.1016/j.applthermaleng.2023.120106_b0100) 2017; 150 Fan (10.1016/j.applthermaleng.2023.120106_b0120) 2021; 299 Ochoa (10.1016/j.applthermaleng.2023.120106_b0065) 2017; 136 Wetter (10.1016/j.applthermaleng.2023.120106_b0095) 2009; 2 de la Calle (10.1016/j.applthermaleng.2023.120106_b0050) 2016; 72 Liu (10.1016/j.applthermaleng.2023.120106_b0015) 2020; 205 Yıldız (10.1016/j.applthermaleng.2023.120106_b0140) 2013; 60 Jalalizadeh (10.1016/j.applthermaleng.2023.120106_b0105) 2021; 43 Castro (10.1016/j.applthermaleng.2023.120106_b0080) 2020; 120 Zabala (10.1016/j.applthermaleng.2023.120106_b0130) 2020; 129 Castaño-Rosa (10.1016/j.applthermaleng.2023.120106_b0005) 2021; 13 Iranmanesh (10.1016/j.applthermaleng.2023.120106_b0020) 2013; 60 Fu (10.1016/j.applthermaleng.2023.120106_b0125) 2019; 198 Wang (10.1016/j.applthermaleng.2023.120106_b0045) 2017; 7 Zinet (10.1016/j.applthermaleng.2023.120106_b0070) 2012; 62 Wen (10.1016/j.applthermaleng.2023.120106_b0085) 2019; 7 Mo (10.1016/j.applthermaleng.2023.120106_b0115) 2020; 279 Gibelhaus (10.1016/j.applthermaleng.2023.120106_b0135) 2022 Kaita (10.1016/j.applthermaleng.2023.120106_b0160) 2001; 24 Han (10.1016/j.applthermaleng.2023.120106_b0025) 2015; 138 |
| References_xml | – volume: 7 start-page: 797 year: 2017 ident: b0045 article-title: Dynamic performance analysis for an absorption chiller under different working conditions publication-title: Appl. Sci. – volume: 90 start-page: 557 year: 2018 end-page: 569 ident: b0010 article-title: Natural and synthetic refrigerants, global warming: a review publication-title: Renew. Sustain. Energy Rev. – volume: 13 year: 2022 ident: b0035 article-title: Implementation of the characteristic equation method in quasi-dynamic simulation of absorption chillers: Modeling, validation and first results publication-title: Energy Convers. Manag.: X – volume: 279 year: 2020 ident: b0115 article-title: Modeling and optimization for distributed microgrid based on Modelica language publication-title: Appl. Energy – volume: 9 start-page: 339 year: 2016 ident: b0155 article-title: Comparison of moving boundary and finite-volume heat exchanger models in the modelica language publication-title: Energies – volume: 205 year: 2020 ident: b0015 article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat publication-title: Energ. Conver. Manage. – volume: 43 year: 2021 ident: b0105 article-title: Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors publication-title: J. Build. Eng. – volume: 60 start-page: 47 year: 2013 end-page: 59 ident: b0020 article-title: Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses publication-title: Energ. Build. – volume: 120 start-page: 406 year: 2020 end-page: 419 ident: b0080 article-title: Transient model for the development of an air-cooled LiBr-H2O absorption chiller based on heat and mass transfer empirical correlations publication-title: Int. J. Refrig. – volume: 33 start-page: 259 year: 2010 end-page: 268 ident: b0060 article-title: Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller) publication-title: Int. J. Refrig. – volume: 129 year: 2020 ident: b0130 article-title: Virtual testbed for model predictive control development in district cooling systems publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 2405 year: 2011 end-page: 2413 ident: b0150 article-title: A second law analysis and entropy generation minimization of an absorption chiller publication-title: Appl. Therm. Eng. – volume: 299 year: 2021 ident: b0120 article-title: Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer publication-title: Appl. Energy – volume: 185 year: 2021 ident: b0030 article-title: Performance characterization methods for absorption chillers applied to an NH3-LiNO3 single-stage prototype publication-title: Appl. Therm. Eng. – volume: 13 start-page: 2987 year: 2021 ident: b0005 article-title: Cooling degree models and future energy demand in the residential sector. a seven-country case study publication-title: Sustainability – volume: 2 start-page: 143 year: 2009 end-page: 161 ident: b0095 article-title: Modelica-based modelling and simulation to support research and development in building energy and control systems publication-title: J. Build. Perform. Simul. – volume: 136 start-page: 270 year: 2017 end-page: 282 ident: b0065 article-title: The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O publication-title: Energ. Conver. Manage. – volume: 29 start-page: 566 year: 2006 end-page: 578 ident: b0165 article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range publication-title: Int. J. Refrig. – volume: 62 start-page: 51 year: 2012 end-page: 63 ident: b0070 article-title: A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller publication-title: Energ. Conver. Manage. – volume: 36 start-page: 1015 year: 2013 end-page: 1028 ident: b0075 article-title: Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller publication-title: Int. J. Refrig. – volume: 247 year: 2021 ident: b0090 article-title: Dynamic performance analysis of a solar driving absorption chiller integrated with absorption thermal energy storage publication-title: Energ. Conver. Manage. – volume: 24 start-page: 374 year: 2001 end-page: 390 ident: b0160 article-title: Thermodynamic properties of lithium bromide–water solutions at high temperatures publication-title: Int. J. Refrig. – volume: 150 start-page: 574 year: 2017 end-page: 587 ident: b0100 article-title: The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity publication-title: Energ. Conver. Manage. – volume: 120 start-page: 420 year: 2020 end-page: 429 ident: b0040 article-title: Thermodynamic modelling of a LiBr-H2O absorption chiller by improvement of characteristic equation method publication-title: Int. J. Refrig. – volume: 138 start-page: 160 year: 2015 end-page: 168 ident: b0025 article-title: Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine publication-title: Appl. Energy – volume: 72 start-page: 171 year: 2016 end-page: 191 ident: b0050 article-title: Dynamic modeling and simulation of a double-effect absorption heat pump publication-title: Int. J. Refrig. – volume: 198 start-page: 503 year: 2019 end-page: 519 ident: b0125 article-title: Equation-based object-oriented modeling and simulation of data center cooling systems publication-title: Energ. Build. – volume: 97 start-page: 1 year: 2019 end-page: 20 ident: b0170 article-title: A review of control methodologies for vapor compression and absorption heat pumps publication-title: Int. J. Refrig. – volume: 7 start-page: 57251 year: 2019 end-page: 57258 ident: b0085 article-title: A state-space model for dynamic simulation of a single-effect LiBr/H2O absorption chiller publication-title: IEEE Access – year: 2022 ident: b0135 article-title: Efficient modeling of adsorption chillers: avoiding discretization by operator splitting publication-title: Int. J. Refrig. – volume: 60 start-page: 407 year: 2013 end-page: 415 ident: b0140 article-title: Energy and exergy analyses of the diffusion absorption refrigeration system publication-title: Energy – volume: 148 start-page: 787 year: 2019 end-page: 795 ident: b0145 article-title: Thermodynamic analysis of EMISE–water as a working pair for absorption refrigeration system publication-title: Appl. Therm. Eng. – volume: 31 start-page: 217 year: 2008 end-page: 225 ident: b0055 article-title: A dynamic simulation model for transient absorption chiller performance. part I: the model publication-title: Int. J. Refrig – volume: 120 start-page: 420 year: 2020 ident: 10.1016/j.applthermaleng.2023.120106_b0040 article-title: Thermodynamic modelling of a LiBr-H2O absorption chiller by improvement of characteristic equation method publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.06.030 – volume: 7 start-page: 57251 year: 2019 ident: 10.1016/j.applthermaleng.2023.120106_b0085 article-title: A state-space model for dynamic simulation of a single-effect LiBr/H2O absorption chiller publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913657 – volume: 60 start-page: 47 year: 2013 ident: 10.1016/j.applthermaleng.2023.120106_b0020 article-title: Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses publication-title: Energ. Build. doi: 10.1016/j.enbuild.2012.12.015 – volume: 90 start-page: 557 year: 2018 ident: 10.1016/j.applthermaleng.2023.120106_b0010 article-title: Natural and synthetic refrigerants, global warming: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.099 – volume: 138 start-page: 160 year: 2015 ident: 10.1016/j.applthermaleng.2023.120106_b0025 article-title: Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.10.054 – volume: 13 start-page: 2987 issue: 5 year: 2021 ident: 10.1016/j.applthermaleng.2023.120106_b0005 article-title: Cooling degree models and future energy demand in the residential sector. a seven-country case study publication-title: Sustainability doi: 10.3390/su13052987 – volume: 43 year: 2021 ident: 10.1016/j.applthermaleng.2023.120106_b0105 article-title: Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors publication-title: J. Build. Eng. – volume: 62 start-page: 51 year: 2012 ident: 10.1016/j.applthermaleng.2023.120106_b0070 article-title: A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2012.04.007 – volume: 205 year: 2020 ident: 10.1016/j.applthermaleng.2023.120106_b0015 article-title: Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2019.112370 – volume: 148 start-page: 787 year: 2019 ident: 10.1016/j.applthermaleng.2023.120106_b0145 article-title: Thermodynamic analysis of EMISE–water as a working pair for absorption refrigeration system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.092 – volume: 33 start-page: 259 issue: 2 year: 2010 ident: 10.1016/j.applthermaleng.2023.120106_b0060 article-title: Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller) publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.07.003 – volume: 36 start-page: 1015 issue: 3 year: 2013 ident: 10.1016/j.applthermaleng.2023.120106_b0075 article-title: Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.10.013 – volume: 31 start-page: 2405 issue: 14–15 year: 2011 ident: 10.1016/j.applthermaleng.2023.120106_b0150 article-title: A second law analysis and entropy generation minimization of an absorption chiller publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.04.004 – volume: 185 year: 2021 ident: 10.1016/j.applthermaleng.2023.120106_b0030 article-title: Performance characterization methods for absorption chillers applied to an NH3-LiNO3 single-stage prototype publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116435 – volume: 13 year: 2022 ident: 10.1016/j.applthermaleng.2023.120106_b0035 article-title: Implementation of the characteristic equation method in quasi-dynamic simulation of absorption chillers: Modeling, validation and first results publication-title: Energy Convers. Manag.: X – volume: 31 start-page: 217 issue: 2 year: 2008 ident: 10.1016/j.applthermaleng.2023.120106_b0055 article-title: A dynamic simulation model for transient absorption chiller performance. part I: the model publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2007.06.009 – volume: 9 start-page: 339 issue: 5 year: 2016 ident: 10.1016/j.applthermaleng.2023.120106_b0155 article-title: Comparison of moving boundary and finite-volume heat exchanger models in the modelica language publication-title: Energies doi: 10.3390/en9050339 – volume: 136 start-page: 270 year: 2017 ident: 10.1016/j.applthermaleng.2023.120106_b0065 article-title: The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2017.01.020 – volume: 150 start-page: 574 year: 2017 ident: 10.1016/j.applthermaleng.2023.120106_b0100 article-title: The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2017.08.005 – volume: 24 start-page: 374 issue: 5 year: 2001 ident: 10.1016/j.applthermaleng.2023.120106_b0160 article-title: Thermodynamic properties of lithium bromide–water solutions at high temperatures publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(00)00039-6 – volume: 7 start-page: 797 issue: 8 year: 2017 ident: 10.1016/j.applthermaleng.2023.120106_b0045 article-title: Dynamic performance analysis for an absorption chiller under different working conditions publication-title: Appl. Sci. doi: 10.3390/app7080797 – volume: 29 start-page: 566 issue: 4 year: 2006 ident: 10.1016/j.applthermaleng.2023.120106_b0165 article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2005.10.007 – volume: 198 start-page: 503 year: 2019 ident: 10.1016/j.applthermaleng.2023.120106_b0125 article-title: Equation-based object-oriented modeling and simulation of data center cooling systems publication-title: Energ. Build. doi: 10.1016/j.enbuild.2019.06.037 – volume: 279 year: 2020 ident: 10.1016/j.applthermaleng.2023.120106_b0115 article-title: Modeling and optimization for distributed microgrid based on Modelica language publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115766 – volume: 129 year: 2020 ident: 10.1016/j.applthermaleng.2023.120106_b0130 article-title: Virtual testbed for model predictive control development in district cooling systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109920 – volume: 120 start-page: 406 year: 2020 ident: 10.1016/j.applthermaleng.2023.120106_b0080 article-title: Transient model for the development of an air-cooled LiBr-H2O absorption chiller based on heat and mass transfer empirical correlations publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.08.030 – volume: 97 start-page: 1 year: 2019 ident: 10.1016/j.applthermaleng.2023.120106_b0170 article-title: A review of control methodologies for vapor compression and absorption heat pumps publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.08.026 – year: 2022 ident: 10.1016/j.applthermaleng.2023.120106_b0135 article-title: Efficient modeling of adsorption chillers: avoiding discretization by operator splitting publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2022.04.015 – volume: 60 start-page: 407 year: 2013 ident: 10.1016/j.applthermaleng.2023.120106_b0140 article-title: Energy and exergy analyses of the diffusion absorption refrigeration system publication-title: Energy doi: 10.1016/j.energy.2013.07.062 – volume: 247 year: 2021 ident: 10.1016/j.applthermaleng.2023.120106_b0090 article-title: Dynamic performance analysis of a solar driving absorption chiller integrated with absorption thermal energy storage publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.114769 – volume: 299 year: 2021 ident: 10.1016/j.applthermaleng.2023.120106_b0120 article-title: Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117337 – volume: 72 start-page: 171 year: 2016 ident: 10.1016/j.applthermaleng.2023.120106_b0050 article-title: Dynamic modeling and simulation of a double-effect absorption heat pump publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.07.018 – volume: 2 start-page: 143 issue: 2 year: 2009 ident: 10.1016/j.applthermaleng.2023.120106_b0095 article-title: Modelica-based modelling and simulation to support research and development in building energy and control systems publication-title: J. Build. Perform. Simul. doi: 10.1080/19401490902818259 |
| SSID | ssj0012874 |
| Score | 2.46624 |
| Snippet | •Dynamic model of single effect LiBr absorption chiller is developed with Modelica.•Energy and exergy analysis are conducted in steady-state... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 120106 |
| SubjectTerms | Dynamic modeling Energy and exergy analysis Finite volume method Lithium bromide absorption refrigeration Modelica |
| Title | Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2023.120106 |
| Volume | 225 |
| WOSCitedRecordID | wos000990476500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED51ZZq2B8R-oAEb8gNvVao0iZNYPEyIMQFiiAcm9S2yHUdLRRNUGsQ_sf95l9hOUsSkDomXqHLrc937ev7OPt8BHNCMZm4ac9SASp1A8MhhnvAdXIqxOZWCySaJ60V0eRlPp-xqMPhj78Lc30RFET88sNsXVTW2obLrq7P_oe5WKDbga1Q6PlHt-FxL8d91jXld48ZeQaxpHjaYt3gvEwnS8N95NR-JRTnPUzXi4q5caDuCiyf67spgROd8HlXN5sLPRrgJ87FJbA2hbcZCzasu1WG3PV1WjdGvZnmLqCtz_UHlnTlsWqZVd2SlP5L3Nyk8HRJIe3bVp8xBrjLpG17Poz3TOanP5cMnrbreYJiN6zN9MwecwrgeaNx1W02m_WiRa0MPbVTbLFmVltTSEi3tFWx4EWXxEDaOzk6m5-2xVF0coPHgzWzewEEXMPjvb_c05-nxmOst2DQOCDnSwHkPA1V8gHe9tJQfYW4gRCyECEKIrECIWAiRMiMGQsRAiHQQIisQIhpCpIEQsRD6BL9-nFwfnzqmLIcjfd9dOlTITPKAp1EkXMWZG8sISS0uHTRE9zsVyIlZGHMqQyF9lYYRZ4GrPPTF1YSmgb8Nw6Is1GcggWJMSWSRsZ8FMqAcGamIFQsylfnIdHfg0P5wiTQ56-vSKTfJOmrcAdr2vtW5W9bs983qKDE8VPPLBAG5loTdZ468B2-7f88XGC4XlfoKr-X9Mr9b7Bs0_gUnirmk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+modeling+and+thermodynamic+analysis+of+lithium+bromide+absorption+refrigeration+system+using+Modelica&rft.jtitle=Applied+thermal+engineering&rft.au=Zhou%2C+Yujie&rft.au=Pan%2C+Lei&rft.au=Han%2C+Xu&rft.au=Sun%2C+Li&rft.date=2023-05-05&rft.issn=1359-4311&rft.volume=225&rft.spage=120106&rft_id=info:doi/10.1016%2Fj.applthermaleng.2023.120106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2023_120106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |