The Lagrange multiplier rule for super efficiency in vector optimization
In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 342; číslo 1; s. 503 - 513 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.06.2008
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality conditions of the above problems. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.12.027 |