Geometry of vectorial martingale optimal transportations and duality
The theory of Optimal Transport and Martingale Optimal Transport (MOT) were inspired by problems in economics and finance and have flourished over the past decades, making significant advances in theory and practice. MOT considers the problem of pricing and hedging of a financial instrument, referre...
Saved in:
| Published in: | Mathematical programming Vol. 204; no. 1-2; pp. 349 - 383 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The theory of
Optimal Transport
and
Martingale Optimal Transport
(MOT) were inspired by problems in economics and finance and have flourished over the past decades, making significant advances in theory and practice. MOT considers the problem of pricing and hedging of a financial instrument, referred to as an option, assuming its payoff depends on a single asset price. In this paper we introduce
Vectorial Martingale Optimal Transport
(VMOT) problem, which considers the more general and realistic situation in which the option payoff depends on multiple asset prices. We address this problem of pricing and hedging given market information—described by vectorial marginal distributions of underlying asset prices—which is an intimately relevant setup in the robust financial framework. We establish that the VMOT problem, as an infinite-dimensional linear programming, admits an optimizer for its dual program. Such existence result of dual optimizers is significant for several reasons: the dual optimizers describe how a person who is liable for an option payoff can formulate optimal hedging portfolios, and more importantly, they can provide crucial information on the geometry of primal optimizers, i.e. the VMOTs. As an illustration, we show that multiple martingales given marginals must exhibit an extremal conditional correlation structure whenever they jointly optimize the expectation of distance-type cost functions. |
|---|---|
| AbstractList | The theory of Optimal Transport and Martingale Optimal Transport (MOT) were inspired by problems in economics and finance and have flourished over the past decades, making significant advances in theory and practice. MOT considers the problem of pricing and hedging of a financial instrument, referred to as an option, assuming its payoff depends on a single asset price. In this paper we introduce Vectorial Martingale Optimal Transport (VMOT) problem, which considers the more general and realistic situation in which the option payoff depends on multiple asset prices. We address this problem of pricing and hedging given market information-described by vectorial marginal distributions of underlying asset prices-which is an intimately relevant setup in the robust financial framework. We establish that the VMOT problem, as an infinite-dimensional linear programming, admits an optimizer for its dual program. Such existence result of dual optimizers is significant for several reasons: the dual optimizers describe how a person who is liable for an option payoff can formulate optimal hedging portfolios, and more importantly, they can provide crucial information on the geometry of primal optimizers, i.e. the VMOTs. As an illustration, we show that multiple martingales given marginals must exhibit an extremal conditional correlation structure whenever they jointly optimize the expectation of distance-type cost functions. The theory of Optimal Transport and Martingale Optimal Transport (MOT) were inspired by problems in economics and finance and have flourished over the past decades, making significant advances in theory and practice. MOT considers the problem of pricing and hedging of a financial instrument, referred to as an option, assuming its payoff depends on a single asset price. In this paper we introduce Vectorial Martingale Optimal Transport (VMOT) problem, which considers the more general and realistic situation in which the option payoff depends on multiple asset prices. We address this problem of pricing and hedging given market information—described by vectorial marginal distributions of underlying asset prices—which is an intimately relevant setup in the robust financial framework. We establish that the VMOT problem, as an infinite-dimensional linear programming, admits an optimizer for its dual program. Such existence result of dual optimizers is significant for several reasons: the dual optimizers describe how a person who is liable for an option payoff can formulate optimal hedging portfolios, and more importantly, they can provide crucial information on the geometry of primal optimizers, i.e. the VMOTs. As an illustration, we show that multiple martingales given marginals must exhibit an extremal conditional correlation structure whenever they jointly optimize the expectation of distance-type cost functions. |
| Audience | Academic |
| Author | Lim, Tongseok |
| Author_xml | – sequence: 1 givenname: Tongseok orcidid: 0000-0002-1290-6964 surname: Lim fullname: Lim, Tongseok email: lim336@purdue.edu organization: Mitchell E. Daniels, Jr. School of Business, Purdue University |
| BookMark | eNp9kM1KAzEURoNUsK2-gKt5gak3k8wkXZaqVSi40XXI5KekTJOSpELf3tRx5aLcxYWPey4fZ4YmPniD0COGBQZgTwkDBlZDQ2rAy5bW9AZNMSVdTTvaTdAUoGnrtsNwh2Yp7QEAE86n6HljwsHkeK6Crb6NyiE6OVQHGbPzOzmYKhyzO5QoR-nTMcQssws-VdLrSp_k4PL5Ht1aOSTz8Lfn6Ov15XP9Vm8_Nu_r1bZWhECuKWW4Y7Rntil1Zc-tprLHPRiMqdadWhLMDNfKEsusantG9bLtQWkruWksmaPF-PdSTDhvQymlymhzcKoYsa7kK8Yb1nS8JQXgI6BiSCkaK5Qb-xfQDQKDuOgToz5R9IlffYIWtPmHHmPxEM_XITJCqRz7nYliH07RFyfXqB-PgIX_ |
| CitedBy_id | crossref_primary_10_1137_22M1499534 |
| Cites_doi | 10.1007/s00220-013-1663-8 10.3982/ECTA7880 10.1016/j.jet.2012.12.005 10.1007/s00440-013-0531-y 10.1016/j.spa.2019.06.005 10.1007/978-3-540-44857-0_5 10.4171/jems/234 10.1007/BF00532047 10.2140/pjm.1966.17.497 10.1007/978-3-319-20828-2 10.1137/19M1270513 10.1214/10-AOP614 10.3150/17-BEJ1015 10.1007/BF02392620 10.1006/aima.1997.1634 10.1214/16-AOP1110 10.1007/BF02481093 10.1214/18-AOP1258 10.1137/19M1286256 10.1016/j.jet.2010.11.006 10.1214/14-AOP966 10.5802/afst.1132 10.1007/s007800050044 10.1134/S0001434615110036 10.1002/cpa.3160440402 10.1214/13-AAP925 10.1214/15-AOS1401 10.1215/S0012-7094-04-12521-7 10.1007/s00780-014-0249-4 10.1214/16-AOP1131 10.1111/j.1467-9965.2010.00473.x 10.1137/15M1025256 10.1007/s00205-008-0147-z 10.1215/00127094-1272939 10.1007/s002220100160 10.1016/j.jet.2012.05.004 10.1007/s00780-013-0205-8 10.1214/aoms/1177700153 10.1214/154957804100000060 10.1086/712447 10.1007/978-3-642-14660-2_4 10.1137/15M1025268 10.1090/S0894-0347-01-00376-9 10.1007/s00205-005-0362-9 10.1007/s00222-016-0692-2 10.1214/18-AOP1295 10.1086/296025 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10107-023-01954-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 383 |
| ExternalDocumentID | A782726853 10_1007_s10107_023_01954_4 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c330t-4471674b7f2101ab8fd4ab1b0e114dd6c9317e8dcf3f7fc5b74d95b0cdfa8e2f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967300600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Mon Nov 24 15:41:04 EST 2025 Tue Nov 18 22:24:15 EST 2025 Sat Nov 29 03:34:04 EST 2025 Fri Feb 21 02:42:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90Bxx 49Kxx 49Jxx 60Gxx 60Dxx Infinite-dimensional linear programming 90Cxx Martingale Duality Dual attainment Optimal transport Extremal correlation structure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-4471674b7f2101ab8fd4ab1b0e114dd6c9317e8dcf3f7fc5b74d95b0cdfa8e2f3 |
| ORCID | 0000-0002-1290-6964 |
| PageCount | 35 |
| ParticipantIDs | gale_infotracacademiconefile_A782726853 crossref_citationtrail_10_1007_s10107_023_01954_4 crossref_primary_10_1007_s10107_023_01954_4 springer_journals_10_1007_s10107_023_01954_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Bianchini, Cavalletti (CR8) 2013; 318 Evans (CR28) 1997 Beiglböck, Cox, Huesmann (CR3) 2017; 208 Carlier, Chernozhukov, Galichon (CR12) 2016; 44 Pass (CR50) 2012; 147 Chernozhukov, Galichon, Hallin, Henry (CR17) 2017; 45 Decker, Lieb, McCann, Stephens (CR22) 2013; 148 CR37 Trudinger, Wang (CR55) 2009; 192 Ma, Trudinger, Wang (CR44) 2005; 177 Villani (CR57) 2009 Zaev (CR58) 2015; 98 Villani (CR56) 2003 Carraro, Karoui, Obłój (CR13) 2012; 40 Obłój (CR47) 2004; 1 Obłój, Spoida (CR49) 2017; 45 Cordero-Erausquin, McCann, Schmuckenschläger (CR19) 2001; 146 Beiglböck, Lim, Obłój (CR6) 2019; 25 Champion, De Pascale (CR15) 2011; 157 Cox, Obłój, Touzi (CR21) 2019; 173 CR2 Rockafellar (CR51) 1966; 17 Beiglböck, Henry-Labordère, Penkner (CR4) 2013; 17 Guo, Tan, Touzi (CR34) 2016; 54–5 CR48 Breeden, Litzenberger (CR9) 1978; 51 CR46 Eckstein, Guo, Lim, Obłój (CR27) 2021; 12 Guo, Tan, Touzi (CR35) 2016; 54–4 Ambrosio, Kirchheim, Pratelli (CR1) 2004; 125 Dolinsky, Soner (CR26) 2014; 160 CR40 Brenier (CR10) 1991; 44 De March, Touzi (CR25) 2019; 47 Rüschendorf (CR52) 1985; 37 Galichon, Henry-Labordère, Touzi (CR30) 2014; 24 CR18 Kantorovich (CR41) 1948; 3 Lim (CR43) 2020; 130 McCann (CR45) 1997; 128 CR53 Ghoussoub, Kim, Lim (CR32) 2019; 47 Hobson (CR36) 1998; 2 Ghoussoub, Kim, Lim (CR33) 2020; 58 Strassen (CR54) 1965; 36 Gangbo, McCann (CR31) 1996; 177 Beiglböck, Juillet (CR5) 2016; 44 Beiglböck, Nutz, Touzi (CR7) 2017; 45 Kellerer (CR42) 1984; 67 Hobson, Neuberger (CR39) 2012; 22 Cordero-Erausquin, McCann, Schmuckenschläger (CR20) 2006; 6 CR24 Hobson, Klimmek (CR38) 2014; 19 CR23 Champion, De Pascale (CR14) 2010; 12 Chernozhukov, Fernandez-Val, Galichon (CR16) 2010; 78 Caffarelli, Feldman, McCann (CR11) 2002; 15 Figalli, Kim, McCann (CR29) 2011; 146 DT Breeden (1954_CR9) 1978; 51 LA Caffarelli (1954_CR11) 2002; 15 H Kellerer (1954_CR42) 1984; 67 1954_CR23 1954_CR24 V Strassen (1954_CR54) 1965; 36 M Beiglböck (1954_CR6) 2019; 25 W Gangbo (1954_CR31) 1996; 177 Y Brenier (1954_CR10) 1991; 44 D Cordero-Erausquin (1954_CR20) 2006; 6 C Decker (1954_CR22) 2013; 148 M Beiglböck (1954_CR5) 2016; 44 D Hobson (1954_CR38) 2014; 19 LC Evans (1954_CR28) 1997 Y Dolinsky (1954_CR26) 2014; 160 V Chernozhukov (1954_CR17) 2017; 45 1954_CR18 J Obłój (1954_CR47) 2004; 1 NS Trudinger (1954_CR55) 2009; 192 C Villani (1954_CR56) 2003 L Carraro (1954_CR13) 2012; 40 A Figalli (1954_CR29) 2011; 146 A Galichon (1954_CR30) 2014; 24 1954_CR53 T Lim (1954_CR43) 2020; 130 AMG Cox (1954_CR21) 2019; 173 L Rüschendorf (1954_CR52) 1985; 37 D Hobson (1954_CR36) 1998; 2 XN Ma (1954_CR44) 2005; 177 C Villani (1954_CR57) 2009 J Obłój (1954_CR49) 2017; 45 V Chernozhukov (1954_CR16) 2010; 78 D Zaev (1954_CR58) 2015; 98 1954_CR46 1954_CR48 RJ McCann (1954_CR45) 1997; 128 G Carlier (1954_CR12) 2016; 44 D Cordero-Erausquin (1954_CR19) 2001; 146 1954_CR40 RT Rockafellar (1954_CR51) 1966; 17 T Champion (1954_CR14) 2010; 12 LV Kantorovich (1954_CR41) 1948; 3 D Hobson (1954_CR39) 2012; 22 M Beiglböck (1954_CR3) 2017; 208 S Bianchini (1954_CR8) 2013; 318 N Ghoussoub (1954_CR32) 2019; 47 S Eckstein (1954_CR27) 2021; 12 H De March (1954_CR25) 2019; 47 G Guo (1954_CR34) 2016; 54–5 L Ambrosio (1954_CR1) 2004; 125 T Champion (1954_CR15) 2011; 157 M Beiglböck (1954_CR7) 2017; 45 G Guo (1954_CR35) 2016; 54–4 1954_CR37 M Beiglböck (1954_CR4) 2013; 17 1954_CR2 B Pass (1954_CR50) 2012; 147 N Ghoussoub (1954_CR33) 2020; 58 |
| References_xml | – volume: 160 start-page: 391 year: 2014 end-page: 427 ident: CR26 article-title: Martingale optimal transport and robust hedging in continuous time publication-title: Probab. Theory Relat. Fields – volume: 177 start-page: 151 issue: 2 year: 2005 end-page: 183 ident: CR44 article-title: Regularity of potential functions of the optimal transportation problem publication-title: Arch. Ration. Mech. Anal. – volume: 17 start-page: 477 year: 2013 end-page: 501 ident: CR4 article-title: Model-independent bounds for option prices: a mass transport approach publication-title: Finance Stochast. – volume: 147 start-page: 2399 year: 2012 end-page: 2418 ident: CR50 article-title: Convexity and multi-dimensional screening for spaces with different dimensions publication-title: J. Econ. Theory. – volume: 45 start-page: 223 issue: 1 year: 2017 end-page: 256 ident: CR17 article-title: Monge-Kantorovich depth, quantiles, ranks and signs publication-title: Ann. Stat. – volume: 130 start-page: 1897 issue: 4 year: 2020 end-page: 1912 ident: CR43 article-title: Optimal martingale transport between radially symmetric marginals in general dimensions publication-title: Stochast. Process. Appl. – volume: 2 start-page: 329 year: 1998 end-page: 347 ident: CR36 article-title: Robust hedging of the lookback option publication-title: Finance Stochast. – volume: 37 start-page: 225 issue: 1 year: 1985 end-page: 233 ident: CR52 article-title: Construction of multivariate distributions with marginals Given publication-title: Ann. Inst. Stat. Math. – volume: 148 start-page: 778 year: 2013 end-page: 792 ident: CR22 article-title: Unique equilibria and substitution effects in a stochastic model of the marriage market publication-title: J. Econ. Theory – volume: 128 start-page: 153 year: 1997 end-page: 179 ident: CR45 article-title: A convexity principle for interacting gases publication-title: Adv. Math. – volume: 125 start-page: 207 issue: 2 year: 2004 end-page: 241 ident: CR1 article-title: Existence of optimal transport maps for crystalline norms publication-title: Duke Math. J. – volume: 146 start-page: 219 issue: 2 year: 2001 end-page: 257 ident: CR19 article-title: A Riemannian interpolation inequality á la Borell publication-title: Brascamp Lieb. Invent. Math. – volume: 192 start-page: 403 issue: 3 year: 2009 end-page: 418 ident: CR55 article-title: On strict convexity and continuous differentiability of potential functions in optimal transportation publication-title: Arch. Ration. Mech. Anal. – year: 1997 ident: CR28 publication-title: Partial Differential Equations and Monge–Kantorovich Mass transfer. Current Developments in Mathematics – volume: 19 start-page: 189 issue: 1 year: 2014 end-page: 214 ident: CR38 article-title: Robust price bounds for the forward starting straddle publication-title: Finance Stochast. – volume: 54–5 start-page: 2478 year: 2016 end-page: 2489 ident: CR34 article-title: On the monotonicity principle of optimal Skorokhod embedding problem publication-title: SIAM J. Control Opt. – volume: 58 start-page: 2765 issue: 5 year: 2020 end-page: 2789 ident: CR33 article-title: Optimal Brownian stopping when the source and target are radially symmetric distributions publication-title: SIAM J. Control Opt. – volume: 173 start-page: 211 issue: 1–2 year: 2019 end-page: 259 ident: CR21 article-title: The Root solution to the multi-marginal embedding problem: an optimal stopping and time-reversal approach publication-title: Probab. Theory Related Fields – ident: CR46 – volume: 12 start-page: 1355 issue: 6 year: 2010 end-page: 1369 ident: CR14 article-title: The Monge problem for strictly convex norms in publication-title: J. Eur. Math. Soc. – volume: 67 start-page: 399 issue: 4 year: 1984 end-page: 432 ident: CR42 article-title: Duality theorems for marginal problems publication-title: Z. Wahrsch. Verw. Gebiete. – volume: 6 start-page: 613 issue: 15 year: 2006 end-page: 635 ident: CR20 article-title: Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport publication-title: Ann. Fac. Sci. Toulouse Math. – volume: 146 start-page: 454 year: 2011 end-page: 478 ident: CR29 article-title: When is multidimensional screening a convex program? publication-title: J. Econ. Theory – volume: 318 start-page: 615 issue: 3 year: 2013 end-page: 673 ident: CR8 article-title: The Monge problem for distance cost in geodesic spaces publication-title: Comm. Math. Phys. – volume: 44 start-page: 1165 issue: 3 year: 2016 end-page: 1192 ident: CR12 article-title: Vector quantile regression: an optimal transport approach publication-title: Ann. Stat. – volume: 45 start-page: 2210 issue: 4 year: 2017 end-page: 2247 ident: CR49 article-title: An iterated Azéma-Yor type embedding for finitely many marginals publication-title: Ann. Prob. – ident: CR18 – volume: 47 start-page: 109 issue: 1 year: 2019 end-page: 164 ident: CR32 article-title: Structure of optimal martingale transport plans in general dimensions publication-title: Ann. Prob. – volume: 54–4 start-page: 2174 year: 2016 end-page: 2201 ident: CR35 article-title: Optimal Skorokhod embedding under finitely-many marginal constraints publication-title: SIAM J. Control Opt. – volume: 44 start-page: 375 issue: 4 year: 1991 end-page: 417 ident: CR10 article-title: Polar factorization and monotone rearrangement of vector-valued functions publication-title: Comm. Pure Appl. Math. – volume: 208 start-page: 327 year: 2017 end-page: 400 ident: CR3 article-title: Optimal transport and Skorokhod embedding publication-title: Invent. Math. – year: 2009 ident: CR57 publication-title: Optimal Transport. Old and New, Vol. 338, Grundlehren der mathematischen Wissenschaften – ident: CR2 – ident: CR37 – ident: CR53 – volume: 40 start-page: 372 issue: 1 year: 2012 end-page: 400 ident: CR13 article-title: On Azéma-Yor processes, their optimal properties and the Bachelier-drawdown equation publication-title: Ann. Prob. – volume: 47 start-page: 1726 issue: 3 year: 2019 end-page: 1774 ident: CR25 article-title: Irreducible convex paving for decomposition of multidimensional martingale transport plans publication-title: Ann. Prob. – volume: 1 start-page: 321 year: 2004 end-page: 392 ident: CR47 article-title: The Skorokhod embedding problem and its offspring publication-title: Prob. Surv. – volume: 177 start-page: 113 issue: 2 year: 1996 end-page: 161 ident: CR31 article-title: The geometry of optimal transportation publication-title: Acta Math. – volume: 22 start-page: 31 issue: 1 year: 2012 end-page: 56 ident: CR39 article-title: Robust bounds for forward start options publication-title: Math. Finance – ident: CR40 – volume: 45 start-page: 3038 issue: 5 year: 2017 end-page: 3074 ident: CR7 article-title: Complete duality for martingale optimal transport on the line publication-title: Ann. Prob. – ident: CR23 – volume: 12 start-page: 158 issue: 1 year: 2021 end-page: 188 ident: CR27 article-title: Robust pricing and hedging of options on multiple assets and its numerics publication-title: SIAM J. Financial Math. – volume: 51 start-page: 621 issue: 4 year: 1978 end-page: 651 ident: CR9 article-title: Prices of state-contingent claims implicit in option prices publication-title: J. Bus. – volume: 24 start-page: 312 issue: 1 year: 2014 end-page: 336 ident: CR30 article-title: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options publication-title: Ann. Appl. Prob. – ident: CR48 – volume: 157 start-page: 551 issue: 3 year: 2011 end-page: 572 ident: CR15 article-title: The Monge problem in publication-title: Duke Math. J. – volume: 3 start-page: 225 year: 1948 end-page: 226 ident: CR41 article-title: On a problem of Monge publication-title: Uspekhi Mat. Nauk. – volume: 78 start-page: 1093 issue: 3 year: 2010 end-page: 1125 ident: CR16 article-title: Quantile and probability curves without crossing publication-title: Econometrica – volume: 15 start-page: 1 year: 2002 end-page: 26 ident: CR11 article-title: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs publication-title: J. Am. Math. Soc. – volume: 17 start-page: 497 year: 1966 end-page: 510 ident: CR51 article-title: Characterization of the subdifferentials of convex functions publication-title: Pacific J. Math – volume: 25 start-page: 1640 issue: 3 year: 2019 end-page: 1658 ident: CR6 article-title: Dual attainment for the martingale transport problem publication-title: Bernoulli – volume: 98 start-page: 725 issue: 5–6 year: 2015 end-page: 741 ident: CR58 article-title: On the Monge–Kantorovich problem with additional linear constraints publication-title: Math. Notes – volume: 44 start-page: 42 issue: 1 year: 2016 end-page: 106 ident: CR5 article-title: On a problem of optimal transport under marginal martingale constraints publication-title: Ann. Prob. – volume: 36 start-page: 423 year: 1965 end-page: 439 ident: CR54 article-title: The existence of probability measures with given marginals publication-title: Ann. Math. Stat. – year: 2003 ident: CR56 publication-title: Topics in Optimal Transportation, Volume 58, Graduate Studies in Mathematics – ident: CR24 – volume: 318 start-page: 615 issue: 3 year: 2013 ident: 1954_CR8 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-013-1663-8 – volume: 78 start-page: 1093 issue: 3 year: 2010 ident: 1954_CR16 publication-title: Econometrica doi: 10.3982/ECTA7880 – volume: 148 start-page: 778 year: 2013 ident: 1954_CR22 publication-title: J. Econ. Theory doi: 10.1016/j.jet.2012.12.005 – volume: 160 start-page: 391 year: 2014 ident: 1954_CR26 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-013-0531-y – volume: 130 start-page: 1897 issue: 4 year: 2020 ident: 1954_CR43 publication-title: Stochast. Process. Appl. doi: 10.1016/j.spa.2019.06.005 – ident: 1954_CR2 doi: 10.1007/978-3-540-44857-0_5 – volume: 12 start-page: 1355 issue: 6 year: 2010 ident: 1954_CR14 publication-title: J. Eur. Math. Soc. doi: 10.4171/jems/234 – volume: 3 start-page: 225 year: 1948 ident: 1954_CR41 publication-title: Uspekhi Mat. Nauk. – volume-title: Topics in Optimal Transportation, Volume 58, Graduate Studies in Mathematics year: 2003 ident: 1954_CR56 – volume: 67 start-page: 399 issue: 4 year: 1984 ident: 1954_CR42 publication-title: Z. Wahrsch. Verw. Gebiete. doi: 10.1007/BF00532047 – volume: 17 start-page: 497 year: 1966 ident: 1954_CR51 publication-title: Pacific J. Math doi: 10.2140/pjm.1966.17.497 – ident: 1954_CR53 doi: 10.1007/978-3-319-20828-2 – volume: 58 start-page: 2765 issue: 5 year: 2020 ident: 1954_CR33 publication-title: SIAM J. Control Opt. doi: 10.1137/19M1270513 – volume: 40 start-page: 372 issue: 1 year: 2012 ident: 1954_CR13 publication-title: Ann. Prob. doi: 10.1214/10-AOP614 – volume: 25 start-page: 1640 issue: 3 year: 2019 ident: 1954_CR6 publication-title: Bernoulli doi: 10.3150/17-BEJ1015 – volume: 177 start-page: 113 issue: 2 year: 1996 ident: 1954_CR31 publication-title: Acta Math. doi: 10.1007/BF02392620 – volume: 128 start-page: 153 year: 1997 ident: 1954_CR45 publication-title: Adv. Math. doi: 10.1006/aima.1997.1634 – volume: 45 start-page: 2210 issue: 4 year: 2017 ident: 1954_CR49 publication-title: Ann. Prob. doi: 10.1214/16-AOP1110 – volume: 37 start-page: 225 issue: 1 year: 1985 ident: 1954_CR52 publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02481093 – volume: 47 start-page: 109 issue: 1 year: 2019 ident: 1954_CR32 publication-title: Ann. Prob. doi: 10.1214/18-AOP1258 – volume: 12 start-page: 158 issue: 1 year: 2021 ident: 1954_CR27 publication-title: SIAM J. Financial Math. doi: 10.1137/19M1286256 – ident: 1954_CR48 – volume: 146 start-page: 454 year: 2011 ident: 1954_CR29 publication-title: J. Econ. Theory doi: 10.1016/j.jet.2010.11.006 – volume: 173 start-page: 211 issue: 1–2 year: 2019 ident: 1954_CR21 publication-title: Probab. Theory Related Fields – ident: 1954_CR23 – volume: 44 start-page: 42 issue: 1 year: 2016 ident: 1954_CR5 publication-title: Ann. Prob. doi: 10.1214/14-AOP966 – volume: 6 start-page: 613 issue: 15 year: 2006 ident: 1954_CR20 publication-title: Ann. Fac. Sci. Toulouse Math. doi: 10.5802/afst.1132 – volume: 2 start-page: 329 year: 1998 ident: 1954_CR36 publication-title: Finance Stochast. doi: 10.1007/s007800050044 – volume: 98 start-page: 725 issue: 5–6 year: 2015 ident: 1954_CR58 publication-title: Math. Notes doi: 10.1134/S0001434615110036 – volume: 44 start-page: 375 issue: 4 year: 1991 ident: 1954_CR10 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160440402 – volume: 24 start-page: 312 issue: 1 year: 2014 ident: 1954_CR30 publication-title: Ann. Appl. Prob. doi: 10.1214/13-AAP925 – volume: 44 start-page: 1165 issue: 3 year: 2016 ident: 1954_CR12 publication-title: Ann. Stat. doi: 10.1214/15-AOS1401 – volume: 125 start-page: 207 issue: 2 year: 2004 ident: 1954_CR1 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-04-12521-7 – volume: 19 start-page: 189 issue: 1 year: 2014 ident: 1954_CR38 publication-title: Finance Stochast. doi: 10.1007/s00780-014-0249-4 – volume: 45 start-page: 3038 issue: 5 year: 2017 ident: 1954_CR7 publication-title: Ann. Prob. doi: 10.1214/16-AOP1131 – volume: 22 start-page: 31 issue: 1 year: 2012 ident: 1954_CR39 publication-title: Math. Finance doi: 10.1111/j.1467-9965.2010.00473.x – volume: 45 start-page: 223 issue: 1 year: 2017 ident: 1954_CR17 publication-title: Ann. Stat. – ident: 1954_CR40 – volume: 54–4 start-page: 2174 year: 2016 ident: 1954_CR35 publication-title: SIAM J. Control Opt. doi: 10.1137/15M1025256 – volume: 192 start-page: 403 issue: 3 year: 2009 ident: 1954_CR55 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0147-z – ident: 1954_CR24 – volume: 157 start-page: 551 issue: 3 year: 2011 ident: 1954_CR15 publication-title: Duke Math. J. doi: 10.1215/00127094-1272939 – volume: 146 start-page: 219 issue: 2 year: 2001 ident: 1954_CR19 publication-title: Brascamp Lieb. Invent. Math. doi: 10.1007/s002220100160 – volume: 147 start-page: 2399 year: 2012 ident: 1954_CR50 publication-title: J. Econ. Theory. doi: 10.1016/j.jet.2012.05.004 – volume: 17 start-page: 477 year: 2013 ident: 1954_CR4 publication-title: Finance Stochast. doi: 10.1007/s00780-013-0205-8 – volume-title: Optimal Transport. Old and New, Vol. 338, Grundlehren der mathematischen Wissenschaften year: 2009 ident: 1954_CR57 – volume: 36 start-page: 423 year: 1965 ident: 1954_CR54 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177700153 – volume: 1 start-page: 321 year: 2004 ident: 1954_CR47 publication-title: Prob. Surv. doi: 10.1214/154957804100000060 – ident: 1954_CR18 doi: 10.1086/712447 – ident: 1954_CR37 doi: 10.1007/978-3-642-14660-2_4 – volume-title: Partial Differential Equations and Monge–Kantorovich Mass transfer. Current Developments in Mathematics year: 1997 ident: 1954_CR28 – volume: 54–5 start-page: 2478 year: 2016 ident: 1954_CR34 publication-title: SIAM J. Control Opt. doi: 10.1137/15M1025268 – ident: 1954_CR46 – volume: 15 start-page: 1 year: 2002 ident: 1954_CR11 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-01-00376-9 – volume: 177 start-page: 151 issue: 2 year: 2005 ident: 1954_CR44 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-005-0362-9 – volume: 208 start-page: 327 year: 2017 ident: 1954_CR3 publication-title: Invent. Math. doi: 10.1007/s00222-016-0692-2 – volume: 47 start-page: 1726 issue: 3 year: 2019 ident: 1954_CR25 publication-title: Ann. Prob. doi: 10.1214/18-AOP1295 – volume: 51 start-page: 621 issue: 4 year: 1978 ident: 1954_CR9 publication-title: J. Bus. doi: 10.1086/296025 |
| SSID | ssj0001388 |
| Score | 2.424056 |
| Snippet | The theory of
Optimal Transport
and
Martingale Optimal Transport
(MOT) were inspired by problems in economics and finance and have flourished over the past... The theory of Optimal Transport and Martingale Optimal Transport (MOT) were inspired by problems in economics and finance and have flourished over the past... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 349 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Hedging (Finance) Investment analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | Geometry of vectorial martingale optimal transportations and duality |
| URI | https://link.springer.com/article/10.1007/s10107-023-01954-4 |
| Volume | 204 |
| WOSCitedRecordID | wos000967300600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F90YPgQQtN223S4-LzoIv4WPYW8gTBbWVbF_bfO0nbdRdkQY8tyRAmycwkmfk-hM6ESC03mvFpqJUP1g_7gsjID4nSSSQToRzHUv-B9Hp0MEif6qKwosl2b54knaWeKXbD9lottPk_aSf242W0Au6OWsKG55f-1P7iiNKGqNVGB3WpzO8y5txRY5Tnn0Sdp7nd_N8Yt9BGHVl63WopbKMlne2g9Rm8Qfh6nIK0Frvo-k7nQ12OJl5uvLG7vYfF6A0dsIAdo5eDPRnCr7JBQK-u9zyeKU-5aszJHnq7vXm9uvdrUgVfRlFQ-jHMR0JiQQwc9jAX1KiYCywCDScjpRKZQkShqZImMsTIjiCxSjsikMpwqkMT7aNWlmf6AHmRpenARgQ8ga2POZhKkQpOcGio5jRoI9zolskacdwSX3ywH6xkqy8G-mJOXyxuo4tpn88Kb2Nh63OrDmY3I0iWvK4pgPFZWCvWhfiHhAmEJG102cwYq3dpsUDw4d-aH6G1EIKdKjftGLXK0Zc-QatyXL4Xo1O3PL8BphDeRA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ifOQgeNJBN0uzmWHxVbIv4wtuyTxBsK20s9N87mya1ghT0mLA7DLO7M7OzM98AnEiZut5o1meh0T5qP-JLqiI_pNokkUqkznssvTRpu81eX9P7oihsUGa7l0-SuaaeKnYjLqwWuvyftBb78TwsxGixHGL-w-PLRP-SiLGyUavzDopSmd9p_DBHpVL--SSaW5rrtf_xuA6rhWfp1cdbYQPmTHcTVqbwBvGrNQFpHWzB5Y3pdUzWH3k96w3z6D1uRq-TAws4Hr0e6pMO_spKBPRxeM8TXe3pvBpztA3P11dPFw2_aKrgqygKMj_G9UhoLKnFyx4RklkdC0lkYPBmpHWiUvQoDNPKRpZaVZM01mlNBkpbwUxoox2odHtdswte5Np0ECsDkeDRJwJVpUyloCS0zAgWVIGUsuWqQBx3jS_e-TdWspMXR3nxXF48rsLZZM7HGG9j5uhTJw7uDiNSVqKoKUD-HKwVr6P_Q8MEXZIqnJcrxotTOphBeO9vw49hqfHUavLmbftuH5ZDdHzGeWoHUMn6n-YQFtUwexv0j_Kt-gUaEOEo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F99iB40LJN223S46KuiroIPvAW8gTB7cpuFfz3TvpYVxBBPLYkwzCZTGaSmW8ADqRMXW8067PQaB-tH_ElVZEfUm2SSCVSFz2WHq9pr8eentLbiSr-Itu9fpIsaxocSlOWt161bU0UvhF3xRa6XKC0HfvxNMzELpHexet3j2NbTCLG6qatzlOoymZ-pvHtaKoN9Pfn0eLU6S79n99lWKw8Tq9TqsgKTJlsFRYmcAjx62YM3jpag9NzM-ibfPjhDaz3Xtzqo5J6_QJwwPHrDdDO9PFXXiOjl9d-nsi0p4sqzY91eOie3Z9c-FWzBV9FUZD7Ma5TQmNJLQaBREhmdSwkkYHBiEnrRKXoaRimlY0staotaazTtgyUtoKZ0EYb0MgGmdkEL3LtO4iVgUjQJBCBJlSmUlASWmYEC5pAajlzVSGRu4YYL_wLQ9nJi6O8eCEvHjfhaDzntcTh-HX0oRMHd5sUKStR1Rogfw7uinfQL6Jhgq5KE47r1ePV7h39Qnjrb8P3Ye72tMuvL3tX2zAfoj9Upq_tQCMfvpldmFXv-fNouFdo7Seid-oM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometry+of+vectorial+martingale+optimal+transportations+and+duality&rft.jtitle=Mathematical+programming&rft.au=Lim%2C+Tongseok&rft.date=2024-03-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=204&rft.issue=1-2&rft.spage=349&rft.epage=383&rft_id=info:doi/10.1007%2Fs10107-023-01954-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_023_01954_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |