Chebyshev Neural Network based model for solving Lane–Emden type equations

The objective of this paper is to solve second order non-linear ordinary differential equations of Lane–Emden type using Chebyshev Neural Network (ChNN) model. These equations are categorized as singular initial value problems. Artificial Neural Network (ANN) model is used here to overcome the diffi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 247; s. 100 - 114
Hlavní autoři: Mall, Susmita, Chakraverty, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.11.2014
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The objective of this paper is to solve second order non-linear ordinary differential equations of Lane–Emden type using Chebyshev Neural Network (ChNN) model. These equations are categorized as singular initial value problems. Artificial Neural Network (ANN) model is used here to overcome the difficulty of the singularity. A single layer neural network is used and the hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials. Here we have used feed forward neural network model and principle of error back propagation. Homogeneous and non-homogeneous Lane–Emden equations are considered to show effectiveness of Chebyshev Neural Network model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.085