The Lagrange multiplier rule for super efficiency in vector optimization
In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 342; číslo 1; s. 503 - 513 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
San Diego, CA
Elsevier Inc
01.06.2008
Elsevier |
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we study constrained multiobjective optimization problems with objectives being closed-graph multifunctions in Banach spaces. In terms of the coderivatives and Clarke's normal cones, we establish Lagrange multiplier rules for super efficiency as necessary or sufficient optimality conditions of the above problems. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.12.027 |