Fixed-parameter algorithms for the cocoloring problem

A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolo...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics Vol. 167; pp. 52 - 60
Main Authors: Campos, Victor, Klein, Sulamita, Sampaio, Rudini, Silva, Ana
Format: Journal Article
Language:English
Published: Elsevier B.V 20.04.2014
Subjects:
ISSN:0166-218X, 1872-6771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolorable, is NP-hard problem. A (q,q−4)-graph is a graph such that every subset of at most q vertices induces at most q−4 distinct P4’s. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)-graph is (k,ℓ)-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,ℓ)-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q−4)-graphs for every fixed q and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,ℓ)-cocolorable subgraph of a (q,q−4)-graph for every fixed q. All these algorithms are fixed parameter tractable.
AbstractList A (k,[ell])(k,[ell])-cocoloring of a graph GG is a partition of the vertex set of GG into at most kk independent sets and at most [ell][ell] cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+[ell]k+[ell] and the minimum max{k,[ell]}max{k,[ell]} such that GG is (k,[ell])(k,[ell])-cocolorable, is NP-hard problem. A (q,q-4)(q,q-4)-graph is a graph such that every subset of at most qq vertices induces at most q-4q-4 distinct P4P4's. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)(5,1)-graph is (k,[ell])(k,[ell])-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,[ell])(k,[ell])-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q-4)(q,q-4)-graphs for every fixed qq and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,[ell])(k,[ell])-cocolorable subgraph of a (q,q-4)(q,q-4)-graph for every fixed qq. All these algorithms are fixed parameter tractable.
A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the cochromatic number and the split chromatic number, which are respectively the minimum k+ℓ and the minimum max{k,ℓ} such that G is (k,ℓ)-cocolorable, is NP-hard problem. A (q,q−4)-graph is a graph such that every subset of at most q vertices induces at most q−4 distinct P4’s. In 2011, Bravo et al. obtained a polynomial time algorithm to decide if a (5,1)-graph is (k,ℓ)-cocolorable (Bravo et al., 2011). In this paper, we extend this result by obtaining polynomial time algorithms to decide the (k,ℓ)-cocolorability and to determine the cochromatic number and the split chromatic number for (q,q−4)-graphs for every fixed q and for graphs with bounded treewidth. We also obtain a polynomial time algorithm to obtain the maximum (k,ℓ)-cocolorable subgraph of a (q,q−4)-graph for every fixed q. All these algorithms are fixed parameter tractable.
Author Campos, Victor
Klein, Sulamita
Silva, Ana
Sampaio, Rudini
Author_xml – sequence: 1
  givenname: Victor
  surname: Campos
  fullname: Campos, Victor
  email: campos@lia.ufc.br
  organization: Universidade Federal do Ceará, Fortaleza, Brazil
– sequence: 2
  givenname: Sulamita
  surname: Klein
  fullname: Klein, Sulamita
  email: sula@cos.ufrj.br
  organization: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 3
  givenname: Rudini
  surname: Sampaio
  fullname: Sampaio, Rudini
  email: rudinims@gmail.com, rudini@lia.ufc.br
  organization: Universidade Federal do Ceará, Fortaleza, Brazil
– sequence: 4
  givenname: Ana
  surname: Silva
  fullname: Silva, Ana
  email: anasilva@mat.ufc.br
  organization: Universidade Federal do Ceará, Fortaleza, Brazil
BookMark eNp9kLFOwzAQhi1UJNrCA7BlZEnwxbGTiglVFJAqsYDEZjnOuXWVxMV2Ebw9rsrEwHS60__d6b4ZmYxuREKugRZAQdzuik4NRUmBFQAFBXpGptDUZS7qGiZkmjIiL6F5vyCzEHaUUkjdlPCV_cIu3yuvBozoM9VvnLdxO4TMOJ_FLWbaaden4bjJ9t61PQ6X5NyoPuDVb52Tt9XD6_IpX788Pi_v17lmjMac0RYVGs7LijLdgjaGaSZQUFpXpuKLRvNqoSrdqLaqqsYIprnQDauNKnlJ2ZzcnPamux8HDFEONmjsezWiOwQJoga-EKzhKVqfotq7EDwaqW1U0boxemV7CVQeRcmdTKLkUZQEkElUIuEPufd2UP77X-buxGD6_tOil0FbHDV21qOOsnP2H_oH-gaB9w
CitedBy_id crossref_primary_10_1016_j_tcs_2022_05_015
crossref_primary_10_1007_s00373_022_02463_5
Cites_doi 10.1016/0166-218X(81)90013-5
10.1016/j.tcs.2005.09.037
10.1016/j.dam.2010.10.019
10.1016/0012-365X(94)00296-U
10.1016/0095-8956(84)90013-3
10.1016/S0020-0190(02)00288-0
10.1016/j.ipl.2012.07.011
10.1016/0166-218X(92)90036-A
10.1137/0214065
10.1016/S0195-6698(13)80123-0
10.1007/978-3-642-13731-0_32
10.1016/S0012-365X(00)00258-2
10.1016/S0166-218X(03)00371-8
10.1137/S0097539793251219
10.7155/jgaa.00129
10.1016/S0166-218X(97)90120-7
10.1016/j.disopt.2005.03.003
10.1007/s10878-005-4103-7
10.1137/S0895480100384055
10.1002/jgt.3190150604
10.1016/j.disc.2005.12.035
10.1002/(SICI)1097-0118(199708)25:4<295::AID-JGT7>3.0.CO;2-F
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2013.11.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 60
ExternalDocumentID 10_1016_j_dam_2013_11_010
S0166218X13005350
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-30beaef552403cb1cff3c36e60074f4598c549a4c8ab4448f63c56c837fa25203
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333492800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Thu Jul 10 19:13:41 EDT 2025
Sat Nov 29 02:59:33 EST 2025
Tue Nov 18 22:39:54 EST 2025
Sat Apr 29 22:45:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cochromatic number
Bounded treewidth
Cocoloring
Fixed-parameter tractability
(q,q−4)-graphs
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-30beaef552403cb1cff3c36e60074f4598c549a4c8ab4448f63c56c837fa25203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.dam.2013.11.010
PQID 1671596385
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671596385
crossref_citationtrail_10_1016_j_dam_2013_11_010
crossref_primary_10_1016_j_dam_2013_11_010
elsevier_sciencedirect_doi_10_1016_j_dam_2013_11_010
PublicationCentury 2000
PublicationDate 2014-04-20
PublicationDateYYYYMMDD 2014-04-20
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-20
  day: 20
PublicationDecade 2010
PublicationTitle Discrete Applied Mathematics
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feder, Hell, Hochstättler (br000100) 2007
Fomin, Kratsch, Novelli (br000115) 2002; 84
Baumann (br000015) 1996
Erdős, Gimbel, Straight (br000090) 1990; 11
Demange, Ekim, de Werra (br000065) 2005; 2
Feder, Hell (br000095) 2006; 306
Erdős, Gimbel (br000080) 1993
Kloks (br000135) 1991; vol. 842
Bodlaender (br000020) 1996; 25
Bravo, Klein, Nogueira (br000035) 2005; vol. 22
Jamison, Olariu (br000130) 1992; 35
Demange, Ekim, de Werra (br000060) 2006; 10
Feder, Hell, Klein, Motwani (br000105) 1999
Hell, Klein, Nogueira, Protti (br000125) 2004; 141
Wagner (br000150) 1984; 20
Bravo, Klein, Nogueira, Protti (br000040) 2011; 159
Bravo, Klein, Nogueira, Protti, Sampaio (br000045) 2012; 112
Lesniak, Straight (br000140) 1977; 3
Babel, Olariu (br000010) 1998; 84
Feder, Hell, Klein, Motwani (br000110) 2003; 16
Demange, Ekim, de Werra (br000070) 2005; 349
Corneil, Perl, Stewart (br000055) 1985; 14
Heggernes, Kratsch, Lokshtanov, Raman, Saurabh (br000120) 2010; 6139
Brandstädt (br000030) 1996; 152
Corneil, Lerchs, Burlingham (br000050) 1981; 3
Bondy, Murty (br000025) 2008
Ekim, de Werra (br000075) 2005; 10
Robertson, Seymour (br000145) 1984; 36
Erdős, Gimbel, Kratsch (br000085) 1991; 15
Babel, Kloks, Kratochvíl, Kratsch, Müller, Olariu (br000005) 2001; 235
Jamison (10.1016/j.dam.2013.11.010_br000130) 1992; 35
Hell (10.1016/j.dam.2013.11.010_br000125) 2004; 141
Ekim (10.1016/j.dam.2013.11.010_br000075) 2005; 10
Erdős (10.1016/j.dam.2013.11.010_br000090) 1990; 11
Bodlaender (10.1016/j.dam.2013.11.010_br000020) 1996; 25
Demange (10.1016/j.dam.2013.11.010_br000060) 2006; 10
Courcelle (10.1016/j.dam.2013.11.010_br000160) 1999; vol. 1517
Brandstädt (10.1016/j.dam.2013.11.010_br000030) 1996; 152
Demange (10.1016/j.dam.2013.11.010_br000065) 2005; 2
Erdős (10.1016/j.dam.2013.11.010_br000080) 1993
Alon (10.1016/j.dam.2013.11.010_br000155) 1997; 25
Corneil (10.1016/j.dam.2013.11.010_br000050) 1981; 3
Babel (10.1016/j.dam.2013.11.010_br000010) 1998; 84
Babel (10.1016/j.dam.2013.11.010_br000005) 2001; 235
Bravo (10.1016/j.dam.2013.11.010_br000045) 2012; 112
Heggernes (10.1016/j.dam.2013.11.010_br000120) 2010; 6139
Demange (10.1016/j.dam.2013.11.010_br000070) 2005; 349
Erdős (10.1016/j.dam.2013.11.010_br000085) 1991; 15
Feder (10.1016/j.dam.2013.11.010_br000095) 2006; 306
Robertson (10.1016/j.dam.2013.11.010_br000145) 1984; 36
Fomin (10.1016/j.dam.2013.11.010_br000115) 2002; 84
Bravo (10.1016/j.dam.2013.11.010_br000035) 2005; vol. 22
Bondy (10.1016/j.dam.2013.11.010_br000025) 2008
Kloks (10.1016/j.dam.2013.11.010_br000135) 1991; vol. 842
Bravo (10.1016/j.dam.2013.11.010_br000040) 2011; 159
Wagner (10.1016/j.dam.2013.11.010_br000150) 1984; 20
Lesniak (10.1016/j.dam.2013.11.010_br000140) 1977; 3
Baumann (10.1016/j.dam.2013.11.010_br000015) 1996
Corneil (10.1016/j.dam.2013.11.010_br000055) 1985; 14
Feder (10.1016/j.dam.2013.11.010_br000105) 1999
Feder (10.1016/j.dam.2013.11.010_br000100) 2007
Feder (10.1016/j.dam.2013.11.010_br000110) 2003; 16
References_xml – volume: 349
  start-page: 462
  year: 2005
  end-page: 474
  ident: br000070
  article-title: -coloring problems in line graphs
  publication-title: Theoret. Comput. Sci.
– volume: 306
  start-page: 2450
  year: 2006
  end-page: 2460
  ident: br000095
  article-title: Matrix partitions of perfect graphs
  publication-title: Discrete Math.
– volume: 10
  start-page: 211
  year: 2005
  end-page: 225
  ident: br000075
  article-title: On split-coloring problems
  publication-title: J. Comb. Optim.
– volume: 15
  start-page: 579
  year: 1991
  end-page: 585
  ident: br000085
  article-title: Some extremal results in cochromatic and dichromatic theory
  publication-title: J. Graph Theory
– volume: 11
  start-page: 235
  year: 1990
  end-page: 240
  ident: br000090
  article-title: Chromatic number versus cochromatic number in graphs with bounded clique number
  publication-title: European J. Combin.
– volume: 10
  start-page: 297
  year: 2006
  end-page: 315
  ident: br000060
  article-title: On the approximability of min split-coloring and min cocoloring
  publication-title: J. Graph Algorithms Appl.
– volume: 84
  start-page: 1
  year: 1998
  end-page: 13
  ident: br000010
  article-title: On the structure of graphs with few
  publication-title: Discrete Appl. Math.
– volume: 36
  start-page: 49
  year: 1984
  end-page: 64
  ident: br000145
  article-title: Graph minors III: planar tree-width
  publication-title: J. Combin. Theory Ser. B
– volume: 2
  start-page: 145
  year: 2005
  end-page: 153
  ident: br000065
  article-title: Partitioning cographs into cliques and stable sets
  publication-title: Discrete Optim.
– volume: vol. 842
  year: 1991
  ident: br000135
  publication-title: Treewidth: Computation and Approximation
– volume: 16
  start-page: 449
  year: 2003
  end-page: 478
  ident: br000110
  article-title: List partitions
  publication-title: SIAM J. Discrete Math.
– volume: 235
  start-page: 29
  year: 2001
  end-page: 51
  ident: br000005
  article-title: Efficient algorithms for graphs with few
  publication-title: Discrete Math.
– volume: 112
  start-page: 829
  year: 2012
  end-page: 834
  ident: br000045
  article-title: Partitioning extended
  publication-title: Inform. Process. Lett.
– volume: 14
  start-page: 926
  year: 1985
  end-page: 934
  ident: br000055
  article-title: A linear recognition algorithm for cographs
  publication-title: SIAM J. Comput.
– volume: 159
  start-page: 165
  year: 2011
  end-page: 173
  ident: br000040
  article-title: Characterization and recognition of
  publication-title: Discrete Appl. Math.
– start-page: 261
  year: 1993
  end-page: 264
  ident: br000080
  article-title: Some problems and results in cochromatic theory
  publication-title: Quo Vadis, Graph Theory?
– volume: 6139
  start-page: 334
  year: 2010
  end-page: 345
  ident: br000120
  article-title: Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing
  publication-title: Lecture Notes in Comput. Sci.
– volume: 20
  start-page: 633
  year: 1984
  end-page: 639
  ident: br000150
  article-title: Monotonic coverings of finite sets
  publication-title: Elektron. Inf.verarb. Kybern.
– volume: 25
  start-page: 1305
  year: 1996
  end-page: 1317
  ident: br000020
  article-title: A linear time algorithm for finding tree-decompositions of small treewidth
  publication-title: SIAM J. Comput.
– volume: 152
  start-page: 47
  year: 1996
  end-page: 54
  ident: br000030
  article-title: Partitions of graphs into one or two independent sets and cliques
  publication-title: Discrete Math.
– start-page: 464
  year: 1999
  end-page: 472
  ident: br000105
  article-title: Complexity of list partition
  publication-title: 31st Annual ACM Symposium on Theory of Computing
– volume: 141
  start-page: 185
  year: 2004
  end-page: 194
  ident: br000125
  article-title: Partitioning chordal graphs into independent sets and cliques
  publication-title: Discrete Appl. Math.
– start-page: 149
  year: 2007
  end-page: 167
  ident: br000100
  article-title: Generalized colourings (matrix partitions) of cographs
  publication-title: Graph Theory in Paris
– volume: 3
  start-page: 163
  year: 1981
  end-page: 174
  ident: br000050
  article-title: Complement reducible graphs
  publication-title: Discrete Appl. Math.
– volume: 35
  start-page: 115
  year: 1992
  end-page: 129
  ident: br000130
  article-title: A tree representation for
  publication-title: Discrete Appl. Math.
– year: 2008
  ident: br000025
  article-title: Graph Theory
– volume: 84
  start-page: 285
  year: 2002
  end-page: 290
  ident: br000115
  article-title: Approximating minimum cocolorings
  publication-title: Inform. Process. Lett.
– volume: 3
  start-page: 39
  year: 1977
  end-page: 46
  ident: br000140
  article-title: The cochromatic number of a graph
  publication-title: Ars Combin.
– year: 1996
  ident: br000015
  article-title: A linear algorithm for the homogeneous decomposition of graphs, Report No. M-9615, Zentrum für Mathematik
– volume: vol. 22
  start-page: 277
  year: 2005
  end-page: 280
  ident: br000035
  article-title: Characterizing
  publication-title: 7th International Colloquium on Graph Theory, 2005, Hyeres
– volume: 3
  start-page: 39
  year: 1977
  ident: 10.1016/j.dam.2013.11.010_br000140
  article-title: The cochromatic number of a graph
  publication-title: Ars Combin.
– volume: vol. 22
  start-page: 277
  year: 2005
  ident: 10.1016/j.dam.2013.11.010_br000035
  article-title: Characterizing (k,ℓ)-partitionable cographs
– volume: 3
  start-page: 163
  issue: 3
  year: 1981
  ident: 10.1016/j.dam.2013.11.010_br000050
  article-title: Complement reducible graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(81)90013-5
– volume: 349
  start-page: 462
  year: 2005
  ident: 10.1016/j.dam.2013.11.010_br000070
  article-title: (p,k)-coloring problems in line graphs
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.09.037
– start-page: 149
  year: 2007
  ident: 10.1016/j.dam.2013.11.010_br000100
  article-title: Generalized colourings (matrix partitions) of cographs
– start-page: 261
  year: 1993
  ident: 10.1016/j.dam.2013.11.010_br000080
  article-title: Some problems and results in cochromatic theory
– volume: 159
  start-page: 165
  year: 2011
  ident: 10.1016/j.dam.2013.11.010_br000040
  article-title: Characterization and recognition of P4-sparse graphs partitionable into k independent sets and ℓ cliques
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2010.10.019
– year: 1996
  ident: 10.1016/j.dam.2013.11.010_br000015
– volume: 152
  start-page: 47
  year: 1996
  ident: 10.1016/j.dam.2013.11.010_br000030
  article-title: Partitions of graphs into one or two independent sets and cliques
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(94)00296-U
– volume: 36
  start-page: 49
  issue: 1
  year: 1984
  ident: 10.1016/j.dam.2013.11.010_br000145
  article-title: Graph minors III: planar tree-width
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(84)90013-3
– volume: 84
  start-page: 285
  year: 2002
  ident: 10.1016/j.dam.2013.11.010_br000115
  article-title: Approximating minimum cocolorings
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(02)00288-0
– volume: vol. 1517
  start-page: 1
  year: 1999
  ident: 10.1016/j.dam.2013.11.010_br000160
  article-title: Linear time solvable optimization problems on certain graph families
– volume: 20
  start-page: 633
  year: 1984
  ident: 10.1016/j.dam.2013.11.010_br000150
  article-title: Monotonic coverings of finite sets
  publication-title: Elektron. Inf.verarb. Kybern.
– start-page: 464
  year: 1999
  ident: 10.1016/j.dam.2013.11.010_br000105
  article-title: Complexity of list partition
– volume: 112
  start-page: 829
  year: 2012
  ident: 10.1016/j.dam.2013.11.010_br000045
  article-title: Partitioning extended P4-laden graphs into cliques and stable sets
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2012.07.011
– volume: 35
  start-page: 115
  issue: 2
  year: 1992
  ident: 10.1016/j.dam.2013.11.010_br000130
  article-title: A tree representation for P4-sparse graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(92)90036-A
– volume: 14
  start-page: 926
  issue: 4
  year: 1985
  ident: 10.1016/j.dam.2013.11.010_br000055
  article-title: A linear recognition algorithm for cographs
  publication-title: SIAM J. Comput.
  doi: 10.1137/0214065
– volume: 11
  start-page: 235
  year: 1990
  ident: 10.1016/j.dam.2013.11.010_br000090
  article-title: Chromatic number versus cochromatic number in graphs with bounded clique number
  publication-title: European J. Combin.
  doi: 10.1016/S0195-6698(13)80123-0
– year: 2008
  ident: 10.1016/j.dam.2013.11.010_br000025
– volume: 6139
  start-page: 334
  year: 2010
  ident: 10.1016/j.dam.2013.11.010_br000120
  article-title: Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-642-13731-0_32
– volume: 235
  start-page: 29
  issue: 23
  year: 2001
  ident: 10.1016/j.dam.2013.11.010_br000005
  article-title: Efficient algorithms for graphs with few P4’s
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(00)00258-2
– volume: 141
  start-page: 185
  year: 2004
  ident: 10.1016/j.dam.2013.11.010_br000125
  article-title: Partitioning chordal graphs into independent sets and cliques
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(03)00371-8
– volume: vol. 842
  year: 1991
  ident: 10.1016/j.dam.2013.11.010_br000135
– volume: 25
  start-page: 1305
  year: 1996
  ident: 10.1016/j.dam.2013.11.010_br000020
  article-title: A linear time algorithm for finding tree-decompositions of small treewidth
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793251219
– volume: 10
  start-page: 297
  issue: 2
  year: 2006
  ident: 10.1016/j.dam.2013.11.010_br000060
  article-title: On the approximability of min split-coloring and min cocoloring
  publication-title: J. Graph Algorithms Appl.
  doi: 10.7155/jgaa.00129
– volume: 84
  start-page: 1
  year: 1998
  ident: 10.1016/j.dam.2013.11.010_br000010
  article-title: On the structure of graphs with few P4’s
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(97)90120-7
– volume: 2
  start-page: 145
  year: 2005
  ident: 10.1016/j.dam.2013.11.010_br000065
  article-title: Partitioning cographs into cliques and stable sets
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2005.03.003
– volume: 10
  start-page: 211
  year: 2005
  ident: 10.1016/j.dam.2013.11.010_br000075
  article-title: On split-coloring problems
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-005-4103-7
– volume: 16
  start-page: 449
  year: 2003
  ident: 10.1016/j.dam.2013.11.010_br000110
  article-title: List partitions
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480100384055
– volume: 15
  start-page: 579
  year: 1991
  ident: 10.1016/j.dam.2013.11.010_br000085
  article-title: Some extremal results in cochromatic and dichromatic theory
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190150604
– volume: 306
  start-page: 2450
  year: 2006
  ident: 10.1016/j.dam.2013.11.010_br000095
  article-title: Matrix partitions of perfect graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2005.12.035
– volume: 25
  start-page: 295
  year: 1997
  ident: 10.1016/j.dam.2013.11.010_br000155
  article-title: Subgraphs with a large cochromatic number
  publication-title: J. Graph Theory
  doi: 10.1002/(SICI)1097-0118(199708)25:4<295::AID-JGT7>3.0.CO;2-F
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.0605576
Snippet A (k,ℓ)-cocoloring of a graph G is a partition of the vertex set of G into at most k independent sets and at most ℓ cliques. It is known that determining the...
A (k,[ell])(k,[ell])-cocoloring of a graph GG is a partition of the vertex set of GG into at most kk independent sets and at most [ell][ell] cliques. It is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms [formula omitted]-graphs
Algorithms
Bounded treewidth
Cochromatic number
Cocoloring
Fixed-parameter tractability
Graphs
Mathematical analysis
Partitions
Polynomials
Title Fixed-parameter algorithms for the cocoloring problem
URI https://dx.doi.org/10.1016/j.dam.2013.11.010
https://www.proquest.com/docview/1671596385
Volume 167
WOSCitedRecordID wos000333492800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQx8N4QHyK8aUg8QQKSuKPOI8TbAIkJkQH6puVug7zVNKpTaf--dzlnKR0YgIkXqIojS337nL--Xz-HWMvZ3ymKpe4uMpcFguV6njqdIpHnwC8lhaWCFRsIj850ZNJ8TkE9FdtOYG8rvVmU1z8V1XDM1A2Hp39C3X3ncIDuAelwxXUDtc_Uvyx37hZjJTePzDV5XU5_75Y-uaMmBdaoAlOcBEy70JBmW2M-s6DK4GmPUL91FO79gActywoQe-bt0RYTH57Hopnjtdgar7pnf4YiR19G5f9sob50vc_-PklxXapjncXgkjbzJUsGeJiV87GUKhSqRgAxIRmGnKvOs9ilVPRld7_Uj2O4EGJzzbMxVRq4IqXp4DDOQwIuQRS_gZ5WEN27K_k2WMcBQ4Cd-0kx-DOXpbLQo_Y3uGHo8nHLaox5NHb74Jzw14UYDIRGOLp_3R7422W4M4Qfodudub5Fryc3mG3w6ojOiRructuuPoeu7Wl1_tM7thNNNhNBHYTwavRYDdRsJsH7Ovx0enb93GoqRFbzpMm5snUla6SEnkY7TS1VcUtVw7LFIhKgGSsFEUprC6nApbuleJWKqt5XpWZzBL-kI3qRe0esSi3wmaFLJDRUkBHRVE5nVtpUyUtKPqAJZ0sjA2E81j3ZG66zMJzA-IzKD5YiBoQ3wF71Te5ILaV614WnYBNgIsEAw3YyXXNXnTKMOBKcX-srN1ivTJgiADuYUKSj_-t6ydsf_g8nrJRs1y7Z-ymvWz8avk8WNxP_oiU5g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-parameter+algorithms+for+the+cocoloring+problem&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Campos%2C+Victor&rft.au=Klein%2C+Sulamita&rft.au=Sampaio%2C+Rudini&rft.au=Silva%2C+Ana&rft.date=2014-04-20&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=167&rft.spage=52&rft.epage=60&rft_id=info:doi/10.1016%2Fj.dam.2013.11.010&rft.externalDocID=S0166218X13005350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon