Efficient predictive control method for ORC waste heat recovery system based on recurrent neural network
•A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in compa...
Saved in:
| Published in: | Applied thermal engineering Vol. 257; p. 124352 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.12.2024
|
| Subjects: | |
| ISSN: | 1359-4311 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in comparison studies.
The model predictive control performs well in regulating operating parameters and ensuring system safety when the organic Rankine cycles are operating with variable heat sources. However, traditional nonlinear predictive control based on the organic Rankine cycle mechanism model involves significant computational complexity, making it challenging to quickly find a control solution. This limitation hinders its application in the organic Rankine cycle for rapid response control. To address this issue, a fast model predictive control method is proposed in this work. A recurrent neural network model is well-trained using the input–output data of the organic Rankine cycle process, and it is used as a surrogate model in the design of the model predictive controller for the control of organic Rankine cycle operating parameters. The formulated optimal control problem is then transformed into a mixed integer linear programming problem, which can obtain high-quality and fast solutions during the control process. Through comparison with recurrent neural network-based nonlinear predictive control and pseudo-sequential method-based fast nonlinear predictive control, the results show that the designed controller can effectively accomplish the control of organic Rankine cycle operating parameters with smaller overshoot. Moreover, its average control solution time is shorter by 89.59% and 93.27% respectively while the total net output power of the system during the control process is 0.54% and 1.3% higher than that of the other two controllers. It exhibits superior control performance, even under variable waste heat conditions. |
|---|---|
| AbstractList | •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in comparison studies.
The model predictive control performs well in regulating operating parameters and ensuring system safety when the organic Rankine cycles are operating with variable heat sources. However, traditional nonlinear predictive control based on the organic Rankine cycle mechanism model involves significant computational complexity, making it challenging to quickly find a control solution. This limitation hinders its application in the organic Rankine cycle for rapid response control. To address this issue, a fast model predictive control method is proposed in this work. A recurrent neural network model is well-trained using the input–output data of the organic Rankine cycle process, and it is used as a surrogate model in the design of the model predictive controller for the control of organic Rankine cycle operating parameters. The formulated optimal control problem is then transformed into a mixed integer linear programming problem, which can obtain high-quality and fast solutions during the control process. Through comparison with recurrent neural network-based nonlinear predictive control and pseudo-sequential method-based fast nonlinear predictive control, the results show that the designed controller can effectively accomplish the control of organic Rankine cycle operating parameters with smaller overshoot. Moreover, its average control solution time is shorter by 89.59% and 93.27% respectively while the total net output power of the system during the control process is 0.54% and 1.3% higher than that of the other two controllers. It exhibits superior control performance, even under variable waste heat conditions. |
| ArticleNumber | 124352 |
| Author | Wu, Xialai Wang, Yongli Chen, Junghui Qin, Jiabin |
| Author_xml | – sequence: 1 givenname: Xialai orcidid: 0000-0003-3654-5427 surname: Wu fullname: Wu, Xialai organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China – sequence: 2 givenname: Jiabin surname: Qin fullname: Qin, Jiabin organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China – sequence: 3 givenname: Junghui orcidid: 0000-0002-9994-839X surname: Chen fullname: Chen, Junghui email: jason@wavenet.cycu.edu.tw organization: R&D Center for Membrane Technology and Department of Chemical Engineering, Chung-Yuan Christian University Chung-Li, Taoyuan 320, Taiwan, R.O.C – sequence: 4 givenname: Yongli surname: Wang fullname: Wang, Yongli email: 02774@zjhu.edu.cn organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China |
| BookMark | eNqNkEFLwzAUx3OY4KZ-hxy8tiZpuy7gRcemwmAgeg5p8mIz26Yk2ca-vS3zoqed_vDe-__g_WZo0rkOELqnJKWEzh92qez7JtbgW9lA95UywvKUsjwr2ARNaVbwJM8ovUazEHaEULYo8ymqV8ZYZaGLuPegrYr2AFi5LnrX4BZi7TQ2zuPt-xIfZYiAa5ARe1DuAP6Ew2mYtbiSATR23bjYez_yOth72QwRj85_36IrI5sAd795gz7Xq4_la7LZvrwtnzaJyjISk5xpzRSDMi_kYm4U07wwhBgNsiw5rSjjvKp0STIwXCozHFZkAXNOpKp4AdkNejxzlXcheDCi97aV_iQoEaMpsRN_TYnRlDibGurP_-rKRhntKETa5lLI-gyB4dGDBS_CqFgNfgc9UWhnLwP9AMoimO8 |
| CitedBy_id | crossref_primary_10_1016_j_aei_2024_102893 crossref_primary_10_1016_j_applthermaleng_2025_127337 crossref_primary_10_1016_j_csite_2025_106880 crossref_primary_10_1016_j_energy_2025_135838 |
| Cites_doi | 10.1021/acs.iecr.0c04214 10.1002/ente.202300425 10.1016/j.neunet.2022.10.016 10.3390/en16052329 10.1016/j.applthermaleng.2007.07.019 10.1016/j.neunet.2022.01.001 10.23919/ACC55779.2023.10156081 10.1016/j.energy.2018.08.084 10.1016/j.apenergy.2020.115537 10.1016/j.applthermaleng.2022.119803 10.1016/j.ces.2023.119552 10.1177/0142331217753061 10.1016/j.energy.2021.120113 10.3390/e23111435 10.1016/j.ces.2021.117273 10.1016/j.energy.2022.124268 10.1007/s12206-022-0102-1 10.1109/CCTA41146.2020.9206319 10.1016/j.ejcon.2022.100632 10.1016/j.energy.2021.122664 10.1109/ACC.2005.1470372 10.1016/j.apenergy.2017.07.038 10.1109/TCST.2017.2759104 10.1016/j.energy.2023.126959 10.1007/978-981-16-2641-8_62 10.1109/TCST.2016.2574760 10.1155/2021/9941451 10.1016/j.energy.2021.121437 10.1155/2018/4154019 10.1016/j.rser.2017.05.082 10.1016/j.jclepro.2022.131470 10.1007/978-3-031-03758-0 10.1016/j.apenergy.2011.01.015 10.1016/j.conengprac.2018.09.005 10.1109/TNNLS.2022.3145365 10.1016/j.energy.2019.05.023 10.1016/j.mechmachtheory.2022.105223 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2024.124352 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_applthermaleng_2024_124352 S1359431124020209 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ M41 R2- ~HD |
| ID | FETCH-LOGICAL-c330t-42dd2c2e745a86fc2d95f00fdea7791b1299bbd703ef9acfe74b08e690acb95e3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sat Nov 29 03:21:15 EST 2025 Tue Nov 18 21:45:56 EST 2025 Sat Nov 16 15:58:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mixed integer linear programming problem Recurrent neural network Organic Rankine cycle Predictive control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-42dd2c2e745a86fc2d95f00fdea7791b1299bbd703ef9acfe74b08e690acb95e3 |
| ORCID | 0000-0002-9994-839X 0000-0003-3654-5427 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2024_124352 crossref_citationtrail_10_1016_j_applthermaleng_2024_124352 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124352 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-15 |
| PublicationDateYYYYMMDD | 2024-12-15 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shi, Zhang, Chen (b0075) 2023; 271 Saha, Chakraborty, Mondal (b0025) 2023; 11 Lin, Chen, Xie (b0145) 2023; 158 Khayyam, Naebe, Milani (b0005) 2021; 225 Ping, Yang, Zhang (b0165) 2022; 254 Bingham, Miikkulainen (b0195) 2022; 148 Sildir, Aydin (b0210) 2022; 249 Ren, Guo, Chen (b0100) 2024; 285 Turgut (b0090) 2023; 230 Zhang, Li, Xu (b0105) 2019; 41 A. Richards, J. How, Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, IEEE, pp. 2676-2683. Shi, Lin, Wu (b0050) 2022; 244 Ma, Wang, Han (b0080) 2023; 182 Y. Vaupel, A. Caspari, N.C. Hamacher, et al., Artificial neural networks for real-time model predictive control of organic rankine cycles for waste heat recovery, Proceedings of the 5th international seminar on ORC power systems. Yebi, Xu, Liu (b0150) 2017; 27 Shi, He, Peng (b0215) 2016; 102 Radulovic (b0010) 2023; 16 Hu, Xue, Cha (b0175) 2023; 50 Pili, Wieland, Spliethoff (b0040) 2023; 220 Wu, Chen, Xie (b0055) 2019; 180 Koppauer, Kemmetmüller, Kugi (b0060) 2018; 81 Imran, Pili, Usman (b0140) 2020; 276 Quoilin, Aumann, Grill (b0205) 2011; 88 D. Soudbakhsh, A.M. Annaswamy, Y. Wang, et al., Data-Driven Control: Theory and Applications, 2023 American Control Conference (ACC), IEEE, pp. 1922-1939. Li, Tang (b0115) 2021; 23 R. Pili, C. Wieland, H. Spliethoff, et al., Numerical analysis of feedforward concepts for advanced control of organic Rankine cycle systems on heavy-duty vehicles, 351 (2022) 131470. Mao, Sejdić (b0170) 2022; 34 Wang, Liang, Luo (b0085) 2019; 70 Peralez, Nadri, Dufour (b0120) 2016; 25 Wei, Lu, Lu (b0155) 2008; 28 Dubey, Goud, Sharma (b0035) 2022; 238 Du, Liu, Wang (b0130) 2021; 235 Zhu, Jiang, Shen (b0180) 2022; 36 Xu, Rathod, Yebi (b0160) 2020; 165 Yang, Li, Wu (b0200) 2021; 60 S. Lion, C.N. Michos, I. Vlaskos, et al., A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications, 79 (2017) 691-708. M. Keller, M. Neumann, K. Eichler, et al., Model predictive control for an organic rankine cycle system applied to a heavy-duty diesel engine, 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, pp. 442-449. Xu, Rathod, Kulkarni (b0135) 2017; 205 U.S. Shanthamallu, A. Spanias, Machine and deep learning algorithms and applications, Morgan & Claypool Publishers, 2021. Zhang, Tian, Zhu (b0070) 2018; 2018 Wu, Chen, Xie (b0015) 2018; 163 Sanama, Xia (b0125) 2021; 2021 Bonassi, Scattolini (b0185) 2022; 65 Shi (10.1016/j.applthermaleng.2024.124352_b0050) 2022; 244 Mao (10.1016/j.applthermaleng.2024.124352_b0170) 2022; 34 Shi (10.1016/j.applthermaleng.2024.124352_b0215) 2016; 102 Li (10.1016/j.applthermaleng.2024.124352_b0115) 2021; 23 Ping (10.1016/j.applthermaleng.2024.124352_b0165) 2022; 254 Hu (10.1016/j.applthermaleng.2024.124352_b0175) 2023; 50 Radulovic (10.1016/j.applthermaleng.2024.124352_b0010) 2023; 16 Yebi (10.1016/j.applthermaleng.2024.124352_b0150) 2017; 27 Yang (10.1016/j.applthermaleng.2024.124352_b0200) 2021; 60 Imran (10.1016/j.applthermaleng.2024.124352_b0140) 2020; 276 Wei (10.1016/j.applthermaleng.2024.124352_b0155) 2008; 28 Zhang (10.1016/j.applthermaleng.2024.124352_b0070) 2018; 2018 Xu (10.1016/j.applthermaleng.2024.124352_b0135) 2017; 205 Ma (10.1016/j.applthermaleng.2024.124352_b0080) 2023; 182 Wang (10.1016/j.applthermaleng.2024.124352_b0085) 2019; 70 Bonassi (10.1016/j.applthermaleng.2024.124352_b0185) 2022; 65 Quoilin (10.1016/j.applthermaleng.2024.124352_b0205) 2011; 88 Wu (10.1016/j.applthermaleng.2024.124352_b0015) 2018; 163 Dubey (10.1016/j.applthermaleng.2024.124352_b0035) 2022; 238 10.1016/j.applthermaleng.2024.124352_b0065 10.1016/j.applthermaleng.2024.124352_b0020 10.1016/j.applthermaleng.2024.124352_b0045 Peralez (10.1016/j.applthermaleng.2024.124352_b0120) 2016; 25 Sanama (10.1016/j.applthermaleng.2024.124352_b0125) 2021; 2021 10.1016/j.applthermaleng.2024.124352_b0030 Zhu (10.1016/j.applthermaleng.2024.124352_b0180) 2022; 36 10.1016/j.applthermaleng.2024.124352_b0095 Wu (10.1016/j.applthermaleng.2024.124352_b0055) 2019; 180 Shi (10.1016/j.applthermaleng.2024.124352_b0075) 2023; 271 10.1016/j.applthermaleng.2024.124352_b0190 Pili (10.1016/j.applthermaleng.2024.124352_b0040) 2023; 220 Koppauer (10.1016/j.applthermaleng.2024.124352_b0060) 2018; 81 Ren (10.1016/j.applthermaleng.2024.124352_b0100) 2024; 285 Lin (10.1016/j.applthermaleng.2024.124352_b0145) 2023; 158 Zhang (10.1016/j.applthermaleng.2024.124352_b0105) 2019; 41 Xu (10.1016/j.applthermaleng.2024.124352_b0160) 2020; 165 Sildir (10.1016/j.applthermaleng.2024.124352_b0210) 2022; 249 Turgut (10.1016/j.applthermaleng.2024.124352_b0090) 2023; 230 Du (10.1016/j.applthermaleng.2024.124352_b0130) 2021; 235 Saha (10.1016/j.applthermaleng.2024.124352_b0025) 2023; 11 Khayyam (10.1016/j.applthermaleng.2024.124352_b0005) 2021; 225 10.1016/j.applthermaleng.2024.124352_b0110 Bingham (10.1016/j.applthermaleng.2024.124352_b0195) 2022; 148 |
| References_xml | – volume: 41 start-page: 1528 year: 2019 end-page: 1539 ident: b0105 article-title: Recent developments of control strategies for organic Rankine cycle (ORC) systems publication-title: Trans. Inst. Meas. Control – volume: 2021 start-page: 1 year: 2021 end-page: 14 ident: b0125 article-title: Transient state modelling and experimental investigation of the thermal behavior of a vapor compression system publication-title: Math. Probl. Eng. – volume: 36 start-page: 527 year: 2022 end-page: 542 ident: b0180 article-title: Application of recurrent neural network to mechanical fault diagnosis: A review publication-title: J. Mech. Sci. Technol. – volume: 27 start-page: 282 year: 2017 end-page: 295 ident: b0150 article-title: Estimation and predictive control of a parallel evaporator diesel engine waste heat recovery system publication-title: IEEE Trans. Control Syst. Technol. – volume: 163 start-page: 115 year: 2018 end-page: 129 ident: b0015 article-title: Integrated operation design and control of Organic Rankine Cycle systems with disturbances publication-title: Energy – volume: 180 start-page: 520 year: 2019 end-page: 534 ident: b0055 article-title: Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies publication-title: Energy – volume: 50 start-page: 254 year: 2023 end-page: 265 ident: b0175 article-title: Review of Evolutionary Recurrent Neural Network Research, Computer publication-title: Science – volume: 102 start-page: 276 year: 2016 end-page: 286 ident: b0215 article-title: System design and control for waste heat recovery of automotive engines based on Organic Rankine publication-title: Cycle – volume: 2018 year: 2018 ident: b0070 article-title: Data-driven superheating control of organic Rankine cycle processes publication-title: Complexity – reference: U.S. Shanthamallu, A. Spanias, Machine and deep learning algorithms and applications, Morgan & Claypool Publishers, 2021. – volume: 165 year: 2020 ident: b0160 publication-title: A Comparative Analysis of Dynamic Evaporator Models for Organic Rankine Cycle Waste Heat Recovery Systems – reference: D. Soudbakhsh, A.M. Annaswamy, Y. Wang, et al., Data-Driven Control: Theory and Applications, 2023 American Control Conference (ACC), IEEE, pp. 1922-1939. – volume: 65 year: 2022 ident: b0185 article-title: Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems publication-title: Eur. J. Control. – volume: 148 start-page: 48 year: 2022 end-page: 65 ident: b0195 article-title: Discovering parametric activation functions publication-title: Neural Netw. – volume: 230 year: 2023 ident: b0090 article-title: Neural Koopman operator-assisted model predictive control of an Organic Rankine Cycle publication-title: Appl. Therm. Eng. – volume: 28 start-page: 1216 year: 2008 end-page: 1224 ident: b0155 article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery publication-title: Appl. Therm. Eng. – reference: A. Richards, J. How, Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, IEEE, pp. 2676-2683. – reference: Y. Vaupel, A. Caspari, N.C. Hamacher, et al., Artificial neural networks for real-time model predictive control of organic rankine cycles for waste heat recovery, Proceedings of the 5th international seminar on ORC power systems. – volume: 25 start-page: 952 year: 2016 end-page: 965 ident: b0120 article-title: Organic rankine cycle for vehicles: Control design and experimental results publication-title: IEEE Trans. Control Syst. Technol. – reference: S. Lion, C.N. Michos, I. Vlaskos, et al., A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications, 79 (2017) 691-708. – volume: 34 start-page: 6983 year: 2022 end-page: 7003 ident: b0170 article-title: A review of recurrent neural network-based methods in computational physiology publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 249 year: 2022 ident: b0210 article-title: A Mixed-Integer linear programming based training and feature selection method for artificial neural networks using piece-wise linear approximations publication-title: Chem. Eng. Sci. – volume: 23 start-page: 1435 year: 2021 ident: b0115 article-title: Configuration Selection of the Multi-Loop Organic Rankine Cycle for Recovering Energy from a Single Source publication-title: Entropy – volume: 238 start-page: 659 year: 2022 end-page: 670 ident: b0035 article-title: Role of PID control techniques in process control system: a review publication-title: Data Eng. Smart Syst. – volume: 182 year: 2023 ident: b0080 article-title: Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology publication-title: Mech. Mach. Theory – volume: 244 year: 2022 ident: b0050 article-title: Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system publication-title: Energy – volume: 70 start-page: 3256 year: 2019 end-page: 3266 ident: b0085 article-title: Neural Network-Based Method for Calculating the Process and Cycle Performance of Organic Rankine Cycle publication-title: Journal of Chemical Industry and Engineering – volume: 276 year: 2020 ident: b0140 article-title: Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges publication-title: Appl. Energy – volume: 254 year: 2022 ident: b0165 article-title: An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC) publication-title: Energy – volume: 235 year: 2021 ident: b0130 article-title: Transient behavior investigation of a regenerative dual-evaporator organic Rankine cycle with different forms of disturbances: Towards coordinated feedback control realization publication-title: Energy – reference: R. Pili, C. Wieland, H. Spliethoff, et al., Numerical analysis of feedforward concepts for advanced control of organic Rankine cycle systems on heavy-duty vehicles, 351 (2022) 131470. – volume: 158 start-page: 197 year: 2023 end-page: 215 ident: b0145 article-title: Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control publication-title: Neural Netw. – volume: 60 start-page: 2206 year: 2021 end-page: 2222 ident: b0200 article-title: Data-driven process optimization considering surrogate model prediction uncertainty: A mixture density network-based approach publication-title: Ind. Eng. Chem. Res. – volume: 16 start-page: 2329 year: 2023 ident: b0010 article-title: Organic Rankine Cycle: Effective Applications and Technological Advances publication-title: Energies – volume: 81 start-page: 28 year: 2018 end-page: 42 ident: b0060 article-title: Model predictive control of an automotive waste heat recovery system publication-title: Control Eng. Pract. – volume: 271 year: 2023 ident: b0075 article-title: Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system publication-title: Energy – volume: 220 year: 2023 ident: b0040 article-title: Optimal tuning of model predictive controllers for organic Rankine cycle systems recovering waste heat from heavy-duty vehicles publication-title: Appl. Therm. Eng. – volume: 205 start-page: 260 year: 2017 end-page: 279 ident: b0135 article-title: Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications publication-title: Appl. Energy – volume: 11 start-page: 2300425 year: 2023 ident: b0025 article-title: Design and Implementation of a Control Strategy for a Dynamic Organic Rankine Cycle-Based Power System in the Context of Industrial Waste Heat Recovery publication-title: Energ. Technol. – volume: 88 start-page: 2183 year: 2011 end-page: 2190 ident: b0205 article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles publication-title: Appl. Energy – volume: 225 year: 2021 ident: b0005 article-title: Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning publication-title: Energy – volume: 285 year: 2024 ident: b0100 article-title: Fast two-layer nonlinear economic predictive control using machine learning for ORC systems with non-Gaussian disturbances publication-title: Chem. Eng. Sci. – reference: M. Keller, M. Neumann, K. Eichler, et al., Model predictive control for an organic rankine cycle system applied to a heavy-duty diesel engine, 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, pp. 442-449. – volume: 60 start-page: 2206 year: 2021 ident: 10.1016/j.applthermaleng.2024.124352_b0200 article-title: Data-driven process optimization considering surrogate model prediction uncertainty: A mixture density network-based approach publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04214 – volume: 11 start-page: 2300425 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0025 article-title: Design and Implementation of a Control Strategy for a Dynamic Organic Rankine Cycle-Based Power System in the Context of Industrial Waste Heat Recovery publication-title: Energ. Technol. doi: 10.1002/ente.202300425 – volume: 158 start-page: 197 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0145 article-title: Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.10.016 – volume: 16 start-page: 2329 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0010 article-title: Organic Rankine Cycle: Effective Applications and Technological Advances publication-title: Energies doi: 10.3390/en16052329 – volume: 28 start-page: 1216 year: 2008 ident: 10.1016/j.applthermaleng.2024.124352_b0155 article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.07.019 – volume: 148 start-page: 48 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0195 article-title: Discovering parametric activation functions publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.01.001 – ident: 10.1016/j.applthermaleng.2024.124352_b0065 doi: 10.23919/ACC55779.2023.10156081 – volume: 163 start-page: 115 year: 2018 ident: 10.1016/j.applthermaleng.2024.124352_b0015 article-title: Integrated operation design and control of Organic Rankine Cycle systems with disturbances publication-title: Energy doi: 10.1016/j.energy.2018.08.084 – volume: 165 year: 2020 ident: 10.1016/j.applthermaleng.2024.124352_b0160 publication-title: A Comparative Analysis of Dynamic Evaporator Models for Organic Rankine Cycle Waste Heat Recovery Systems – volume: 230 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0090 article-title: Neural Koopman operator-assisted model predictive control of an Organic Rankine Cycle publication-title: Appl. Therm. Eng. – volume: 276 year: 2020 ident: 10.1016/j.applthermaleng.2024.124352_b0140 article-title: Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115537 – volume: 220 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0040 article-title: Optimal tuning of model predictive controllers for organic Rankine cycle systems recovering waste heat from heavy-duty vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119803 – volume: 285 year: 2024 ident: 10.1016/j.applthermaleng.2024.124352_b0100 article-title: Fast two-layer nonlinear economic predictive control using machine learning for ORC systems with non-Gaussian disturbances publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119552 – volume: 41 start-page: 1528 year: 2019 ident: 10.1016/j.applthermaleng.2024.124352_b0105 article-title: Recent developments of control strategies for organic Rankine cycle (ORC) systems publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331217753061 – volume: 225 year: 2021 ident: 10.1016/j.applthermaleng.2024.124352_b0005 article-title: Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning publication-title: Energy doi: 10.1016/j.energy.2021.120113 – volume: 23 start-page: 1435 year: 2021 ident: 10.1016/j.applthermaleng.2024.124352_b0115 article-title: Configuration Selection of the Multi-Loop Organic Rankine Cycle for Recovering Energy from a Single Source publication-title: Entropy doi: 10.3390/e23111435 – volume: 249 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0210 article-title: A Mixed-Integer linear programming based training and feature selection method for artificial neural networks using piece-wise linear approximations publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117273 – volume: 254 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0165 article-title: An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC) publication-title: Energy doi: 10.1016/j.energy.2022.124268 – volume: 36 start-page: 527 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0180 article-title: Application of recurrent neural network to mechanical fault diagnosis: A review publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-0102-1 – ident: 10.1016/j.applthermaleng.2024.124352_b0045 doi: 10.1109/CCTA41146.2020.9206319 – volume: 65 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0185 article-title: Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems publication-title: Eur. J. Control. doi: 10.1016/j.ejcon.2022.100632 – volume: 102 start-page: 276 year: 2016 ident: 10.1016/j.applthermaleng.2024.124352_b0215 article-title: System design and control for waste heat recovery of automotive engines based on Organic Rankine publication-title: Cycle – volume: 244 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0050 article-title: Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system publication-title: Energy doi: 10.1016/j.energy.2021.122664 – ident: 10.1016/j.applthermaleng.2024.124352_b0110 doi: 10.1109/ACC.2005.1470372 – ident: 10.1016/j.applthermaleng.2024.124352_b0095 – volume: 205 start-page: 260 year: 2017 ident: 10.1016/j.applthermaleng.2024.124352_b0135 article-title: Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.038 – volume: 27 start-page: 282 year: 2017 ident: 10.1016/j.applthermaleng.2024.124352_b0150 article-title: Estimation and predictive control of a parallel evaporator diesel engine waste heat recovery system publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2759104 – volume: 271 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0075 article-title: Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system publication-title: Energy doi: 10.1016/j.energy.2023.126959 – volume: 238 start-page: 659 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0035 article-title: Role of PID control techniques in process control system: a review publication-title: Data Eng. Smart Syst. doi: 10.1007/978-981-16-2641-8_62 – volume: 70 start-page: 3256 year: 2019 ident: 10.1016/j.applthermaleng.2024.124352_b0085 article-title: Neural Network-Based Method for Calculating the Process and Cycle Performance of Organic Rankine Cycle publication-title: Journal of Chemical Industry and Engineering – volume: 50 start-page: 254 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0175 article-title: Review of Evolutionary Recurrent Neural Network Research, Computer publication-title: Science – volume: 25 start-page: 952 year: 2016 ident: 10.1016/j.applthermaleng.2024.124352_b0120 article-title: Organic rankine cycle for vehicles: Control design and experimental results publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2574760 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.applthermaleng.2024.124352_b0125 article-title: Transient state modelling and experimental investigation of the thermal behavior of a vapor compression system publication-title: Math. Probl. Eng. doi: 10.1155/2021/9941451 – volume: 235 year: 2021 ident: 10.1016/j.applthermaleng.2024.124352_b0130 article-title: Transient behavior investigation of a regenerative dual-evaporator organic Rankine cycle with different forms of disturbances: Towards coordinated feedback control realization publication-title: Energy doi: 10.1016/j.energy.2021.121437 – volume: 2018 year: 2018 ident: 10.1016/j.applthermaleng.2024.124352_b0070 article-title: Data-driven superheating control of organic Rankine cycle processes publication-title: Complexity doi: 10.1155/2018/4154019 – ident: 10.1016/j.applthermaleng.2024.124352_b0020 doi: 10.1016/j.rser.2017.05.082 – ident: 10.1016/j.applthermaleng.2024.124352_b0030 doi: 10.1016/j.jclepro.2022.131470 – ident: 10.1016/j.applthermaleng.2024.124352_b0190 doi: 10.1007/978-3-031-03758-0 – volume: 88 start-page: 2183 year: 2011 ident: 10.1016/j.applthermaleng.2024.124352_b0205 article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.015 – volume: 81 start-page: 28 year: 2018 ident: 10.1016/j.applthermaleng.2024.124352_b0060 article-title: Model predictive control of an automotive waste heat recovery system publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.09.005 – volume: 34 start-page: 6983 year: 2022 ident: 10.1016/j.applthermaleng.2024.124352_b0170 article-title: A review of recurrent neural network-based methods in computational physiology publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2022.3145365 – volume: 180 start-page: 520 year: 2019 ident: 10.1016/j.applthermaleng.2024.124352_b0055 article-title: Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies publication-title: Energy doi: 10.1016/j.energy.2019.05.023 – volume: 182 year: 2023 ident: 10.1016/j.applthermaleng.2024.124352_b0080 article-title: Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2022.105223 |
| SSID | ssj0012874 |
| Score | 2.464475 |
| Snippet | •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124352 |
| SubjectTerms | Mixed integer linear programming problem Organic Rankine cycle Predictive control Recurrent neural network |
| Title | Efficient predictive control method for ORC waste heat recovery system based on recurrent neural network |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2024.124352 |
| Volume | 257 |
| WOSCitedRecordID | wos001321278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZgQ4gd0PgxscEmH3arUmVJncTigKaq07bDQDBEOUW2Y2-dRlp1LYz_nvdsxwkwpCKEIkWV5cSx39fnz_bzZ0L2M2mEKIyJTBrH0UCmWSQNOMMsGShuVA69kDtsIj87K8Zj_s6HDt3Y4wTyui5ub_nsv5oa0sDYuHX2L8wdXgoJ8BuMDncwO9xXMvzIikLgEv9sjqswNjaoiUh3B0bb2MK374e9bwKMjGRx0cORMdT1u9d27mH3VuFSwhxn5K2GE2pfgkVrFznepbUNl0U2-QWy6FblMHj9JVpzDPUXkzDb6o8Cmwg5CSAdhv0i9cXlMuT95Ce2P09x43F3siKxkohuu6abQWt20bQhS-h0U8YjIDIHXa-cON3q3zy8m2y46uP6vq8U1KmPhfWBq6ROD_cXDe0PWASWgGtJcPH7ZD3JGQc3uH54MhqfhoUnlP-3Y3T_SQ_JfhsS-Ocy72Y1HaZyvkke-yEGPXTQeELu6fop2egITz4jlwEktAUJ9SChDiQUQEIBJNSChCJIaAMS6kBCLUjotKYBJNSBhHqQPCcfj0bnw-PIn7kRqTSNF9EgqapEJTofMFFkRiUVZyaOTaVFnvMDCfSQS1lBP6ENF8pARhkXOuOxUJIznW6RtXpa6xeEMkiFAT3wU6C9hmu4pOHgFwqWy0yzbfK6abNSeUF6PBflumwiD6_Kn1u8xBYvXYtvExaenjlhlhWfe9OYp_Qk05HHEhC20ht2_vkNL8mj9s_xiqwt5ku9Sx6or4vJzXzPQ_IHRI6xvQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+predictive+control+method+for+ORC+waste+heat+recovery+system+based+on+recurrent+neural+network&rft.jtitle=Applied+thermal+engineering&rft.au=Wu%2C+Xialai&rft.au=Qin%2C+Jiabin&rft.au=Chen%2C+Junghui&rft.au=Wang%2C+Yongli&rft.date=2024-12-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124352&rft.externalDocID=S1359431124020209 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |