Fixed-parameter algorithms for the cocoloring problem
A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolo...
Saved in:
| Published in: | Discrete Applied Mathematics Vol. 167; pp. 52 - 60 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
20.04.2014
|
| Subjects: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolorable, is NP-hard problem. A (q,q−4)-graph is a graph such that every subset of at most q vertices induces at most q−4 distinct P4’s. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)-graph is (k,ℓ)-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,ℓ)-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q−4)-graphs for every fixed q and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,ℓ)-cocolorable subgraph of a (q,q−4)-graph for every fixed q. All these algorithms are fixed parameter tractable. |
|---|---|
| AbstractList | A (k,[ell])(k,[ell])-cocoloring of a graph GG is a partition of the vertex set of GG into at most kk independent sets and at most [ell][ell] cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+[ell]k+[ell] and the minimum max{k,[ell]}max{k,[ell]} such that GG is (k,[ell])(k,[ell])-cocolorable, is NP-hard problem. A (q,q-4)(q,q-4)-graph is a graph such that every subset of at most qq vertices induces at most q-4q-4 distinct P4P4's. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)(5,1)-graph is (k,[ell])(k,[ell])-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,[ell])(k,[ell])-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q-4)(q,q-4)-graphs for every fixed qq and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,[ell])(k,[ell])-cocolorable subgraph of a (q,q-4)(q,q-4)-graph for every fixed qq. All these algorithms are fixed parameter tractable. A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolorable, is NP-hard problem. A (q,q−4)-graph is a graph such that every subset of at most q vertices induces at most q−4 distinct P4’s. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)-graph is (k,ℓ)-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,ℓ)-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q−4)-graphs for every fixed q and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,ℓ)-cocolorable subgraph of a (q,q−4)-graph for every fixed q. All these algorithms are fixed parameter tractable. |
| Author | Campos, Victor Klein, Sulamita Silva, Ana Sampaio, Rudini |
| Author_xml | – sequence: 1 givenname: Victor surname: Campos fullname: Campos, Victor email: campos@lia.ufc.br organization: Universidade Federal do Ceará, Fortaleza, Brazil – sequence: 2 givenname: Sulamita surname: Klein fullname: Klein, Sulamita email: sula@cos.ufrj.br organization: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 3 givenname: Rudini surname: Sampaio fullname: Sampaio, Rudini email: rudinims@gmail.com, rudini@lia.ufc.br organization: Universidade Federal do Ceará, Fortaleza, Brazil – sequence: 4 givenname: Ana surname: Silva fullname: Silva, Ana email: anasilva@mat.ufc.br organization: Universidade Federal do Ceará, Fortaleza, Brazil |
| BookMark | eNp9kLFOwzAQhi1UJNrCA7BlZEnwxbGTiglVFJAqsYDEZjnOuXWVxMV2Ebw9rsrEwHS60__d6b4ZmYxuREKugRZAQdzuik4NRUmBFQAFBXpGptDUZS7qGiZkmjIiL6F5vyCzEHaUUkjdlPCV_cIu3yuvBozoM9VvnLdxO4TMOJ_FLWbaaden4bjJ9t61PQ6X5NyoPuDVb52Tt9XD6_IpX788Pi_v17lmjMac0RYVGs7LijLdgjaGaSZQUFpXpuKLRvNqoSrdqLaqqsYIprnQDauNKnlJ2ZzcnPamux8HDFEONmjsezWiOwQJoga-EKzhKVqfotq7EDwaqW1U0boxemV7CVQeRcmdTKLkUZQEkElUIuEPufd2UP77X-buxGD6_tOil0FbHDV21qOOsnP2H_oH-gaB9w |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2022_05_015 crossref_primary_10_1007_s00373_022_02463_5 |
| Cites_doi | 10.1016/0166-218X(81)90013-5 10.1016/j.tcs.2005.09.037 10.1016/j.dam.2010.10.019 10.1016/0012-365X(94)00296-U 10.1016/0095-8956(84)90013-3 10.1016/S0020-0190(02)00288-0 10.1016/j.ipl.2012.07.011 10.1016/0166-218X(92)90036-A 10.1137/0214065 10.1016/S0195-6698(13)80123-0 10.1007/978-3-642-13731-0_32 10.1016/S0012-365X(00)00258-2 10.1016/S0166-218X(03)00371-8 10.1137/S0097539793251219 10.7155/jgaa.00129 10.1016/S0166-218X(97)90120-7 10.1016/j.disopt.2005.03.003 10.1007/s10878-005-4103-7 10.1137/S0895480100384055 10.1002/jgt.3190150604 10.1016/j.disc.2005.12.035 10.1002/(SICI)1097-0118(199708)25:4<295::AID-JGT7>3.0.CO;2-F |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.dam.2013.11.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6771 |
| EndPage | 60 |
| ExternalDocumentID | 10_1016_j_dam_2013_11_010 S0166218X13005350 |
| GroupedDBID | -~X 6I. AAFTH ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c330t-30beaef552403cb1cff3c36e60074f4598c549a4c8ab4448f63c56c837fa25203 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333492800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Thu Jul 10 19:13:41 EDT 2025 Sat Nov 29 02:59:33 EST 2025 Tue Nov 18 22:39:54 EST 2025 Sat Apr 29 22:45:09 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cochromatic number Bounded treewidth Cocoloring Fixed-parameter tractability (q,q−4)-graphs |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-30beaef552403cb1cff3c36e60074f4598c549a4c8ab4448f63c56c837fa25203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.dam.2013.11.010 |
| PQID | 1671596385 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1671596385 crossref_citationtrail_10_1016_j_dam_2013_11_010 crossref_primary_10_1016_j_dam_2013_11_010 elsevier_sciencedirect_doi_10_1016_j_dam_2013_11_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-20 |
| PublicationDateYYYYMMDD | 2014-04-20 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Feder, Hell, Hochstättler (br000100) 2007 Fomin, Kratsch, Novelli (br000115) 2002; 84 Baumann (br000015) 1996 Erdős, Gimbel, Straight (br000090) 1990; 11 Demange, Ekim, de Werra (br000065) 2005; 2 Feder, Hell (br000095) 2006; 306 Erdős, Gimbel (br000080) 1993 Kloks (br000135) 1991; vol. 842 Bodlaender (br000020) 1996; 25 Bravo, Klein, Nogueira (br000035) 2005; vol. 22 Jamison, Olariu (br000130) 1992; 35 Demange, Ekim, de Werra (br000060) 2006; 10 Feder, Hell, Klein, Motwani (br000105) 1999 Hell, Klein, Nogueira, Protti (br000125) 2004; 141 Wagner (br000150) 1984; 20 Bravo, Klein, Nogueira, Protti (br000040) 2011; 159 Bravo, Klein, Nogueira, Protti, Sampaio (br000045) 2012; 112 Lesniak, Straight (br000140) 1977; 3 Babel, Olariu (br000010) 1998; 84 Feder, Hell, Klein, Motwani (br000110) 2003; 16 Demange, Ekim, de Werra (br000070) 2005; 349 Corneil, Perl, Stewart (br000055) 1985; 14 Heggernes, Kratsch, Lokshtanov, Raman, Saurabh (br000120) 2010; 6139 Brandstädt (br000030) 1996; 152 Corneil, Lerchs, Burlingham (br000050) 1981; 3 Bondy, Murty (br000025) 2008 Ekim, de Werra (br000075) 2005; 10 Robertson, Seymour (br000145) 1984; 36 Erdős, Gimbel, Kratsch (br000085) 1991; 15 Babel, Kloks, Kratochvíl, Kratsch, Müller, Olariu (br000005) 2001; 235 Jamison (10.1016/j.dam.2013.11.010_br000130) 1992; 35 Hell (10.1016/j.dam.2013.11.010_br000125) 2004; 141 Ekim (10.1016/j.dam.2013.11.010_br000075) 2005; 10 Erdős (10.1016/j.dam.2013.11.010_br000090) 1990; 11 Bodlaender (10.1016/j.dam.2013.11.010_br000020) 1996; 25 Demange (10.1016/j.dam.2013.11.010_br000060) 2006; 10 Courcelle (10.1016/j.dam.2013.11.010_br000160) 1999; vol. 1517 Brandstädt (10.1016/j.dam.2013.11.010_br000030) 1996; 152 Demange (10.1016/j.dam.2013.11.010_br000065) 2005; 2 Erdős (10.1016/j.dam.2013.11.010_br000080) 1993 Alon (10.1016/j.dam.2013.11.010_br000155) 1997; 25 Corneil (10.1016/j.dam.2013.11.010_br000050) 1981; 3 Babel (10.1016/j.dam.2013.11.010_br000010) 1998; 84 Babel (10.1016/j.dam.2013.11.010_br000005) 2001; 235 Bravo (10.1016/j.dam.2013.11.010_br000045) 2012; 112 Heggernes (10.1016/j.dam.2013.11.010_br000120) 2010; 6139 Demange (10.1016/j.dam.2013.11.010_br000070) 2005; 349 Erdős (10.1016/j.dam.2013.11.010_br000085) 1991; 15 Feder (10.1016/j.dam.2013.11.010_br000095) 2006; 306 Robertson (10.1016/j.dam.2013.11.010_br000145) 1984; 36 Fomin (10.1016/j.dam.2013.11.010_br000115) 2002; 84 Bravo (10.1016/j.dam.2013.11.010_br000035) 2005; vol. 22 Bondy (10.1016/j.dam.2013.11.010_br000025) 2008 Kloks (10.1016/j.dam.2013.11.010_br000135) 1991; vol. 842 Bravo (10.1016/j.dam.2013.11.010_br000040) 2011; 159 Wagner (10.1016/j.dam.2013.11.010_br000150) 1984; 20 Lesniak (10.1016/j.dam.2013.11.010_br000140) 1977; 3 Baumann (10.1016/j.dam.2013.11.010_br000015) 1996 Corneil (10.1016/j.dam.2013.11.010_br000055) 1985; 14 Feder (10.1016/j.dam.2013.11.010_br000105) 1999 Feder (10.1016/j.dam.2013.11.010_br000100) 2007 Feder (10.1016/j.dam.2013.11.010_br000110) 2003; 16 |
| References_xml | – volume: 349 start-page: 462 year: 2005 end-page: 474 ident: br000070 article-title: -coloring problems in line graphs publication-title: Theoret. Comput. Sci. – volume: 306 start-page: 2450 year: 2006 end-page: 2460 ident: br000095 article-title: Matrix partitions of perfect graphs publication-title: Discrete Math. – volume: 10 start-page: 211 year: 2005 end-page: 225 ident: br000075 article-title: On split-coloring problems publication-title: J. Comb. Optim. – volume: 15 start-page: 579 year: 1991 end-page: 585 ident: br000085 article-title: Some extremal results in cochromatic and dichromatic theory publication-title: J. Graph Theory – volume: 11 start-page: 235 year: 1990 end-page: 240 ident: br000090 article-title: Chromatic number versus cochromatic number in graphs with bounded clique number publication-title: European J. Combin. – volume: 10 start-page: 297 year: 2006 end-page: 315 ident: br000060 article-title: On the approximability of min split-coloring and min cocoloring publication-title: J. Graph Algorithms Appl. – volume: 84 start-page: 1 year: 1998 end-page: 13 ident: br000010 article-title: On the structure of graphs with few publication-title: Discrete Appl. Math. – volume: 36 start-page: 49 year: 1984 end-page: 64 ident: br000145 article-title: Graph minors III: planar tree-width publication-title: J. Combin. Theory Ser. B – volume: 2 start-page: 145 year: 2005 end-page: 153 ident: br000065 article-title: Partitioning cographs into cliques and stable sets publication-title: Discrete Optim. – volume: vol. 842 year: 1991 ident: br000135 publication-title: Treewidth: Computation and Approximation – volume: 16 start-page: 449 year: 2003 end-page: 478 ident: br000110 article-title: List partitions publication-title: SIAM J. Discrete Math. – volume: 235 start-page: 29 year: 2001 end-page: 51 ident: br000005 article-title: Efficient algorithms for graphs with few publication-title: Discrete Math. – volume: 112 start-page: 829 year: 2012 end-page: 834 ident: br000045 article-title: Partitioning extended publication-title: Inform. Process. Lett. – volume: 14 start-page: 926 year: 1985 end-page: 934 ident: br000055 article-title: A linear recognition algorithm for cographs publication-title: SIAM J. Comput. – volume: 159 start-page: 165 year: 2011 end-page: 173 ident: br000040 article-title: Characterization and recognition of publication-title: Discrete Appl. Math. – start-page: 261 year: 1993 end-page: 264 ident: br000080 article-title: Some problems and results in cochromatic theory publication-title: Quo Vadis, Graph Theory? – volume: 6139 start-page: 334 year: 2010 end-page: 345 ident: br000120 article-title: Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing publication-title: Lecture Notes in Comput. Sci. – volume: 20 start-page: 633 year: 1984 end-page: 639 ident: br000150 article-title: Monotonic coverings of finite sets publication-title: Elektron. Inf.verarb. Kybern. – volume: 25 start-page: 1305 year: 1996 end-page: 1317 ident: br000020 article-title: A linear time algorithm for finding tree-decompositions of small treewidth publication-title: SIAM J. Comput. – volume: 152 start-page: 47 year: 1996 end-page: 54 ident: br000030 article-title: Partitions of graphs into one or two independent sets and cliques publication-title: Discrete Math. – start-page: 464 year: 1999 end-page: 472 ident: br000105 article-title: Complexity of list partition publication-title: 31st Annual ACM Symposium on Theory of Computing – volume: 141 start-page: 185 year: 2004 end-page: 194 ident: br000125 article-title: Partitioning chordal graphs into independent sets and cliques publication-title: Discrete Appl. Math. – start-page: 149 year: 2007 end-page: 167 ident: br000100 article-title: Generalized colourings (matrix partitions) of cographs publication-title: Graph Theory in Paris – volume: 3 start-page: 163 year: 1981 end-page: 174 ident: br000050 article-title: Complement reducible graphs publication-title: Discrete Appl. Math. – volume: 35 start-page: 115 year: 1992 end-page: 129 ident: br000130 article-title: A tree representation for publication-title: Discrete Appl. Math. – year: 2008 ident: br000025 article-title: Graph Theory – volume: 84 start-page: 285 year: 2002 end-page: 290 ident: br000115 article-title: Approximating minimum cocolorings publication-title: Inform. Process. Lett. – volume: 3 start-page: 39 year: 1977 end-page: 46 ident: br000140 article-title: The cochromatic number of a graph publication-title: Ars Combin. – year: 1996 ident: br000015 article-title: A linear algorithm for the homogeneous decomposition of graphs, Report No. M-9615, Zentrum für Mathematik – volume: vol. 22 start-page: 277 year: 2005 end-page: 280 ident: br000035 article-title: Characterizing publication-title: 7th International Colloquium on Graph Theory, 2005, Hyeres – volume: 3 start-page: 39 year: 1977 ident: 10.1016/j.dam.2013.11.010_br000140 article-title: The cochromatic number of a graph publication-title: Ars Combin. – volume: vol. 22 start-page: 277 year: 2005 ident: 10.1016/j.dam.2013.11.010_br000035 article-title: Characterizing (k,ℓ)-partitionable cographs – volume: 3 start-page: 163 issue: 3 year: 1981 ident: 10.1016/j.dam.2013.11.010_br000050 article-title: Complement reducible graphs publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(81)90013-5 – volume: 349 start-page: 462 year: 2005 ident: 10.1016/j.dam.2013.11.010_br000070 article-title: (p,k)-coloring problems in line graphs publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2005.09.037 – start-page: 149 year: 2007 ident: 10.1016/j.dam.2013.11.010_br000100 article-title: Generalized colourings (matrix partitions) of cographs – start-page: 261 year: 1993 ident: 10.1016/j.dam.2013.11.010_br000080 article-title: Some problems and results in cochromatic theory – volume: 159 start-page: 165 year: 2011 ident: 10.1016/j.dam.2013.11.010_br000040 article-title: Characterization and recognition of P4-sparse graphs partitionable into k independent sets and ℓ cliques publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2010.10.019 – year: 1996 ident: 10.1016/j.dam.2013.11.010_br000015 – volume: 152 start-page: 47 year: 1996 ident: 10.1016/j.dam.2013.11.010_br000030 article-title: Partitions of graphs into one or two independent sets and cliques publication-title: Discrete Math. doi: 10.1016/0012-365X(94)00296-U – volume: 36 start-page: 49 issue: 1 year: 1984 ident: 10.1016/j.dam.2013.11.010_br000145 article-title: Graph minors III: planar tree-width publication-title: J. Combin. Theory Ser. B doi: 10.1016/0095-8956(84)90013-3 – volume: 84 start-page: 285 year: 2002 ident: 10.1016/j.dam.2013.11.010_br000115 article-title: Approximating minimum cocolorings publication-title: Inform. Process. Lett. doi: 10.1016/S0020-0190(02)00288-0 – volume: vol. 1517 start-page: 1 year: 1999 ident: 10.1016/j.dam.2013.11.010_br000160 article-title: Linear time solvable optimization problems on certain graph families – volume: 20 start-page: 633 year: 1984 ident: 10.1016/j.dam.2013.11.010_br000150 article-title: Monotonic coverings of finite sets publication-title: Elektron. Inf.verarb. Kybern. – start-page: 464 year: 1999 ident: 10.1016/j.dam.2013.11.010_br000105 article-title: Complexity of list partition – volume: 112 start-page: 829 year: 2012 ident: 10.1016/j.dam.2013.11.010_br000045 article-title: Partitioning extended P4-laden graphs into cliques and stable sets publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2012.07.011 – volume: 35 start-page: 115 issue: 2 year: 1992 ident: 10.1016/j.dam.2013.11.010_br000130 article-title: A tree representation for P4-sparse graphs publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(92)90036-A – volume: 14 start-page: 926 issue: 4 year: 1985 ident: 10.1016/j.dam.2013.11.010_br000055 article-title: A linear recognition algorithm for cographs publication-title: SIAM J. Comput. doi: 10.1137/0214065 – volume: 11 start-page: 235 year: 1990 ident: 10.1016/j.dam.2013.11.010_br000090 article-title: Chromatic number versus cochromatic number in graphs with bounded clique number publication-title: European J. Combin. doi: 10.1016/S0195-6698(13)80123-0 – year: 2008 ident: 10.1016/j.dam.2013.11.010_br000025 – volume: 6139 start-page: 334 year: 2010 ident: 10.1016/j.dam.2013.11.010_br000120 article-title: Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing publication-title: Lecture Notes in Comput. Sci. doi: 10.1007/978-3-642-13731-0_32 – volume: 235 start-page: 29 issue: 23 year: 2001 ident: 10.1016/j.dam.2013.11.010_br000005 article-title: Efficient algorithms for graphs with few P4’s publication-title: Discrete Math. doi: 10.1016/S0012-365X(00)00258-2 – volume: 141 start-page: 185 year: 2004 ident: 10.1016/j.dam.2013.11.010_br000125 article-title: Partitioning chordal graphs into independent sets and cliques publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(03)00371-8 – volume: vol. 842 year: 1991 ident: 10.1016/j.dam.2013.11.010_br000135 – volume: 25 start-page: 1305 year: 1996 ident: 10.1016/j.dam.2013.11.010_br000020 article-title: A linear time algorithm for finding tree-decompositions of small treewidth publication-title: SIAM J. Comput. doi: 10.1137/S0097539793251219 – volume: 10 start-page: 297 issue: 2 year: 2006 ident: 10.1016/j.dam.2013.11.010_br000060 article-title: On the approximability of min split-coloring and min cocoloring publication-title: J. Graph Algorithms Appl. doi: 10.7155/jgaa.00129 – volume: 84 start-page: 1 year: 1998 ident: 10.1016/j.dam.2013.11.010_br000010 article-title: On the structure of graphs with few P4’s publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(97)90120-7 – volume: 2 start-page: 145 year: 2005 ident: 10.1016/j.dam.2013.11.010_br000065 article-title: Partitioning cographs into cliques and stable sets publication-title: Discrete Optim. doi: 10.1016/j.disopt.2005.03.003 – volume: 10 start-page: 211 year: 2005 ident: 10.1016/j.dam.2013.11.010_br000075 article-title: On split-coloring problems publication-title: J. Comb. Optim. doi: 10.1007/s10878-005-4103-7 – volume: 16 start-page: 449 year: 2003 ident: 10.1016/j.dam.2013.11.010_br000110 article-title: List partitions publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480100384055 – volume: 15 start-page: 579 year: 1991 ident: 10.1016/j.dam.2013.11.010_br000085 article-title: Some extremal results in cochromatic and dichromatic theory publication-title: J. Graph Theory doi: 10.1002/jgt.3190150604 – volume: 306 start-page: 2450 year: 2006 ident: 10.1016/j.dam.2013.11.010_br000095 article-title: Matrix partitions of perfect graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2005.12.035 – volume: 25 start-page: 295 year: 1997 ident: 10.1016/j.dam.2013.11.010_br000155 article-title: Subgraphs with a large cochromatic number publication-title: J. Graph Theory doi: 10.1002/(SICI)1097-0118(199708)25:4<295::AID-JGT7>3.0.CO;2-F |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 2.0605576 |
| Snippet | A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the... A (k,[ell])(k,[ell])-cocoloring of a graph GG is a partition of the vertex set of GG into at most kk independent sets and at most [ell][ell] cliques. It is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 52 |
| SubjectTerms | [formula omitted]-graphs Algorithms Bounded treewidth Cochromatic number Cocoloring Fixed-parameter tractability Graphs Mathematical analysis Partitions Polynomials |
| Title | Fixed-parameter algorithms for the cocoloring problem |
| URI | https://dx.doi.org/10.1016/j.dam.2013.11.010 https://www.proquest.com/docview/1671596385 |
| Volume | 167 |
| WOSCitedRecordID | wos000333492800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6771 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQx8N4QHyK8aUg8QQKSuKPOI8TbAIkJkQH6puVug7zVNKpTaf--dzlnKR0YgIkXqIojS337nL--Xz-HWMvZ3ymKpe4uMpcFguV6njqdIpHnwC8lhaWCFRsIj850ZNJ8TkE9FdtOYG8rvVmU1z8V1XDM1A2Hp39C3X3ncIDuAelwxXUDtc_Uvyx37hZjJTePzDV5XU5_75Y-uaMmBdaoAlOcBEy70JBmW2M-s6DK4GmPUL91FO79gActywoQe-bt0RYTH57Hopnjtdgar7pnf4YiR19G5f9sob50vc_-PklxXapjncXgkjbzJUsGeJiV87GUKhSqRgAxIRmGnKvOs9ilVPRld7_Uj2O4EGJzzbMxVRq4IqXp4DDOQwIuQRS_gZ5WEN27K_k2WMcBQ4Cd-0kx-DOXpbLQo_Y3uGHo8nHLaox5NHb74Jzw14UYDIRGOLp_3R7422W4M4Qfodudub5Fryc3mG3w6ojOiRructuuPoeu7Wl1_tM7thNNNhNBHYTwavRYDdRsJsH7Ovx0enb93GoqRFbzpMm5snUla6SEnkY7TS1VcUtVw7LFIhKgGSsFEUprC6nApbuleJWKqt5XpWZzBL-kI3qRe0esSi3wmaFLJDRUkBHRVE5nVtpUyUtKPqAJZ0sjA2E81j3ZG66zMJzA-IzKD5YiBoQ3wF71Te5ILaV614WnYBNgIsEAw3YyXXNXnTKMOBKcX-srN1ivTJgiADuYUKSj_-t6ydsf_g8nrJRs1y7Z-ymvWz8avk8WNxP_oiU5g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-parameter+algorithms+for+the+cocoloring+problem&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Campos%2C+Victor&rft.au=Klein%2C+Sulamita&rft.au=Sampaio%2C+Rudini&rft.au=Silva%2C+Ana&rft.date=2014-04-20&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=167&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1016%2Fj.dam.2013.11.010&rft.externalDocID=S0166218X13005350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |