A similarity-based semi-supervised algorithm for labeling unlabeled text data
This paper presents a novel, non-iterative semi-supervised learning algorithm that leverages cosine similarity between document vectors and class mean vectors to label unlabeled text data automatically. The proposed method supports multiple vectorization techniques, including CountVectorizer, TF-IDF...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 296; s. 128941 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.01.2026
|
| Predmet: | |
| ISSN: | 0957-4174 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!