Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, ℓ -dimensional kernel of the constraint matrix, by the linear independenc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 205; číslo 1-2; s. 1 - 32
Hlavní autoři: Andreani, Roberto, Haeser, Gabriel, Mito, Leonardo M., Ramírez, Héctor
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, ℓ -dimensional kernel of the constraint matrix, by the linear independence of a set of ℓ ( ℓ + 1 ) / 2 derivative vectors. We show that this linear independence requirement can be equivalently formulated in a smaller set, of ℓ derivative vectors, by considering all orthonormal bases of the kernel instead. This allows us to identify that not all bases are relevant for a constraint qualification to be defined, giving rise to a strictly weaker variant of nondegeneracy related to the global convergence of an external penalty method. We use some of these ideas to revisit an approach of Forsgren (Math Program 88, 105–128, 2000) for exploiting the sparsity structure of a transformation of the constraints to define a constraint qualification, which led us to develop another relaxed notion of nondegeneracy using a simpler transformation. If the zeros of the derivatives of the constraint function at a given point are considered, instead of the zeros of the function itself in a neighborhood of that point, we obtain an even weaker constraint qualification that connects Forsgren’s condition and ours.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-01970-4