Some properties of a generalized Hamy symmetric function and its applications
This paper is concerned with the generalized Hamy symmetric function∑n(x,r;f)=∑1⩽i1<i2<⋯<ir⩽nf(∏j=1rxij1r), where f is a positive function defined in a subinterval of (0,+∞). Some properties, including Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity are investigated....
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 376; číslo 2; s. 494 - 505 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
15.04.2011
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is concerned with the generalized Hamy symmetric function∑n(x,r;f)=∑1⩽i1<i2<⋯<ir⩽nf(∏j=1rxij1r), where f is a positive function defined in a subinterval of (0,+∞). Some properties, including Schur-convexity, geometric Schur-convexity and harmonic Schur-convexity are investigated. As applications, several inequalities are obtained, some of which extend the known ones. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2010.10.014 |