Single and multi-solitary wave solutions to a class of nonlinear evolution equations

In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 343; číslo 1; s. 273 - 298
Hlavní autoři: Wang, Deng-Shan, Li, Hongbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.07.2008
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa–Holm equation, Kolmogorov–Petrovskii–Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the ( 2 + 1 ) -dimensional asymmetric version of the Nizhnik–Novikov–Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.
AbstractList In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa–Holm equation, Kolmogorov–Petrovskii–Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the ( 2 + 1 ) -dimensional asymmetric version of the Nizhnik–Novikov–Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.
Author Li, Hongbo
Wang, Deng-Shan
Author_xml – sequence: 1
  givenname: Deng-Shan
  surname: Wang
  fullname: Wang, Deng-Shan
  email: wangdsh1980@yahoo.com.cn
  organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China
– sequence: 2
  givenname: Hongbo
  surname: Li
  fullname: Li, Hongbo
  organization: Key Laboratory of Mathematics Mechanization, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20268867$$DView record in Pascal Francis
BookMark eNp9kE9LwzAYh4NMcJt-AU-5eGx9kzZpCl5k-A8GHpzgLbxNU8nI2pl0E7-9rRsePHgKgedJ-D0zMmm71hJyySBlwOT1Ol1vEFMOoFJgKWTlCZkyKGUCimUTMgXgPOF58XZGZjGuARgTBZuS1Ytr372l2NZ0s_O9S2LnXY_hi37i3tLhtutd10badxSp8Rgj7Ro6_O9dazFQuz8i1H7s8Ic9J6cN-mgvjuecvN7frRaPyfL54Wlxu0xMlkGfCFFkKhNCNVYpU5a8QiNMLk2dmZxX0rBc5XWZQwVFJYQprWxELUVZI4KsWTYnV4d3txgN-iZga1zU2-A2wwDNgUulZDFw_MCZ0MUYbPOLMNBjP73WYz899tPA9NBvkNQfyQxdxn19QOf_V28Oqh3G750NOhpnW2NrF6zpdd25__RvSBeOqw
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_jksus_2014_09_001
crossref_primary_10_1088_0253_6102_58_2_02
crossref_primary_10_1016_j_ijleo_2020_165331
crossref_primary_10_1016_j_amc_2008_07_002
crossref_primary_10_1016_j_ijleo_2017_05_102
crossref_primary_10_1140_epjp_i2019_12632_0
crossref_primary_10_1016_j_aml_2019_106063
crossref_primary_10_1007_s10714_021_02895_z
crossref_primary_10_1016_j_physd_2025_134675
crossref_primary_10_1088_1402_4896_ad3c7e
crossref_primary_10_1139_cjp_2016_0954
crossref_primary_10_1137_16M108286X
crossref_primary_10_1016_j_jmaa_2009_06_056
crossref_primary_10_1007_s43994_025_00224_7
crossref_primary_10_1016_j_camwa_2011_09_060
crossref_primary_10_1016_j_amc_2008_05_126
crossref_primary_10_1155_2015_408630
crossref_primary_10_1016_j_cpc_2009_10_006
crossref_primary_10_1007_s11071_019_04873_2
crossref_primary_10_1088_1674_1056_23_2_020201
crossref_primary_10_1007_s10773_024_05684_x
crossref_primary_10_1088_1751_8113_42_37_375203
crossref_primary_10_1016_j_amc_2014_12_049
crossref_primary_10_1155_2020_5098329
crossref_primary_10_1016_j_amc_2011_02_098
crossref_primary_10_1007_s12043_011_0098_z
crossref_primary_10_1007_s11071_017_3412_6
crossref_primary_10_1108_EC_04_2024_0358
crossref_primary_10_1007_s10701_010_9521_4
crossref_primary_10_1016_j_amc_2009_09_033
crossref_primary_10_1088_1402_4896_ad36fc
crossref_primary_10_1007_s10255_017_0632_y
crossref_primary_10_1007_s10255_023_1054_7
crossref_primary_10_1007_s13324_020_00397_w
crossref_primary_10_1016_j_amc_2011_07_044
crossref_primary_10_1016_j_amc_2014_08_012
crossref_primary_10_1088_0253_6102_65_1_1
crossref_primary_10_1016_j_amc_2014_06_049
crossref_primary_10_1088_1751_8113_42_3_035204
crossref_primary_10_1007_s11587_020_00517_5
crossref_primary_10_1016_j_amc_2008_07_019
crossref_primary_10_1016_j_jaubas_2016_12_002
crossref_primary_10_1016_j_amc_2012_06_070
crossref_primary_10_1016_j_cnsns_2008_01_002
crossref_primary_10_1140_epjp_i2015_15059_7
crossref_primary_10_1155_2022_2815298
crossref_primary_10_3390_math7030265
crossref_primary_10_1007_s12043_013_0626_0
crossref_primary_10_1016_j_chaos_2024_115007
Cites_doi 10.1002/cpa.10083
10.1103/PhysRevE.72.026616
10.1098/rsta.1981.0178
10.1103/PhysRevE.71.046607
10.1103/PhysRevLett.87.194501
10.1063/1.523393
10.1088/0253-6102/47/2/017
10.1137/0151075
10.1063/1.1598619
10.1103/PhysRevLett.71.1661
10.1088/0305-4470/37/21/012
10.1088/0305-4470/29/13/032
10.1016/j.jde.2004.09.007
10.1016/0167-2789(81)90004-X
10.1016/0020-7462(95)00064-X
10.1088/0305-4470/29/15/026
10.1088/1009-1963/16/7/004
10.1007/s10701-006-9069-5
10.1098/rsta.2007.2009
10.1016/j.jmaa.2004.11.038
10.1103/PhysRevLett.27.1192
10.1063/1.532124
10.1103/PhysRevE.66.046601
10.1088/0266-5611/2/3/005
10.1088/0305-4470/39/37/007
10.1143/PTP.114.533
10.1063/1.525875
10.1016/S0065-2156(08)70254-0
10.1088/0253-6102/45/6/006
10.1098/rsta.1978.0064
10.1088/0305-4470/26/10/001
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2008.01.039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 298
ExternalDocumentID 20268867
10_1016_j_jmaa_2008_01_039
S0022247X0800067X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-557383558fe88c992bac5c46cd3c42b6c1484d940b07b55c9e6f5d659daa06d13
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255653900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Mon Jul 21 09:11:41 EDT 2025
Sat Nov 29 03:58:15 EST 2025
Tue Nov 18 22:31:05 EST 2025
Fri Feb 23 02:27:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Elliptic equation
Factorization technique
Hirota's bilinear method
Painlevé analysis
Riccati equation
Travelling wave solution
Multi-solitary wave
Bessel functions
Wave equation
Bessel function
Solitary wave
Evolution equation
Nonlinear problems
Camassa Holm equation
Travelling wave
Algorithm
Non linear equation
Direct method
Algorithm performance
Mathematical analysis
Application
Non linear wave
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-557383558fe88c992bac5c46cd3c42b6c1484d940b07b55c9e6f5d659daa06d13
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2008.01.039
PageCount 26
ParticipantIDs pascalfrancis_primary_20268867
crossref_primary_10_1016_j_jmaa_2008_01_039
crossref_citationtrail_10_1016_j_jmaa_2008_01_039
elsevier_sciencedirect_doi_10_1016_j_jmaa_2008_01_039
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Fornberg, Whitham (bib016) 1978; 289
Ablowitz, Segur (bib001) 1981
Farlow (bib020) 1982
Fuchssteiner, Fokas (bib011) 1981; 4
Olver, Gudkov (bib015) 1977; 18
Hunter, Saxton (bib024) 1991; 51
Cao, Wang (bib021) 2007; 47
Bona, Pritchard, Scott (bib018) 1981; 302
Boiti, Leon, Manna, Pempinelli (bib025) 1986; 2
Cornejo-Pérez, Negro, Nieto, Rosu, Cornejo-Pérez, Rosu, Rosu, Cornejo-Pérez (bib005) 2006; 36
Estévez, Kuru, Negro, Negro (bib006) 2006; 39
Camassa, Holm, Camassa, Holm, Hyman (bib010) 1993; 71
Vekslerchik (bib026) 2004; 37
Rogers, Schief, Rogers (bib002) 2002
Liu, Liu, Liu (bib004) 2006; 16
Brazhnyi, Konotop (bib014) 2005; 72
Polyanin, Zaitsev (bib023) 1995
Weiss (bib008) 1983; 24
Dullin, Gottwald, Holm (bib012) 2001; 87
Degasperis, Procesi (bib017) 1999
Lenells, Lenells, Lenells (bib027) 2005; 217
Ma, Fuchssteiner (bib009) 1996; 31
McKean (bib013) 2003; 56
Hu, Willox, Hu (bib022) 1996; 29
Tang, Lou, Zhang, Tang, Lou (bib003) 2002; 66
Hirota (bib007) 1971; 27
Isidore (bib019) 1996; 29
Cao (10.1016/j.jmaa.2008.01.039_bib021) 2007; 47
Weiss (10.1016/j.jmaa.2008.01.039_bib008) 1983; 24
McKean (10.1016/j.jmaa.2008.01.039_bib013) 2003; 56
Hunter (10.1016/j.jmaa.2008.01.039_bib024) 1991; 51
Camassa (10.1016/j.jmaa.2008.01.039_bib010_1) 1993; 71
Degasperis (10.1016/j.jmaa.2008.01.039_bib017) 1999
Estévez (10.1016/j.jmaa.2008.01.039_bib006) 2006; 39
Fornberg (10.1016/j.jmaa.2008.01.039_bib016) 1978; 289
Ablowitz (10.1016/j.jmaa.2008.01.039_bib001) 1981
Lenells (10.1016/j.jmaa.2008.01.039_bib027_1) 2005; 217
Rogers (10.1016/j.jmaa.2008.01.039_bib002_1) 2002
Ma (10.1016/j.jmaa.2008.01.039_bib009) 1996; 31
Boiti (10.1016/j.jmaa.2008.01.039_bib025) 1986; 2
Olver (10.1016/j.jmaa.2008.01.039_bib015_1) 1977; 18
Lenells (10.1016/j.jmaa.2008.01.039_bib027_2) 2005; 306
Dullin (10.1016/j.jmaa.2008.01.039_bib012) 2001; 87
Polyanin (10.1016/j.jmaa.2008.01.039_bib023) 1995
Cornejo-Pérez (10.1016/j.jmaa.2008.01.039_bib005_1) 2006; 36
Vekslerchik (10.1016/j.jmaa.2008.01.039_bib026) 2004; 37
Farlow (10.1016/j.jmaa.2008.01.039_bib020) 1982
Hu (10.1016/j.jmaa.2008.01.039_bib022_1) 1996; 29
Tang (10.1016/j.jmaa.2008.01.039_bib003_1) 2002; 66
Lenells (10.1016/j.jmaa.2008.01.039_bib027_3) 2007; 365
Cornejo-Pérez (10.1016/j.jmaa.2008.01.039_bib005_2) 2005; 114
Fuchssteiner (10.1016/j.jmaa.2008.01.039_bib011) 1981; 4
Liu (10.1016/j.jmaa.2008.01.039_bib004_3) 2006; 45
Rogers (10.1016/j.jmaa.2008.01.039_bib002_2) 1990
Brazhnyi (10.1016/j.jmaa.2008.01.039_bib014) 2005; 72
Liu (10.1016/j.jmaa.2008.01.039_bib004_2) 2007; 16
Rosu (10.1016/j.jmaa.2008.01.039_bib005_3) 2005; 71
Gudkov (10.1016/j.jmaa.2008.01.039_bib015_2) 1997; 38
Isidore (10.1016/j.jmaa.2008.01.039_bib019) 1996; 29
Liu (10.1016/j.jmaa.2008.01.039_bib004_1)
Camassa (10.1016/j.jmaa.2008.01.039_bib010_2) 1994; 31
Hirota (10.1016/j.jmaa.2008.01.039_bib007) 1971; 27
Hu (10.1016/j.jmaa.2008.01.039_bib022_2) 1993; 26
Tang (10.1016/j.jmaa.2008.01.039_bib003_2) 2003; 44
Bona (10.1016/j.jmaa.2008.01.039_bib018) 1981; 302
References_xml – volume: 36
  start-page: 1587
  year: 2006
  end-page: 538
  ident: bib005
  article-title: Travelling-wave solutions for Korteweg–de Vries–Burgers equations through factorizations
  publication-title: Found. Phys.
– volume: 37
  start-page: 5667
  year: 2004
  end-page: 5678
  ident: bib026
  article-title: Backlund transformations for the Nizhnik–Novikov–Veselov equation
  publication-title: J. Phys. A: Math. Gen.
– year: 1995
  ident: bib023
  article-title: Exact Solutions for Ordinary Differential Equations
– year: 1981
  ident: bib001
  article-title: Soliton and the Inverse Scattering Transformation
– volume: 302
  start-page: 457
  year: 1981
  end-page: 510
  ident: bib018
  article-title: An evaluation of a model equation for water waves
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
– volume: 66
  start-page: 046601
  year: 2002
  ident: bib003
  article-title: Localized excitations in
  publication-title: Phys. Rev. E
– volume: 2
  start-page: 271
  year: 1986
  end-page: 279
  ident: bib025
  article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions
  publication-title: Inverse Problems
– volume: 51
  start-page: 1498
  year: 1991
  ident: bib024
  article-title: Dynamics of director fields
  publication-title: SIAM J. Appl. Math.
– volume: 24
  start-page: 1405
  year: 1983
  end-page: 1413
  ident: bib008
  article-title: The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative
  publication-title: J. Math. Phys.
– start-page: 97
  year: 2002
  end-page: 130
  ident: bib002
  article-title: Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory
  publication-title: Soliton Theory: A Survey of Results
– year: 1982
  ident: bib020
  article-title: Partial Differential Equations for Scientists and Engineers
– volume: 39
  start-page: 11441
  year: 2006
  end-page: 11452
  ident: bib006
  article-title: Travelling wave solutions of two-dimensional Korteweg–de Vries–Burgers and Kadomtsev–Petviashvili equations
  publication-title: J. Phys. A: Math. Gen.
– volume: 29
  start-page: 3679
  year: 1996
  end-page: 3682
  ident: bib019
  article-title: Exact solutions of a nonlinear dispersive dissipative equation
  publication-title: J. Phys. A: Math. Gen.
– volume: 47
  start-page: 270
  year: 2007
  ident: bib021
  article-title: Symbolic computation and
  publication-title: Commun. Theor. Phys.
– volume: 16
  start-page: 1832
  year: 2006
  end-page: 1836
  ident: bib004
  article-title: Direct integral method, complete discrimination system for polynomial and applications to classifications of all single traveling wave solutions to nonlinear differential equations: A survey
  publication-title: Chinese J. Phys.
– volume: 29
  start-page: 4589
  year: 1996
  end-page: 4592
  ident: bib022
  article-title: Some new exact solutions of the Novikov–Veselov equation
  publication-title: J. Phys. A: Math. Gen.
– volume: 4
  start-page: 47
  year: 1981
  end-page: 66
  ident: bib011
  article-title: Symplectic structures, their Backlund transformation and hereditary symmetries
  publication-title: Phys. D
– volume: 217
  start-page: 393
  year: 2005
  end-page: 430
  ident: bib027
  article-title: Traveling wave solutions of the Camassa–Holm equation
  publication-title: J. Differential Equations
– volume: 289
  start-page: 373
  year: 1978
  end-page: 404
  ident: bib016
  article-title: A numerical and theoretical study of certain nonlinear wave phenomena
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
– start-page: 23
  year: 1999
  end-page: 37
  ident: bib017
  article-title: Asymptotic integrability
  publication-title: Symmetry and Perturbation Theory
– volume: 71
  start-page: 1661
  year: 1993
  end-page: 1664
  ident: bib010
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 1212
  year: 1977
  end-page: 4803
  ident: bib015
  article-title: Evolution equations possessing infinitely many symmetries
  publication-title: J. Math. Phys.
– volume: 72
  start-page: 026616
  year: 2005
  ident: bib014
  article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates
  publication-title: Phys. Rev. E
– volume: 31
  start-page: 329
  year: 1996
  end-page: 338
  ident: bib009
  article-title: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation
  publication-title: Internat. J. Non-Linear Mech.
– volume: 56
  start-page: 998
  year: 2003
  end-page: 1015
  ident: bib013
  article-title: The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies
  publication-title: Commun. Pure Appl. Math.
– volume: 27
  start-page: 1192
  year: 1971
  ident: bib007
  article-title: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons
  publication-title: Phys. Rev. Lett.
– volume: 87
  start-page: 194501
  year: 2001
  ident: bib012
  article-title: An integrable shallow water equation with linear and nonlinear dispersion
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 998
  year: 2003
  ident: 10.1016/j.jmaa.2008.01.039_bib013
  article-title: The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.10083
– volume: 72
  start-page: 026616
  year: 2005
  ident: 10.1016/j.jmaa.2008.01.039_bib014
  article-title: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.026616
– volume: 302
  start-page: 457
  year: 1981
  ident: 10.1016/j.jmaa.2008.01.039_bib018
  article-title: An evaluation of a model equation for water waves
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
  doi: 10.1098/rsta.1981.0178
– volume: 71
  start-page: 046607
  year: 2005
  ident: 10.1016/j.jmaa.2008.01.039_bib005_3
  article-title: Supersymmetric pairing of kinks for polynomial nonlinearities
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.046607
– volume: 87
  start-page: 194501
  year: 2001
  ident: 10.1016/j.jmaa.2008.01.039_bib012
  article-title: An integrable shallow water equation with linear and nonlinear dispersion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.194501
– volume: 18
  start-page: 1212
  year: 1977
  ident: 10.1016/j.jmaa.2008.01.039_bib015_1
  article-title: Evolution equations possessing infinitely many symmetries
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523393
– year: 2002
  ident: 10.1016/j.jmaa.2008.01.039_bib002_1
– volume: 47
  start-page: 270
  year: 2007
  ident: 10.1016/j.jmaa.2008.01.039_bib021
  article-title: Symbolic computation and q-deformed function solutions of (2+1)-dimensional breaking soliton equation
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/47/2/017
– volume: 51
  start-page: 1498
  year: 1991
  ident: 10.1016/j.jmaa.2008.01.039_bib024
  article-title: Dynamics of director fields
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0151075
– volume: 44
  start-page: 4000
  year: 2003
  ident: 10.1016/j.jmaa.2008.01.039_bib003_2
  article-title: Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1598619
– year: 1995
  ident: 10.1016/j.jmaa.2008.01.039_bib023
– start-page: 23
  year: 1999
  ident: 10.1016/j.jmaa.2008.01.039_bib017
  article-title: Asymptotic integrability
– volume: 71
  start-page: 1661
  year: 1993
  ident: 10.1016/j.jmaa.2008.01.039_bib010_1
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– volume: 37
  start-page: 5667
  year: 2004
  ident: 10.1016/j.jmaa.2008.01.039_bib026
  article-title: Backlund transformations for the Nizhnik–Novikov–Veselov equation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/21/012
– volume: 29
  start-page: 3679
  year: 1996
  ident: 10.1016/j.jmaa.2008.01.039_bib019
  article-title: Exact solutions of a nonlinear dispersive dissipative equation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/29/13/032
– volume: 217
  start-page: 393
  year: 2005
  ident: 10.1016/j.jmaa.2008.01.039_bib027_1
  article-title: Traveling wave solutions of the Camassa–Holm equation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2004.09.007
– volume: 4
  start-page: 47
  year: 1981
  ident: 10.1016/j.jmaa.2008.01.039_bib011
  article-title: Symplectic structures, their Backlund transformation and hereditary symmetries
  publication-title: Phys. D
  doi: 10.1016/0167-2789(81)90004-X
– volume: 31
  start-page: 329
  year: 1996
  ident: 10.1016/j.jmaa.2008.01.039_bib009
  article-title: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation
  publication-title: Internat. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(95)00064-X
– volume: 29
  start-page: 4589
  year: 1996
  ident: 10.1016/j.jmaa.2008.01.039_bib022_1
  article-title: Some new exact solutions of the Novikov–Veselov equation
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/29/15/026
– year: 1981
  ident: 10.1016/j.jmaa.2008.01.039_bib001
– start-page: 97
  year: 1990
  ident: 10.1016/j.jmaa.2008.01.039_bib002_2
  article-title: Bäcklund transformations in soliton theory
– volume: 16
  start-page: 1832
  year: 2007
  ident: 10.1016/j.jmaa.2008.01.039_bib004_2
  article-title: The classification of traveling wave solutions and superposition of multi-solutions to Camassa–Holm equation with dispersion
  publication-title: Chinese J. Phys.
  doi: 10.1088/1009-1963/16/7/004
– volume: 36
  start-page: 1587
  year: 2006
  ident: 10.1016/j.jmaa.2008.01.039_bib005_1
  article-title: Travelling-wave solutions for Korteweg–de Vries–Burgers equations through factorizations
  publication-title: Found. Phys.
  doi: 10.1007/s10701-006-9069-5
– volume: 365
  start-page: 2291
  year: 2007
  ident: 10.1016/j.jmaa.2008.01.039_bib027_3
  article-title: Classification of all travelling-wave solutions for some nonlinear dispersive equations
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
  doi: 10.1098/rsta.2007.2009
– volume: 306
  start-page: 72
  year: 2005
  ident: 10.1016/j.jmaa.2008.01.039_bib027_2
  article-title: Traveling wave solutions of the Degasperis–Procesi equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.11.038
– volume: 27
  start-page: 1192
  year: 1971
  ident: 10.1016/j.jmaa.2008.01.039_bib007
  article-title: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.27.1192
– volume: 38
  start-page: 4794
  issue: 9
  year: 1997
  ident: 10.1016/j.jmaa.2008.01.039_bib015_2
  article-title: A family of exact travelling wave solutions to nonlinear evolution and wave equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532124
– year: 1982
  ident: 10.1016/j.jmaa.2008.01.039_bib020
– volume: 66
  start-page: 046601
  year: 2002
  ident: 10.1016/j.jmaa.2008.01.039_bib003_1
  article-title: Localized excitations in (2+1)-dimensional systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.046601
– volume: 2
  start-page: 271
  year: 1986
  ident: 10.1016/j.jmaa.2008.01.039_bib025
  article-title: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/2/3/005
– volume: 39
  start-page: 11441
  year: 2006
  ident: 10.1016/j.jmaa.2008.01.039_bib006
  article-title: Travelling wave solutions of two-dimensional Korteweg–de Vries–Burgers and Kadomtsev–Petviashvili equations
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/37/007
– volume: 114
  start-page: 533
  year: 2005
  ident: 10.1016/j.jmaa.2008.01.039_bib005_2
  article-title: Nonlinear second order ODEs: Factorizations and particular solutions
  publication-title: Progr. Theoret. Phys.
  doi: 10.1143/PTP.114.533
– volume: 24
  start-page: 1405
  year: 1983
  ident: 10.1016/j.jmaa.2008.01.039_bib008
  article-title: The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525875
– volume: 31
  start-page: 1
  year: 1994
  ident: 10.1016/j.jmaa.2008.01.039_bib010_2
  article-title: A new integrable shallow water equation
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70254-0
– ident: 10.1016/j.jmaa.2008.01.039_bib004_1
– volume: 45
  start-page: 991
  year: 2006
  ident: 10.1016/j.jmaa.2008.01.039_bib004_3
  article-title: All single traveling wave solutions to (3+1)-dimensional Nizhnik–Novikov–Veselov equation
  publication-title: Commun. Theor. Phys. (Beijing)
  doi: 10.1088/0253-6102/45/6/006
– volume: 289
  start-page: 373
  year: 1978
  ident: 10.1016/j.jmaa.2008.01.039_bib016
  article-title: A numerical and theoretical study of certain nonlinear wave phenomena
  publication-title: Philos. Trans. R. Soc. Lond. Ser. A
  doi: 10.1098/rsta.1978.0064
– volume: 26
  start-page: L465
  year: 1993
  ident: 10.1016/j.jmaa.2008.01.039_bib022_2
  article-title: Generalized Hirota's bilinear equations and their soliton solutions
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/26/10/001
SSID ssj0011571
Score 2.187453
Snippet In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 273
SubjectTerms Bessel functions
Elliptic equation
Exact sciences and technology
Factorization technique
Global analysis, analysis on manifolds
Hirota's bilinear method
Mathematical analysis
Mathematics
Multi-solitary wave
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Painlevé analysis
Partial differential equations
Riccati equation
Sciences and techniques of general use
Special functions
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Travelling wave solution
Title Single and multi-solitary wave solutions to a class of nonlinear evolution equations
URI https://dx.doi.org/10.1016/j.jmaa.2008.01.039
Volume 343
WOSCitedRecordID wos000255653900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMIIZ6iPCofuFWunMSvHCsoAgQV0i5SbpHjOKWrbXbpbh_qr2ccO-6mFRUgcYlWURyv8n2Zmdgz3yD0FoKO1KmME1EzSpjIGlKBFySsyWvJNE1q1RUKf5EHB6oo8m-j0WVfC3M2k22rLi7yxX-FGs4B2K509i_gjjeFE_AbQIcjwA7HPwJ-DM5o5jcFumxBsnQpbi457tx1GoqTu6jTVUZC9Nxlc3jNDO0EwMMlO_bn6dqC3s0Q9jhqvnaKA0HepJN_XdsXv1qz93blvW0PyfjHWjKQ75w9bw-r-WAVQsWM1bA01pfHDLI3u1KBlMnCOxtvYanLela-ALU3wZmXahpwLRhU3-gk-ObUd6y-Yfb9CsR0d3qsdciPTXapV0m6Jqc97sp_4T-5UBlcdXEHbaaS52ARN_c-7Ref4x5UwmXSa827AaHkymcHXp_pd2HNg4VeAgaN75KyFrpMHqGHATC857nyGI1s-wTd_xrBWz5FE88aDNjhIWuwYw2OrMGrOda4Yw2eNziyBkfW4MiaZ-j7h_3Ju48kNNwgJsvoinAuM-X09hurlIG3uNKGGyZMnRmWVsLAtzOrc0YrKivOTW5Fw2vB81prKuoke442YF77AmFtOXgCp_ZIwQhwGKwyJURjIT6sIQbaQkn_vEoT1OhdU5RZ2acdTkv3jEOb1KSEZ7yFduKYhddiufVq3sNQhmjSR4klsObWcdsDzOJUKU2FUkK-_Mcbv0L3rt6c12hjdXJq36C75mx1tDzZDuz7BULjpfo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+and+multi-solitary+wave+solutions+to+a+class+of+nonlinear+evolution+equations&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Wang%2C+Deng-Shan&rft.au=Li%2C+Hongbo&rft.date=2008-07-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=343&rft.issue=1&rft.spage=273&rft.epage=298&rft_id=info:doi/10.1016%2Fj.jmaa.2008.01.039&rft.externalDocID=S0022247X0800067X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon