NIRK-based accurate continuous–discrete extended Kalman filters for estimating continuous-time stochastic target tracking models
This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge–Kutta (NIRK) formulas of orders 4 and 6 and designed for treating continuous-time stochastic systems arisen in radar tracking. Our filters are built within the Extended Kalman F...
Uložené v:
| Vydané v: | Journal of computational and applied mathematics Ročník 316; s. 260 - 270 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.05.2017
|
| Predmet: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge–Kutta (NIRK) formulas of orders 4 and 6 and designed for treating continuous-time stochastic systems arisen in radar tracking. Our filters are built within the Extended Kalman Filtering (EKF) framework and based on accurate numerical integrations of the corresponding Moment Differential Equations (MDEs). Automatic local and global error regulation mechanisms implemented in these methods allow the committed discretization error to be under control and made negligible in automatic mode. The latter raises the state estimation accuracy of the constructed filters, significantly. This also leads to the advanced notion of Accurate Continuous–Discrete Extended Kalman Filtering (ACD-EKF) developed by Kulikov and Kulikova in 2013–2016. Our novel methods are constructed within the same approach, but possess the improved accuracy and efficiency in comparison to their predecessors due to both more effective error control mechanisms implemented for integrating MDEs and more accurate iterations used for treating arisen nonlinear equations in the revised filters. Numerical experiments with the updated state estimators and their comparison to the cited earlier-designed ACD-EKFs are fulfilled in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn, in Matlab. This examination suggests that the novel state estimation algorithms outperform their predecessors and possess a promising potential for solving target tracking tasks in real-world applications. |
|---|---|
| AbstractList | This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge-Kutta (NIRK) formulas of orders 4 and 6 and designed for treating continuous-time stochastic systems arisen in radar tracking. Our filters are built within the Extended Kalman Filtering (EKF) framework and based on accurate numerical integrations of the corresponding Moment Differential Equations (MDEs). Automatic local and global error regulation mechanisms implemented in these methods allow the committed discretization error to be under control and made negligible in automatic mode. The latter raises the state estimation accuracy of the constructed filters, significantly. This also leads to the advanced notion of Accurate Continuous-Discrete Extended Kalman Filtering (ACD-EKF) developed by Kulikov and Kulikova in 2013-2016. Our novel methods are constructed within the same approach, but possess the improved accuracy and efficiency in comparison to their predecessors due to both more effective error control mechanisms implemented for integrating MDEs and more accurate iterations used for treating arisen nonlinear equations in the revised filters. Numerical experiments with the updated state estimators and their comparison to the cited earlier-designed ACD-EKFs are fulfilled in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn, in Matlab. This examination suggests that the novel state estimation algorithms outperform their predecessors and possess a promising potential for solving target tracking tasks in real-world applications. This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge–Kutta (NIRK) formulas of orders 4 and 6 and designed for treating continuous-time stochastic systems arisen in radar tracking. Our filters are built within the Extended Kalman Filtering (EKF) framework and based on accurate numerical integrations of the corresponding Moment Differential Equations (MDEs). Automatic local and global error regulation mechanisms implemented in these methods allow the committed discretization error to be under control and made negligible in automatic mode. The latter raises the state estimation accuracy of the constructed filters, significantly. This also leads to the advanced notion of Accurate Continuous–Discrete Extended Kalman Filtering (ACD-EKF) developed by Kulikov and Kulikova in 2013–2016. Our novel methods are constructed within the same approach, but possess the improved accuracy and efficiency in comparison to their predecessors due to both more effective error control mechanisms implemented for integrating MDEs and more accurate iterations used for treating arisen nonlinear equations in the revised filters. Numerical experiments with the updated state estimators and their comparison to the cited earlier-designed ACD-EKFs are fulfilled in severe conditions of tackling a seven-dimensional radar tracking problem, where an aircraft executes a coordinated turn, in Matlab. This examination suggests that the novel state estimation algorithms outperform their predecessors and possess a promising potential for solving target tracking tasks in real-world applications. |
| Author | Kulikov, G.Yu Kulikova, M.V. |
| Author_xml | – sequence: 1 givenname: M.V. orcidid: 0000-0001-8470-9831 surname: Kulikova fullname: Kulikova, M.V. email: maria.kulikova@ist.utl.pt – sequence: 2 givenname: G.Yu orcidid: 0000-0002-1663-6009 surname: Kulikov fullname: Kulikov, G.Yu email: gkulikov@math.ist.utl.pt |
| BookMark | eNp9kMFO3DAQhq0KpO5CH6C3HLkktdfedSJO1aotKxBICM6WM55Qb5MYbC8qt6qvwBvyJJ1oOVQcOHk083_WzDdnB2MYkbHPgleCi9WXbQV2qBZUVryuuFx9YDNR66YUWtcHbMal1iVXC_2RzVPacs5XjVAz9vdyc31etjahKyzALtqMBYQx-3EXdunlz7PzCSJSF39nHB3lzm0_2LHofJ8xpqILscCU_WAJuvsPLqmHRcoBflqaQ5FtvMNc5Gjh1xQdgsM-HbPDzvYJP72-R-z2-7eb9Vl5cfVjs_56UYKUPJdKdk4LXDmtLILUqgO1cJJbJfVSWSc1OudEK7qWqqathVjqFrSrede0CyWP2Mn-3_sYHna0sRnoNOx7OyJtayZdTaNFPUX1PgoxpBSxM-AznUenRet7I7iZrJutIetmsm54bcg6keINeR_JTHx6lzndMyQDHz1Gk8DjCOh8RMjGBf8O_Q9FDqG5 |
| CitedBy_id | crossref_primary_10_1109_TII_2021_3109095 crossref_primary_10_1016_j_apnum_2019_08_021 crossref_primary_10_1016_j_cam_2018_07_026 crossref_primary_10_1016_j_engappai_2024_108611 crossref_primary_10_3390_app7101003 crossref_primary_10_1016_j_jsv_2018_10_060 crossref_primary_10_1016_j_cam_2019_112563 crossref_primary_10_1016_j_sigpro_2017_12_012 crossref_primary_10_3390_rs9070657 crossref_primary_10_1007_s11071_020_05698_0 crossref_primary_10_1109_ACCESS_2018_2885856 crossref_primary_10_1080_00207721_2020_1829165 crossref_primary_10_2478_ijanmc_2025_0001 crossref_primary_10_1002_rnc_4440 crossref_primary_10_3390_s18061959 crossref_primary_10_3390_app12168167 |
| Cites_doi | 10.1109/CCA.2014.6981432 10.1007/s00180-007-0094-4 10.1109/TAC.2007.904453 10.1109/TSP.2010.2056923 10.1109/JPROC.2003.823141 10.1515/rnam-2015-0021 10.1109/9.847726 10.1109/MCS.2008.923231 10.1109/TAC.2009.2019800 10.1016/j.ejcon.2014.11.003 10.1109/ECC.2015.7330944 10.1109/TSP.2015.2493985 10.1109/CDC.2013.6761125 10.1109/TAC.2013.2272136 10.1016/j.cam.2016.06.013 10.1093/imanum/drr060 10.1137/140979952 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cam.2016.08.036 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 270 |
| ExternalDocumentID | 10_1016_j_cam_2016_08_036 S0377042716304058 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS 9DU AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS FGOYB G-2 HZ~ NHB R2- SEW WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-43fd71e6d74aec374fc42d30a43754ad37eddd1b1fb7ed9b81157bc7d80f9b243 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392784600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 |
| IngestDate | Wed Oct 01 12:47:57 EDT 2025 Tue Nov 18 21:36:35 EST 2025 Sat Nov 29 06:39:06 EST 2025 Fri Feb 23 02:31:36 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 65L05 93E11 Continuous-time stochastic target tracking model Mazzoni’s hybrid method Gauss- and Lobatto-type nested implicit Runge–Kutta formulas Continuous–discrete stochastic system Adaptive MDE solver with local and global error controls Extended Kalman filter |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-43fd71e6d74aec374fc42d30a43754ad37eddd1b1fb7ed9b81157bc7d80f9b243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1663-6009 0000-0001-8470-9831 |
| PQID | 1879997184 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1879997184 crossref_citationtrail_10_1016_j_cam_2016_08_036 crossref_primary_10_1016_j_cam_2016_08_036 elsevier_sciencedirect_doi_10_1016_j_cam_2016_08_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-15 |
| PublicationDateYYYYMMDD | 2017-05-15 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Simon (br000045) 2006 Goodwin, Sin (br000025) 1984 G.Yu. Kulikov, M.V. Kulikova, Accurate state estimation in the Van der Vusse reaction, in: Proceedings of the 2014 IEEE Multi-Conference on Systems and Control, 2014, pp. 759–764. Teixeira, Santillo, Erwin, Bernstein (br000015) 2008; 28 Kloeden, Platen (br000020) 1999 Kulikov, Kulikova (br000075) 2014; 59 Arasaratnam, Haykin (br000050) 2009; 54 Kulikov, Kulikova (br000085) 2015; 30 Julier, Uhlmann, Durrant-Whyte (br000055) 2000; 45 Kulikov, Kulikova (br000080) 2015; 21 Kulikov (br000110) 2013; 33 Kulikov, Weiner (br000115) 2015; 37 Arasaratnam, Haykin, Hurd (br000005) 2010; 58 Grewal, Andrews (br000030) 2001 Weiner, Kulikov, Beck, Bruder (br000120) 2017; 316 Julier, Uhlmann (br000060) 2004; 92 G.Yu. Kulikov, M.V. Kulikova, State estimation in chemical systems with infrequent measurements, in: Proceedings of the 2015 European Control Conference, 2015, pp. 2688–2693. M.V. Kulikova, G.Yu. Kulikov, Square-root accurate continuous-discrete extended Kalman filter for target tracking, in: Proceedings of the 52-nd IEEE Conference on Decision and Control, 2013, pp. 7785–7790. Lewis (br000040) 1986 Jazwinski (br000035) 1970 Kulikov, Kulikova (br000065) 2016; 64 Särkkä (br000010) 2007; 52 G.Yu. Kulikov, Nested implicit Runge-Kutta pairs of Gauss and Lobatto types with local and global error controls for stiff ordinary differential equations (in preparation). Mazzoni (br000105) 2008; 23 Arasaratnam (10.1016/j.cam.2016.08.036_br000005) 2010; 58 Goodwin (10.1016/j.cam.2016.08.036_br000025) 1984 Teixeira (10.1016/j.cam.2016.08.036_br000015) 2008; 28 Kulikov (10.1016/j.cam.2016.08.036_br000085) 2015; 30 Simon (10.1016/j.cam.2016.08.036_br000045) 2006 Weiner (10.1016/j.cam.2016.08.036_br000120) 2017; 316 Jazwinski (10.1016/j.cam.2016.08.036_br000035) 1970 10.1016/j.cam.2016.08.036_br000095 10.1016/j.cam.2016.08.036_br000100 Kloeden (10.1016/j.cam.2016.08.036_br000020) 1999 Arasaratnam (10.1016/j.cam.2016.08.036_br000050) 2009; 54 Kulikov (10.1016/j.cam.2016.08.036_br000075) 2014; 59 Kulikov (10.1016/j.cam.2016.08.036_br000080) 2015; 21 Julier (10.1016/j.cam.2016.08.036_br000055) 2000; 45 Julier (10.1016/j.cam.2016.08.036_br000060) 2004; 92 Kulikov (10.1016/j.cam.2016.08.036_br000065) 2016; 64 10.1016/j.cam.2016.08.036_br000090 10.1016/j.cam.2016.08.036_br000070 Grewal (10.1016/j.cam.2016.08.036_br000030) 2001 Lewis (10.1016/j.cam.2016.08.036_br000040) 1986 Särkkä (10.1016/j.cam.2016.08.036_br000010) 2007; 52 Mazzoni (10.1016/j.cam.2016.08.036_br000105) 2008; 23 Kulikov (10.1016/j.cam.2016.08.036_br000110) 2013; 33 Kulikov (10.1016/j.cam.2016.08.036_br000115) 2015; 37 |
| References_xml | – volume: 58 start-page: 4977 year: 2010 end-page: 4993 ident: br000005 article-title: Cubature Kalman filtering for continuous-discrete systems: Theory and simulations publication-title: IEEE Trans. Signal Process. – volume: 54 start-page: 1254 year: 2009 end-page: 1269 ident: br000050 article-title: Cubature Kalman filters publication-title: IEEE Trans. Automat. Control – volume: 30 start-page: 239 year: 2015 end-page: 249 ident: br000085 article-title: The accurate continuous-discrete extended Kalman filter for continuous-time stochastic systems publication-title: Russian J. Numer. Anal. Math. Modelling – volume: 33 start-page: 136 year: 2013 end-page: 163 ident: br000110 article-title: Cheap global error estimation in some Runge–Kutta pairs publication-title: IMA J. Numer. Anal. – reference: G.Yu. Kulikov, M.V. Kulikova, Accurate state estimation in the Van der Vusse reaction, in: Proceedings of the 2014 IEEE Multi-Conference on Systems and Control, 2014, pp. 759–764. – volume: 64 start-page: 948 year: 2016 end-page: 958 ident: br000065 article-title: The accurate continuous-discrete extended Kalman filter for radar tracking publication-title: IEEE Trans. Signal Process. – reference: M.V. Kulikova, G.Yu. Kulikov, Square-root accurate continuous-discrete extended Kalman filter for target tracking, in: Proceedings of the 52-nd IEEE Conference on Decision and Control, 2013, pp. 7785–7790. – reference: G.Yu. Kulikov, Nested implicit Runge-Kutta pairs of Gauss and Lobatto types with local and global error controls for stiff ordinary differential equations (in preparation). – volume: 28 start-page: 78 year: 2008 end-page: 94 ident: br000015 article-title: Spacecraft tracking using sampled-data Kalman filters publication-title: IEEE Control Syst. Mag. – year: 1986 ident: br000040 article-title: Optimal Estimation: with an Introduction to Stochastic Control Theory – year: 2001 ident: br000030 article-title: Kalman Filtering: Theory and Practice – volume: 21 start-page: 14 year: 2015 end-page: 26 ident: br000080 article-title: High-order accurate continuous-discrete extended Kalman filter for chemical engineering publication-title: Eur. J. Control – volume: 23 start-page: 519 year: 2008 end-page: 539 ident: br000105 article-title: Computational aspects of continuous-discrete extended Kalman filtering publication-title: Comput. Statist. – year: 1999 ident: br000020 article-title: Numerical Solution of Stochastic Differential Equations – year: 1984 ident: br000025 article-title: Adaptive Filtering Prediction and Control – reference: G.Yu. Kulikov, M.V. Kulikova, State estimation in chemical systems with infrequent measurements, in: Proceedings of the 2015 European Control Conference, 2015, pp. 2688–2693. – year: 1970 ident: br000035 article-title: Stochastic Processes and Filtering Theory – volume: 37 start-page: A1593 year: 2015 end-page: A1613 ident: br000115 article-title: A singly diagonally implicit two-step peer triple with global error control for stiff ordinary differential equations publication-title: SIAM J. Sci. Comput. – volume: 52 start-page: 1631 year: 2007 end-page: 1641 ident: br000010 article-title: On unscented Kalman filter for state estimation of continuous-time nonlinear systems publication-title: IEEE Trans. Automat. Control – year: 2006 ident: br000045 article-title: Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches – volume: 45 start-page: 477 year: 2000 end-page: 482 ident: br000055 article-title: A new method for the nonlinear transformation of means and covariances in filters and estimators publication-title: IEEE Trans. Automat. Control – volume: 59 start-page: 273 year: 2014 end-page: 279 ident: br000075 article-title: Accurate numerical implementation of the continuous-discrete extended Kalman filter publication-title: IEEE Trans. Automat. Control – volume: 316 start-page: 380 year: 2017 end-page: 391 ident: br000120 article-title: New third- and fourth-order singly diagonally implicit two-step peer triples with local and global error controls for solving stiff ordinary differential equations publication-title: J. Comput. Appl. Math. – volume: 92 start-page: 401 year: 2004 end-page: 422 ident: br000060 article-title: Unscented filtering and nonlinear estimation publication-title: Proc. IEEE – year: 1984 ident: 10.1016/j.cam.2016.08.036_br000025 – year: 1970 ident: 10.1016/j.cam.2016.08.036_br000035 – year: 1986 ident: 10.1016/j.cam.2016.08.036_br000040 – ident: 10.1016/j.cam.2016.08.036_br000100 – ident: 10.1016/j.cam.2016.08.036_br000090 doi: 10.1109/CCA.2014.6981432 – year: 1999 ident: 10.1016/j.cam.2016.08.036_br000020 – volume: 23 start-page: 519 issue: 4 year: 2008 ident: 10.1016/j.cam.2016.08.036_br000105 article-title: Computational aspects of continuous-discrete extended Kalman filtering publication-title: Comput. Statist. doi: 10.1007/s00180-007-0094-4 – volume: 52 start-page: 1631 issue: 9 year: 2007 ident: 10.1016/j.cam.2016.08.036_br000010 article-title: On unscented Kalman filter for state estimation of continuous-time nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2007.904453 – volume: 58 start-page: 4977 issue: 10 year: 2010 ident: 10.1016/j.cam.2016.08.036_br000005 article-title: Cubature Kalman filtering for continuous-discrete systems: Theory and simulations publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2056923 – volume: 92 start-page: 401 issue: 3 year: 2004 ident: 10.1016/j.cam.2016.08.036_br000060 article-title: Unscented filtering and nonlinear estimation publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.823141 – volume: 30 start-page: 239 issue: 4 year: 2015 ident: 10.1016/j.cam.2016.08.036_br000085 article-title: The accurate continuous-discrete extended Kalman filter for continuous-time stochastic systems publication-title: Russian J. Numer. Anal. Math. Modelling doi: 10.1515/rnam-2015-0021 – volume: 45 start-page: 477 issue: 3 year: 2000 ident: 10.1016/j.cam.2016.08.036_br000055 article-title: A new method for the nonlinear transformation of means and covariances in filters and estimators publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.847726 – volume: 28 start-page: 78 issue: 4 year: 2008 ident: 10.1016/j.cam.2016.08.036_br000015 article-title: Spacecraft tracking using sampled-data Kalman filters publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2008.923231 – year: 2006 ident: 10.1016/j.cam.2016.08.036_br000045 – year: 2001 ident: 10.1016/j.cam.2016.08.036_br000030 – volume: 54 start-page: 1254 issue: 6 year: 2009 ident: 10.1016/j.cam.2016.08.036_br000050 article-title: Cubature Kalman filters publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2009.2019800 – volume: 21 start-page: 14 year: 2015 ident: 10.1016/j.cam.2016.08.036_br000080 article-title: High-order accurate continuous-discrete extended Kalman filter for chemical engineering publication-title: Eur. J. Control doi: 10.1016/j.ejcon.2014.11.003 – ident: 10.1016/j.cam.2016.08.036_br000095 doi: 10.1109/ECC.2015.7330944 – volume: 64 start-page: 948 issue: 4 year: 2016 ident: 10.1016/j.cam.2016.08.036_br000065 article-title: The accurate continuous-discrete extended Kalman filter for radar tracking publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2493985 – ident: 10.1016/j.cam.2016.08.036_br000070 doi: 10.1109/CDC.2013.6761125 – volume: 59 start-page: 273 issue: 1 year: 2014 ident: 10.1016/j.cam.2016.08.036_br000075 article-title: Accurate numerical implementation of the continuous-discrete extended Kalman filter publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2013.2272136 – volume: 316 start-page: 380 year: 2017 ident: 10.1016/j.cam.2016.08.036_br000120 article-title: New third- and fourth-order singly diagonally implicit two-step peer triples with local and global error controls for solving stiff ordinary differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.06.013 – volume: 33 start-page: 136 issue: 1 year: 2013 ident: 10.1016/j.cam.2016.08.036_br000110 article-title: Cheap global error estimation in some Runge–Kutta pairs publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drr060 – volume: 37 start-page: A1593 issue: 3 year: 2015 ident: 10.1016/j.cam.2016.08.036_br000115 article-title: A singly diagonally implicit two-step peer triple with global error control for stiff ordinary differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/140979952 |
| SSID | ssj0006914 |
| Score | 2.2911816 |
| Snippet | This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge–Kutta (NIRK) formulas of orders 4... This paper presents three state estimators grounded in the variable-stepsize Gauss- and Lobatto-type Nested Implicit Runge-Kutta (NIRK) formulas of orders 4... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 260 |
| SubjectTerms | Accuracy Adaptive MDE solver with local and global error controls Automatic control Construction methods Continuous-time stochastic target tracking model Continuous–discrete stochastic system Estimators Extended Kalman filter Gauss- and Lobatto-type nested implicit Runge–Kutta formulas Mathematical models Matlab Mazzoni’s hybrid method Permissible error Radar tracking |
| Title | NIRK-based accurate continuous–discrete extended Kalman filters for estimating continuous-time stochastic target tracking models |
| URI | https://dx.doi.org/10.1016/j.cam.2016.08.036 https://www.proquest.com/docview/1879997184 |
| Volume | 316 |
| WOSCitedRecordID | wos000392784600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-1778 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIEXJ dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgVdIJ6i5SEjsSLKKImTOF5WqIhSOkKooGEVOX6IKUNazUtdIn6BDd_Hl3Btx8kQmIou2FiRNbEyuSf3Hl_b5yL0LJNFJAsiQph6aWhgnsJ4JEJBuAZ-kGaKW53ZN3Q0KsZj9nYw-OHPwqymtK6Liwt2_l9NDX1gbHN09grmbgeFDrgGo0MLZof2nww_Onx3FJrgJAMuxNJIQdgN6ZN6CbN8v7mBmOO4M2DMgU-DB0d8ahL6emIW0OdOCxwcgKG09mCuHyI09egDII3iEzcqz4HbTW6qTQiTeHfVdeYbaK-wZSR8CtJKxTZE-EurILu2wDSdfD5bWYJ7PPww7PXbpP7w43I9dQHh0KieZmsejlDoS504gHfHJP7NobpqA01sTlyRkT_cvstAnMKU3ogLxLlVZSV_kdjuhb52Q6Lf63ZawhClGaI01TlJfg1tJzRj4C-39w8Pxq_bKJ8zpxvv_4JfMbd7B3vPsYnz9KK_pTQnt9DNxih432HoNhqo-g7aOe7McBd969CEPZpwB4WfX797HGGPI-xwhBscYcAR7nCEezjCHY6wwxH2OMIOR_fQ-5cHJy9ehU3ZDvjASbQIU6IljVUuacqVIDTVIk0kiXhqyi1zSaiSUsZVrCu4YlVh9J4qQcFraFYlKbmPtuqzWj1AOKGCFToDnpVZbTqWSEWU0pIlldAi30WRf7GlaDTtTWmVabnRoLvoeXvLuRN0uezHqbdW2TBSxzRLQN5ltz31li3BW5slOF4reLFlXFCYkQEfTPeu8hwP0Y3u-3mEthazpXqMrovVYjKfPWmg-Qsg1L-C |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIRK-based+accurate+continuous%E2%80%93discrete+extended+Kalman+filters+for+estimating+continuous-time+stochastic+target+tracking+models&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Kulikova%2C+M.V.&rft.au=Kulikov%2C+G.Yu&rft.date=2017-05-15&rft.issn=0377-0427&rft.volume=316&rft.spage=260&rft.epage=270&rft_id=info:doi/10.1016%2Fj.cam.2016.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2016_08_036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |