Efficient predictive control method for ORC waste heat recovery system based on recurrent neural network

•A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in compa...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering Vol. 257; p. 124352
Main Authors: Wu, Xialai, Qin, Jiabin, Chen, Junghui, Wang, Yongli
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.12.2024
Subjects:
ISSN:1359-4311
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in comparison studies. The model predictive control performs well in regulating operating parameters and ensuring system safety when the organic Rankine cycles are operating with variable heat sources. However, traditional nonlinear predictive control based on the organic Rankine cycle mechanism model involves significant computational complexity, making it challenging to quickly find a control solution. This limitation hinders its application in the organic Rankine cycle for rapid response control. To address this issue, a fast model predictive control method is proposed in this work. A recurrent neural network model is well-trained using the input–output data of the organic Rankine cycle process, and it is used as a surrogate model in the design of the model predictive controller for the control of organic Rankine cycle operating parameters. The formulated optimal control problem is then transformed into a mixed integer linear programming problem, which can obtain high-quality and fast solutions during the control process. Through comparison with recurrent neural network-based nonlinear predictive control and pseudo-sequential method-based fast nonlinear predictive control, the results show that the designed controller can effectively accomplish the control of organic Rankine cycle operating parameters with smaller overshoot. Moreover, its average control solution time is shorter by 89.59% and 93.27% respectively while the total net output power of the system during the control process is 0.54% and 1.3% higher than that of the other two controllers. It exhibits superior control performance, even under variable waste heat conditions.
AbstractList •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The optimal control problem is converted into a mixed-integer linear program.•The proposed method outperforms various control strategies in comparison studies. The model predictive control performs well in regulating operating parameters and ensuring system safety when the organic Rankine cycles are operating with variable heat sources. However, traditional nonlinear predictive control based on the organic Rankine cycle mechanism model involves significant computational complexity, making it challenging to quickly find a control solution. This limitation hinders its application in the organic Rankine cycle for rapid response control. To address this issue, a fast model predictive control method is proposed in this work. A recurrent neural network model is well-trained using the input–output data of the organic Rankine cycle process, and it is used as a surrogate model in the design of the model predictive controller for the control of organic Rankine cycle operating parameters. The formulated optimal control problem is then transformed into a mixed integer linear programming problem, which can obtain high-quality and fast solutions during the control process. Through comparison with recurrent neural network-based nonlinear predictive control and pseudo-sequential method-based fast nonlinear predictive control, the results show that the designed controller can effectively accomplish the control of organic Rankine cycle operating parameters with smaller overshoot. Moreover, its average control solution time is shorter by 89.59% and 93.27% respectively while the total net output power of the system during the control process is 0.54% and 1.3% higher than that of the other two controllers. It exhibits superior control performance, even under variable waste heat conditions.
ArticleNumber 124352
Author Wu, Xialai
Wang, Yongli
Chen, Junghui
Qin, Jiabin
Author_xml – sequence: 1
  givenname: Xialai
  orcidid: 0000-0003-3654-5427
  surname: Wu
  fullname: Wu, Xialai
  organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China
– sequence: 2
  givenname: Jiabin
  surname: Qin
  fullname: Qin, Jiabin
  organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China
– sequence: 3
  givenname: Junghui
  orcidid: 0000-0002-9994-839X
  surname: Chen
  fullname: Chen, Junghui
  email: jason@wavenet.cycu.edu.tw
  organization: R&D Center for Membrane Technology and Department of Chemical Engineering, Chung-Yuan Christian University Chung-Li, Taoyuan 320, Taiwan, R.O.C
– sequence: 4
  givenname: Yongli
  surname: Wang
  fullname: Wang, Yongli
  email: 02774@zjhu.edu.cn
  organization: Huzhou Key Laboratory of Intelligent Sensing and Optimal Control for Industrial Systems, College of Engineering, Huzhou University, Huzhou 313000, China
BookMark eNqNkEFLwzAUx3OY4KZ-hxy8tiZpuy7gRcemwmAgeg5p8mIz26Yk2ca-vS3zoqed_vDe-__g_WZo0rkOELqnJKWEzh92qez7JtbgW9lA95UywvKUsjwr2ARNaVbwJM8ovUazEHaEULYo8ymqV8ZYZaGLuPegrYr2AFi5LnrX4BZi7TQ2zuPt-xIfZYiAa5ARe1DuAP6Ew2mYtbiSATR23bjYez_yOth72QwRj85_36IrI5sAd795gz7Xq4_la7LZvrwtnzaJyjISk5xpzRSDMi_kYm4U07wwhBgNsiw5rSjjvKp0STIwXCozHFZkAXNOpKp4AdkNejxzlXcheDCi97aV_iQoEaMpsRN_TYnRlDibGurP_-rKRhntKETa5lLI-gyB4dGDBS_CqFgNfgc9UWhnLwP9AMoimO8
CitedBy_id crossref_primary_10_1016_j_aei_2024_102893
crossref_primary_10_1016_j_applthermaleng_2025_127337
crossref_primary_10_1016_j_csite_2025_106880
crossref_primary_10_1016_j_energy_2025_135838
Cites_doi 10.1021/acs.iecr.0c04214
10.1002/ente.202300425
10.1016/j.neunet.2022.10.016
10.3390/en16052329
10.1016/j.applthermaleng.2007.07.019
10.1016/j.neunet.2022.01.001
10.23919/ACC55779.2023.10156081
10.1016/j.energy.2018.08.084
10.1016/j.apenergy.2020.115537
10.1016/j.applthermaleng.2022.119803
10.1016/j.ces.2023.119552
10.1177/0142331217753061
10.1016/j.energy.2021.120113
10.3390/e23111435
10.1016/j.ces.2021.117273
10.1016/j.energy.2022.124268
10.1007/s12206-022-0102-1
10.1109/CCTA41146.2020.9206319
10.1016/j.ejcon.2022.100632
10.1016/j.energy.2021.122664
10.1109/ACC.2005.1470372
10.1016/j.apenergy.2017.07.038
10.1109/TCST.2017.2759104
10.1016/j.energy.2023.126959
10.1007/978-981-16-2641-8_62
10.1109/TCST.2016.2574760
10.1155/2021/9941451
10.1016/j.energy.2021.121437
10.1155/2018/4154019
10.1016/j.rser.2017.05.082
10.1016/j.jclepro.2022.131470
10.1007/978-3-031-03758-0
10.1016/j.apenergy.2011.01.015
10.1016/j.conengprac.2018.09.005
10.1109/TNNLS.2022.3145365
10.1016/j.energy.2019.05.023
10.1016/j.mechmachtheory.2022.105223
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.124352
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_124352
S1359431124020209
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
M41
R2-
~HD
ID FETCH-LOGICAL-c330t-42dd2c2e745a86fc2d95f00fdea7791b1299bbd703ef9acfe74b08e690acb95e3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 03:21:15 EST 2025
Tue Nov 18 21:45:56 EST 2025
Sat Nov 16 15:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mixed integer linear programming problem
Recurrent neural network
Organic Rankine cycle
Predictive control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-42dd2c2e745a86fc2d95f00fdea7791b1299bbd703ef9acfe74b08e690acb95e3
ORCID 0000-0002-9994-839X
0000-0003-3654-5427
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2024_124352
crossref_citationtrail_10_1016_j_applthermaleng_2024_124352
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124352
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Zhang, Chen (b0075) 2023; 271
Saha, Chakraborty, Mondal (b0025) 2023; 11
Lin, Chen, Xie (b0145) 2023; 158
Khayyam, Naebe, Milani (b0005) 2021; 225
Ping, Yang, Zhang (b0165) 2022; 254
Bingham, Miikkulainen (b0195) 2022; 148
Sildir, Aydin (b0210) 2022; 249
Ren, Guo, Chen (b0100) 2024; 285
Turgut (b0090) 2023; 230
Zhang, Li, Xu (b0105) 2019; 41
A. Richards, J. How, Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, IEEE, pp. 2676-2683.
Shi, Lin, Wu (b0050) 2022; 244
Ma, Wang, Han (b0080) 2023; 182
Y. Vaupel, A. Caspari, N.C. Hamacher, et al., Artificial neural networks for real-time model predictive control of organic rankine cycles for waste heat recovery, Proceedings of the 5th international seminar on ORC power systems.
Yebi, Xu, Liu (b0150) 2017; 27
Shi, He, Peng (b0215) 2016; 102
Radulovic (b0010) 2023; 16
Hu, Xue, Cha (b0175) 2023; 50
Pili, Wieland, Spliethoff (b0040) 2023; 220
Wu, Chen, Xie (b0055) 2019; 180
Koppauer, Kemmetmüller, Kugi (b0060) 2018; 81
Imran, Pili, Usman (b0140) 2020; 276
Quoilin, Aumann, Grill (b0205) 2011; 88
D. Soudbakhsh, A.M. Annaswamy, Y. Wang, et al., Data-Driven Control: Theory and Applications, 2023 American Control Conference (ACC), IEEE, pp. 1922-1939.
Li, Tang (b0115) 2021; 23
R. Pili, C. Wieland, H. Spliethoff, et al., Numerical analysis of feedforward concepts for advanced control of organic Rankine cycle systems on heavy-duty vehicles, 351 (2022) 131470.
Mao, Sejdić (b0170) 2022; 34
Wang, Liang, Luo (b0085) 2019; 70
Peralez, Nadri, Dufour (b0120) 2016; 25
Wei, Lu, Lu (b0155) 2008; 28
Dubey, Goud, Sharma (b0035) 2022; 238
Du, Liu, Wang (b0130) 2021; 235
Zhu, Jiang, Shen (b0180) 2022; 36
Xu, Rathod, Yebi (b0160) 2020; 165
Yang, Li, Wu (b0200) 2021; 60
S. Lion, C.N. Michos, I. Vlaskos, et al., A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications, 79 (2017) 691-708.
M. Keller, M. Neumann, K. Eichler, et al., Model predictive control for an organic rankine cycle system applied to a heavy-duty diesel engine, 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, pp. 442-449.
Xu, Rathod, Kulkarni (b0135) 2017; 205
U.S. Shanthamallu, A. Spanias, Machine and deep learning algorithms and applications, Morgan & Claypool Publishers, 2021.
Zhang, Tian, Zhu (b0070) 2018; 2018
Wu, Chen, Xie (b0015) 2018; 163
Sanama, Xia (b0125) 2021; 2021
Bonassi, Scattolini (b0185) 2022; 65
Shi (10.1016/j.applthermaleng.2024.124352_b0050) 2022; 244
Mao (10.1016/j.applthermaleng.2024.124352_b0170) 2022; 34
Shi (10.1016/j.applthermaleng.2024.124352_b0215) 2016; 102
Li (10.1016/j.applthermaleng.2024.124352_b0115) 2021; 23
Ping (10.1016/j.applthermaleng.2024.124352_b0165) 2022; 254
Hu (10.1016/j.applthermaleng.2024.124352_b0175) 2023; 50
Radulovic (10.1016/j.applthermaleng.2024.124352_b0010) 2023; 16
Yebi (10.1016/j.applthermaleng.2024.124352_b0150) 2017; 27
Yang (10.1016/j.applthermaleng.2024.124352_b0200) 2021; 60
Imran (10.1016/j.applthermaleng.2024.124352_b0140) 2020; 276
Wei (10.1016/j.applthermaleng.2024.124352_b0155) 2008; 28
Zhang (10.1016/j.applthermaleng.2024.124352_b0070) 2018; 2018
Xu (10.1016/j.applthermaleng.2024.124352_b0135) 2017; 205
Ma (10.1016/j.applthermaleng.2024.124352_b0080) 2023; 182
Wang (10.1016/j.applthermaleng.2024.124352_b0085) 2019; 70
Bonassi (10.1016/j.applthermaleng.2024.124352_b0185) 2022; 65
Quoilin (10.1016/j.applthermaleng.2024.124352_b0205) 2011; 88
Wu (10.1016/j.applthermaleng.2024.124352_b0015) 2018; 163
Dubey (10.1016/j.applthermaleng.2024.124352_b0035) 2022; 238
10.1016/j.applthermaleng.2024.124352_b0065
10.1016/j.applthermaleng.2024.124352_b0020
10.1016/j.applthermaleng.2024.124352_b0045
Peralez (10.1016/j.applthermaleng.2024.124352_b0120) 2016; 25
Sanama (10.1016/j.applthermaleng.2024.124352_b0125) 2021; 2021
10.1016/j.applthermaleng.2024.124352_b0030
Zhu (10.1016/j.applthermaleng.2024.124352_b0180) 2022; 36
10.1016/j.applthermaleng.2024.124352_b0095
Wu (10.1016/j.applthermaleng.2024.124352_b0055) 2019; 180
Shi (10.1016/j.applthermaleng.2024.124352_b0075) 2023; 271
10.1016/j.applthermaleng.2024.124352_b0190
Pili (10.1016/j.applthermaleng.2024.124352_b0040) 2023; 220
Koppauer (10.1016/j.applthermaleng.2024.124352_b0060) 2018; 81
Ren (10.1016/j.applthermaleng.2024.124352_b0100) 2024; 285
Lin (10.1016/j.applthermaleng.2024.124352_b0145) 2023; 158
Zhang (10.1016/j.applthermaleng.2024.124352_b0105) 2019; 41
Xu (10.1016/j.applthermaleng.2024.124352_b0160) 2020; 165
Sildir (10.1016/j.applthermaleng.2024.124352_b0210) 2022; 249
Turgut (10.1016/j.applthermaleng.2024.124352_b0090) 2023; 230
Du (10.1016/j.applthermaleng.2024.124352_b0130) 2021; 235
Saha (10.1016/j.applthermaleng.2024.124352_b0025) 2023; 11
Khayyam (10.1016/j.applthermaleng.2024.124352_b0005) 2021; 225
10.1016/j.applthermaleng.2024.124352_b0110
Bingham (10.1016/j.applthermaleng.2024.124352_b0195) 2022; 148
References_xml – volume: 41
  start-page: 1528
  year: 2019
  end-page: 1539
  ident: b0105
  article-title: Recent developments of control strategies for organic Rankine cycle (ORC) systems
  publication-title: Trans. Inst. Meas. Control
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0125
  article-title: Transient state modelling and experimental investigation of the thermal behavior of a vapor compression system
  publication-title: Math. Probl. Eng.
– volume: 36
  start-page: 527
  year: 2022
  end-page: 542
  ident: b0180
  article-title: Application of recurrent neural network to mechanical fault diagnosis: A review
  publication-title: J. Mech. Sci. Technol.
– volume: 27
  start-page: 282
  year: 2017
  end-page: 295
  ident: b0150
  article-title: Estimation and predictive control of a parallel evaporator diesel engine waste heat recovery system
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 163
  start-page: 115
  year: 2018
  end-page: 129
  ident: b0015
  article-title: Integrated operation design and control of Organic Rankine Cycle systems with disturbances
  publication-title: Energy
– volume: 180
  start-page: 520
  year: 2019
  end-page: 534
  ident: b0055
  article-title: Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies
  publication-title: Energy
– volume: 50
  start-page: 254
  year: 2023
  end-page: 265
  ident: b0175
  article-title: Review of Evolutionary Recurrent Neural Network Research, Computer
  publication-title: Science
– volume: 102
  start-page: 276
  year: 2016
  end-page: 286
  ident: b0215
  article-title: System design and control for waste heat recovery of automotive engines based on Organic Rankine
  publication-title: Cycle
– volume: 2018
  year: 2018
  ident: b0070
  article-title: Data-driven superheating control of organic Rankine cycle processes
  publication-title: Complexity
– reference: U.S. Shanthamallu, A. Spanias, Machine and deep learning algorithms and applications, Morgan & Claypool Publishers, 2021.
– volume: 165
  year: 2020
  ident: b0160
  publication-title: A Comparative Analysis of Dynamic Evaporator Models for Organic Rankine Cycle Waste Heat Recovery Systems
– reference: D. Soudbakhsh, A.M. Annaswamy, Y. Wang, et al., Data-Driven Control: Theory and Applications, 2023 American Control Conference (ACC), IEEE, pp. 1922-1939.
– volume: 65
  year: 2022
  ident: b0185
  article-title: Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems
  publication-title: Eur. J. Control.
– volume: 148
  start-page: 48
  year: 2022
  end-page: 65
  ident: b0195
  article-title: Discovering parametric activation functions
  publication-title: Neural Netw.
– volume: 230
  year: 2023
  ident: b0090
  article-title: Neural Koopman operator-assisted model predictive control of an Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
– volume: 28
  start-page: 1216
  year: 2008
  end-page: 1224
  ident: b0155
  article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
  publication-title: Appl. Therm. Eng.
– reference: A. Richards, J. How, Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, IEEE, pp. 2676-2683.
– reference: Y. Vaupel, A. Caspari, N.C. Hamacher, et al., Artificial neural networks for real-time model predictive control of organic rankine cycles for waste heat recovery, Proceedings of the 5th international seminar on ORC power systems.
– volume: 25
  start-page: 952
  year: 2016
  end-page: 965
  ident: b0120
  article-title: Organic rankine cycle for vehicles: Control design and experimental results
  publication-title: IEEE Trans. Control Syst. Technol.
– reference: S. Lion, C.N. Michos, I. Vlaskos, et al., A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications, 79 (2017) 691-708.
– volume: 34
  start-page: 6983
  year: 2022
  end-page: 7003
  ident: b0170
  article-title: A review of recurrent neural network-based methods in computational physiology
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 249
  year: 2022
  ident: b0210
  article-title: A Mixed-Integer linear programming based training and feature selection method for artificial neural networks using piece-wise linear approximations
  publication-title: Chem. Eng. Sci.
– volume: 23
  start-page: 1435
  year: 2021
  ident: b0115
  article-title: Configuration Selection of the Multi-Loop Organic Rankine Cycle for Recovering Energy from a Single Source
  publication-title: Entropy
– volume: 238
  start-page: 659
  year: 2022
  end-page: 670
  ident: b0035
  article-title: Role of PID control techniques in process control system: a review
  publication-title: Data Eng. Smart Syst.
– volume: 182
  year: 2023
  ident: b0080
  article-title: Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology
  publication-title: Mech. Mach. Theory
– volume: 244
  year: 2022
  ident: b0050
  article-title: Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system
  publication-title: Energy
– volume: 70
  start-page: 3256
  year: 2019
  end-page: 3266
  ident: b0085
  article-title: Neural Network-Based Method for Calculating the Process and Cycle Performance of Organic Rankine Cycle
  publication-title: Journal of Chemical Industry and Engineering
– volume: 276
  year: 2020
  ident: b0140
  article-title: Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges
  publication-title: Appl. Energy
– volume: 254
  year: 2022
  ident: b0165
  article-title: An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)
  publication-title: Energy
– volume: 235
  year: 2021
  ident: b0130
  article-title: Transient behavior investigation of a regenerative dual-evaporator organic Rankine cycle with different forms of disturbances: Towards coordinated feedback control realization
  publication-title: Energy
– reference: R. Pili, C. Wieland, H. Spliethoff, et al., Numerical analysis of feedforward concepts for advanced control of organic Rankine cycle systems on heavy-duty vehicles, 351 (2022) 131470.
– volume: 158
  start-page: 197
  year: 2023
  end-page: 215
  ident: b0145
  article-title: Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control
  publication-title: Neural Netw.
– volume: 60
  start-page: 2206
  year: 2021
  end-page: 2222
  ident: b0200
  article-title: Data-driven process optimization considering surrogate model prediction uncertainty: A mixture density network-based approach
  publication-title: Ind. Eng. Chem. Res.
– volume: 16
  start-page: 2329
  year: 2023
  ident: b0010
  article-title: Organic Rankine Cycle: Effective Applications and Technological Advances
  publication-title: Energies
– volume: 81
  start-page: 28
  year: 2018
  end-page: 42
  ident: b0060
  article-title: Model predictive control of an automotive waste heat recovery system
  publication-title: Control Eng. Pract.
– volume: 271
  year: 2023
  ident: b0075
  article-title: Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system
  publication-title: Energy
– volume: 220
  year: 2023
  ident: b0040
  article-title: Optimal tuning of model predictive controllers for organic Rankine cycle systems recovering waste heat from heavy-duty vehicles
  publication-title: Appl. Therm. Eng.
– volume: 205
  start-page: 260
  year: 2017
  end-page: 279
  ident: b0135
  article-title: Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications
  publication-title: Appl. Energy
– volume: 11
  start-page: 2300425
  year: 2023
  ident: b0025
  article-title: Design and Implementation of a Control Strategy for a Dynamic Organic Rankine Cycle-Based Power System in the Context of Industrial Waste Heat Recovery
  publication-title: Energ. Technol.
– volume: 88
  start-page: 2183
  year: 2011
  end-page: 2190
  ident: b0205
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles
  publication-title: Appl. Energy
– volume: 225
  year: 2021
  ident: b0005
  article-title: Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning
  publication-title: Energy
– volume: 285
  year: 2024
  ident: b0100
  article-title: Fast two-layer nonlinear economic predictive control using machine learning for ORC systems with non-Gaussian disturbances
  publication-title: Chem. Eng. Sci.
– reference: M. Keller, M. Neumann, K. Eichler, et al., Model predictive control for an organic rankine cycle system applied to a heavy-duty diesel engine, 2020 IEEE Conference on Control Technology and Applications (CCTA), IEEE, pp. 442-449.
– volume: 60
  start-page: 2206
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124352_b0200
  article-title: Data-driven process optimization considering surrogate model prediction uncertainty: A mixture density network-based approach
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04214
– volume: 11
  start-page: 2300425
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0025
  article-title: Design and Implementation of a Control Strategy for a Dynamic Organic Rankine Cycle-Based Power System in the Context of Industrial Waste Heat Recovery
  publication-title: Energ. Technol.
  doi: 10.1002/ente.202300425
– volume: 158
  start-page: 197
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0145
  article-title: Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.10.016
– volume: 16
  start-page: 2329
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0010
  article-title: Organic Rankine Cycle: Effective Applications and Technological Advances
  publication-title: Energies
  doi: 10.3390/en16052329
– volume: 28
  start-page: 1216
  year: 2008
  ident: 10.1016/j.applthermaleng.2024.124352_b0155
  article-title: Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.07.019
– volume: 148
  start-page: 48
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0195
  article-title: Discovering parametric activation functions
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.01.001
– ident: 10.1016/j.applthermaleng.2024.124352_b0065
  doi: 10.23919/ACC55779.2023.10156081
– volume: 163
  start-page: 115
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124352_b0015
  article-title: Integrated operation design and control of Organic Rankine Cycle systems with disturbances
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.084
– volume: 165
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124352_b0160
  publication-title: A Comparative Analysis of Dynamic Evaporator Models for Organic Rankine Cycle Waste Heat Recovery Systems
– volume: 230
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0090
  article-title: Neural Koopman operator-assisted model predictive control of an Organic Rankine Cycle
  publication-title: Appl. Therm. Eng.
– volume: 276
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124352_b0140
  article-title: Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115537
– volume: 220
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0040
  article-title: Optimal tuning of model predictive controllers for organic Rankine cycle systems recovering waste heat from heavy-duty vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119803
– volume: 285
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.124352_b0100
  article-title: Fast two-layer nonlinear economic predictive control using machine learning for ORC systems with non-Gaussian disturbances
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119552
– volume: 41
  start-page: 1528
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124352_b0105
  article-title: Recent developments of control strategies for organic Rankine cycle (ORC) systems
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331217753061
– volume: 225
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124352_b0005
  article-title: Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120113
– volume: 23
  start-page: 1435
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124352_b0115
  article-title: Configuration Selection of the Multi-Loop Organic Rankine Cycle for Recovering Energy from a Single Source
  publication-title: Entropy
  doi: 10.3390/e23111435
– volume: 249
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0210
  article-title: A Mixed-Integer linear programming based training and feature selection method for artificial neural networks using piece-wise linear approximations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117273
– volume: 254
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0165
  article-title: An outlier removal and feature dimensionality reduction framework with unsupervised learning and information theory intervention for organic Rankine cycle (ORC)
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124268
– volume: 36
  start-page: 527
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0180
  article-title: Application of recurrent neural network to mechanical fault diagnosis: A review
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0102-1
– ident: 10.1016/j.applthermaleng.2024.124352_b0045
  doi: 10.1109/CCTA41146.2020.9206319
– volume: 65
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0185
  article-title: Recurrent Neural Network-based Internal Model Control design for stable nonlinear systems
  publication-title: Eur. J. Control.
  doi: 10.1016/j.ejcon.2022.100632
– volume: 102
  start-page: 276
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.124352_b0215
  article-title: System design and control for waste heat recovery of automotive engines based on Organic Rankine
  publication-title: Cycle
– volume: 244
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0050
  article-title: Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122664
– ident: 10.1016/j.applthermaleng.2024.124352_b0110
  doi: 10.1109/ACC.2005.1470372
– ident: 10.1016/j.applthermaleng.2024.124352_b0095
– volume: 205
  start-page: 260
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124352_b0135
  article-title: Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.038
– volume: 27
  start-page: 282
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124352_b0150
  article-title: Estimation and predictive control of a parallel evaporator diesel engine waste heat recovery system
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2759104
– volume: 271
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0075
  article-title: Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126959
– volume: 238
  start-page: 659
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0035
  article-title: Role of PID control techniques in process control system: a review
  publication-title: Data Eng. Smart Syst.
  doi: 10.1007/978-981-16-2641-8_62
– volume: 70
  start-page: 3256
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124352_b0085
  article-title: Neural Network-Based Method for Calculating the Process and Cycle Performance of Organic Rankine Cycle
  publication-title: Journal of Chemical Industry and Engineering
– volume: 50
  start-page: 254
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0175
  article-title: Review of Evolutionary Recurrent Neural Network Research, Computer
  publication-title: Science
– volume: 25
  start-page: 952
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.124352_b0120
  article-title: Organic rankine cycle for vehicles: Control design and experimental results
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2574760
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124352_b0125
  article-title: Transient state modelling and experimental investigation of the thermal behavior of a vapor compression system
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/9941451
– volume: 235
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124352_b0130
  article-title: Transient behavior investigation of a regenerative dual-evaporator organic Rankine cycle with different forms of disturbances: Towards coordinated feedback control realization
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121437
– volume: 2018
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124352_b0070
  article-title: Data-driven superheating control of organic Rankine cycle processes
  publication-title: Complexity
  doi: 10.1155/2018/4154019
– ident: 10.1016/j.applthermaleng.2024.124352_b0020
  doi: 10.1016/j.rser.2017.05.082
– ident: 10.1016/j.applthermaleng.2024.124352_b0030
  doi: 10.1016/j.jclepro.2022.131470
– ident: 10.1016/j.applthermaleng.2024.124352_b0190
  doi: 10.1007/978-3-031-03758-0
– volume: 88
  start-page: 2183
  year: 2011
  ident: 10.1016/j.applthermaleng.2024.124352_b0205
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.015
– volume: 81
  start-page: 28
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124352_b0060
  article-title: Model predictive control of an automotive waste heat recovery system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.09.005
– volume: 34
  start-page: 6983
  year: 2022
  ident: 10.1016/j.applthermaleng.2024.124352_b0170
  article-title: A review of recurrent neural network-based methods in computational physiology
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2022.3145365
– volume: 180
  start-page: 520
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124352_b0055
  article-title: Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.023
– volume: 182
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124352_b0080
  article-title: Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2022.105223
SSID ssj0012874
Score 2.464475
Snippet •A novel predictive control method is proposed for the Organic Rankine Cycle.•The recurrent neural network with special linear transfer functions is used.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124352
SubjectTerms Mixed integer linear programming problem
Organic Rankine cycle
Predictive control
Recurrent neural network
Title Efficient predictive control method for ORC waste heat recovery system based on recurrent neural network
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.124352
Volume 257
WOSCitedRecordID wos001321278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZgQ4gd0PgxscEmH3arUmVJncTigKaq07bDQDBEOUW2Y2-dRlp1LYz_nvdsxwkwpCKEIkWV5cSx39fnz_bzZ0L2M2mEKIyJTBrH0UCmWSQNOMMsGShuVA69kDtsIj87K8Zj_s6HDt3Y4wTyui5ub_nsv5oa0sDYuHX2L8wdXgoJ8BuMDncwO9xXMvzIikLgEv9sjqswNjaoiUh3B0bb2MK374e9bwKMjGRx0cORMdT1u9d27mH3VuFSwhxn5K2GE2pfgkVrFznepbUNl0U2-QWy6FblMHj9JVpzDPUXkzDb6o8Cmwg5CSAdhv0i9cXlMuT95Ce2P09x43F3siKxkohuu6abQWt20bQhS-h0U8YjIDIHXa-cON3q3zy8m2y46uP6vq8U1KmPhfWBq6ROD_cXDe0PWASWgGtJcPH7ZD3JGQc3uH54MhqfhoUnlP-3Y3T_SQ_JfhsS-Ocy72Y1HaZyvkke-yEGPXTQeELu6fop2egITz4jlwEktAUJ9SChDiQUQEIBJNSChCJIaAMS6kBCLUjotKYBJNSBhHqQPCcfj0bnw-PIn7kRqTSNF9EgqapEJTofMFFkRiUVZyaOTaVFnvMDCfSQS1lBP6ENF8pARhkXOuOxUJIznW6RtXpa6xeEMkiFAT3wU6C9hmu4pOHgFwqWy0yzbfK6abNSeUF6PBflumwiD6_Kn1u8xBYvXYtvExaenjlhlhWfe9OYp_Qk05HHEhC20ht2_vkNL8mj9s_xiqwt5ku9Sx6or4vJzXzPQ_IHRI6xvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+predictive+control+method+for+ORC+waste+heat+recovery+system+based+on+recurrent+neural+network&rft.jtitle=Applied+thermal+engineering&rft.au=Wu%2C+Xialai&rft.au=Qin%2C+Jiabin&rft.au=Chen%2C+Junghui&rft.au=Wang%2C+Yongli&rft.date=2024-12-15&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124352&rft.externalDocID=S1359431124020209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon