Spline-backfitted kernel smoothing of partially linear additive model

A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical planning and inference Ročník 141; číslo 1; s. 204 - 219
Hlavní autoři: Ma, Shujie, Yang, Lijian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 2011
Elsevier
Témata:
ISSN:0378-3758, 1873-1171
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate and large number of variables confirm the asymptotic results. Application to the Boston housing data serves as a practical illustration of the method.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2010.05.028