Many Objective Particle Swarm Optimization

Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Mul...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 374; pp. 115 - 134
Main Authors: Figueiredo, E.M.N., Ludermir, T.B., Bastos-Filho, C.J.A.
Format: Journal Article
Language:English
Published: Elsevier Inc 20.12.2016
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Multi-Objective Evolutionary Algorithms to solve the lack of the convergence and diversity in many-objective problems. One of the more promising approaches uses a set of reference points to discriminate the solutions and guide the search process. However, this approach was incorporated mainly in Multi-Objective Evolutionary Algorithms, and there are just some few promising adaptations of Particle Swarm Optimization approaches for effectively tackling many-objective problems regarding convergence and diversity. Thus, this paper proposes a practical and efficient Many-Objective Particle Swarm Optimization algorithm for solving many-objective problems. Our proposal uses a set of reference points dynamically determined according to the search process, allowing the algorithm to converge to the Pareto front, but maintaining the diversity of the Pareto front. Our experimental results demonstrate superior or similar performance when compared to other state-of-art algorithms.
AbstractList Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of well-distributed non-dominated solutions close to Pareto front in the objective space remains a challenging problem. Many papers have proposed different Multi-Objective Evolutionary Algorithms to solve the lack of the convergence and diversity in many-objective problems. One of the more promising approaches uses a set of reference points to discriminate the solutions and guide the search process. However, this approach was incorporated mainly in Multi-Objective Evolutionary Algorithms, and there are just some few promising adaptations of Particle Swarm Optimization approaches for effectively tackling many-objective problems regarding convergence and diversity. Thus, this paper proposes a practical and efficient Many-Objective Particle Swarm Optimization algorithm for solving many-objective problems. Our proposal uses a set of reference points dynamically determined according to the search process, allowing the algorithm to converge to the Pareto front, but maintaining the diversity of the Pareto front. Our experimental results demonstrate superior or similar performance when compared to other state-of-art algorithms.
Author Figueiredo, E.M.N.
Ludermir, T.B.
Bastos-Filho, C.J.A.
Author_xml – sequence: 1
  givenname: E.M.N.
  surname: Figueiredo
  fullname: Figueiredo, E.M.N.
  email: emnf@cin.ufpe.br, elliackin@gmail.com
  organization: Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
– sequence: 2
  givenname: T.B.
  surname: Ludermir
  fullname: Ludermir, T.B.
  email: tbl@cin.ufpe.br
  organization: Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
– sequence: 3
  givenname: C.J.A.
  surname: Bastos-Filho
  fullname: Bastos-Filho, C.J.A.
  email: carmelofilho@ecomp.poli.br
  organization: Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil
BookMark eNp9kEtLAzEUhYNUsK3-AHezFGHGm0wyk8GVFF9QqaCuQyZzBzLMoyZppf56p9aVi67uXZzvwPlmZNIPPRJySSGhQLObJrG9T9j4JlAkwLITMqUyZ3HGCjohUwAGMTAhzsjM-wYAeJ5lU3L9ovtdtCobNMFuMXrVLljTYvT2pV0XrdbBdvZbBzv05-S01q3Hi787Jx8P9--Lp3i5enxe3C1jk6YQYlZRWaQFRa7LzDCGtZEsrzgXHCQvmS5lmQtR5CIFjlVVy6pgNTWac1lxYdI5uTr0rt3wuUEfVGe9wbbVPQ4br6jkQoIAxsYoPUSNG7x3WKu1s512O0VB7b2oRo1e1N6LgkKNXkYm_8cYG34HBqdte5S8PZA4rt9adMobi73ByrpRn6oGe4T-Aeiiffs
CitedBy_id crossref_primary_10_1007_s12065_021_00644_4
crossref_primary_10_1016_j_jss_2018_12_015
crossref_primary_10_1007_s40747_021_00270_8
crossref_primary_10_1016_j_engappai_2021_104385
crossref_primary_10_1007_s10489_019_01569_3
crossref_primary_10_1007_s11227_023_05330_z
crossref_primary_10_1016_j_ins_2020_05_097
crossref_primary_10_1109_TCYB_2018_2884083
crossref_primary_10_1016_j_cie_2020_106649
crossref_primary_10_1016_j_swevo_2019_100606
crossref_primary_10_1016_j_swevo_2019_100603
crossref_primary_10_1093_jcde_qwae055
crossref_primary_10_1177_03611981231182714
crossref_primary_10_1016_j_eswa_2025_128913
crossref_primary_10_1080_01605682_2023_2195426
crossref_primary_10_1016_j_jenvman_2023_117785
crossref_primary_10_1007_s12647_020_00379_0
crossref_primary_10_1016_j_autcon_2021_104084
crossref_primary_10_1111_exsy_12812
crossref_primary_10_3390_a12030061
crossref_primary_10_1007_s40032_024_01104_5
crossref_primary_10_1016_j_jocs_2017_10_001
crossref_primary_10_1007_s12065_024_00942_7
crossref_primary_10_1016_j_advengsoft_2020_102889
crossref_primary_10_1371_journal_pone_0234625
crossref_primary_10_1016_j_swevo_2021_100910
crossref_primary_10_1016_j_swevo_2021_101008
crossref_primary_10_1007_s00170_022_09728_6
crossref_primary_10_3390_math11102301
crossref_primary_10_1007_s00500_022_07182_w
crossref_primary_10_1007_s00521_017_2988_6
crossref_primary_10_1016_j_ins_2018_10_007
crossref_primary_10_3390_computers11050063
crossref_primary_10_7717_peerj_cs_2073
crossref_primary_10_1007_s10489_017_0998_9
crossref_primary_10_1007_s11356_021_16108_2
crossref_primary_10_1016_j_knosys_2017_10_025
crossref_primary_10_1016_j_apm_2024_115676
crossref_primary_10_1007_s00521_018_3848_8
crossref_primary_10_1109_TCYB_2019_2922287
crossref_primary_10_1109_TCYB_2019_2949204
crossref_primary_10_3390_app13053355
crossref_primary_10_3390_signals5030029
crossref_primary_10_1007_s11227_021_03620_y
crossref_primary_10_1002_spe_3292
crossref_primary_10_1016_j_engappai_2019_02_003
crossref_primary_10_1007_s40430_017_0816_7
crossref_primary_10_1016_j_ins_2018_01_038
crossref_primary_10_1016_j_eswa_2023_120401
crossref_primary_10_3390_polym14142815
crossref_primary_10_1016_j_asoc_2021_107650
crossref_primary_10_1016_j_eswa_2019_01_075
crossref_primary_10_1109_ACCESS_2023_3294095
crossref_primary_10_1007_s00500_023_09314_2
crossref_primary_10_1520_JTE20220041
crossref_primary_10_1016_j_asoc_2021_107299
crossref_primary_10_1002_eng2_70077
crossref_primary_10_1016_j_cja_2021_04_010
crossref_primary_10_1016_j_isatra_2019_01_026
crossref_primary_10_3390_a15110397
crossref_primary_10_1007_s00158_019_02272_0
crossref_primary_10_1016_j_eswa_2024_124559
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1371_journal_pone_0284110
crossref_primary_10_1109_ACCESS_2023_3308054
crossref_primary_10_3390_e24040478
crossref_primary_10_1016_j_ins_2018_07_012
crossref_primary_10_3389_fenrg_2022_953873
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1155_2020_5132803
crossref_primary_10_1016_j_rineng_2025_106941
crossref_primary_10_1016_j_swevo_2024_101724
crossref_primary_10_1016_j_ins_2017_04_016
crossref_primary_10_1016_j_asoc_2019_01_033
crossref_primary_10_1109_ACCESS_2020_3031599
crossref_primary_10_1016_j_asoc_2020_106199
crossref_primary_10_1016_j_simpat_2023_102870
crossref_primary_10_1016_j_jpdc_2018_11_008
crossref_primary_10_1088_1742_6596_2890_1_012013
Cites_doi 10.1016/j.ins.2015.09.015
10.1162/EVCO_a_00009
10.1016/j.asoc.2015.06.020
10.1109/4235.996017
10.1109/TSMCA.2004.824873
10.1109/TEVC.2004.826067
10.1109/TEVC.2012.2204403
10.1109/TEVC.2014.2339823
10.1109/4235.985692
10.1016/j.neucom.2013.05.049
10.1109/TEVC.2007.910138
10.1109/TEVC.2012.2227145
10.1109/TEVC.2012.2204264
10.1109/TEVC.2010.2077298
10.1016/j.neucom.2011.03.053
10.1137/S1052623496307510
10.1109/TEVC.2015.2424921
10.1145/2792984
10.1109/TEVC.2010.2093579
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2013.2281535
10.1109/TEVC.2010.2058117
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2016.09.026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 134
ExternalDocumentID 10_1016_j_ins_2016_09_026
S0020025516308404
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c330t-2d189391e4ab6c22efc827d4454084b2ab8b755975304eddf8d92f1ca448d45c3
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386645800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Thu Oct 02 10:26:42 EDT 2025
Sat Nov 29 06:25:02 EST 2025
Tue Nov 18 22:11:15 EST 2025
Fri Feb 23 02:33:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence
Multi-Objective Evolutionary Algorithms
Particle Swarm Optimization
Many-objective problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-2d189391e4ab6c22efc827d4454084b2ab8b755975304eddf8d92f1ca448d45c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1845805022
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1845805022
crossref_primary_10_1016_j_ins_2016_09_026
crossref_citationtrail_10_1016_j_ins_2016_09_026
elsevier_sciencedirect_doi_10_1016_j_ins_2016_09_026
PublicationCentury 2000
PublicationDate 2016-12-20
PublicationDateYYYYMMDD 2016-12-20
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Clerc, Kennedy (bib0007) 2002; 6
Deb, Jain (bib0013) 2012
Hughes (bib0020) 2003
Mostaghim, Schmeck (bib0027) 2008; 5199
Singh, Isaacs, Ray (bib0035) 2011; 15
Li, Li, Tang, Yao (bib0026) 2015; 48
Ishibuchi, Tsukamoto, Hitotsuyanagi, Nojima (bib0023) 2008
Deb, Jain (bib0012) 2014; 18
Garza-Fabre, Pulido, Coello Coello (bib0018) 2010
De Carvalho, Pozo (bib0011) 2012; 75
Zitzler, Laumanns, Thiele (bib0042) 2002
Ishibuchi, Tsukamoto, Nojima (bib0024) 2008
Yang, Li, Liu, Zheng (bib0040) 2013; 17
Farina, Amato (bib0016) 2004; 34
Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib0041) 2011; 1
Adra, Fleming (bib0001) 2011; 15
Ishibuchi, Sakane, Tsukamoto, Nojima (bib0022) 2010
Deb, Thiele, Laumanns, Zitzler (bib0015) 2005
While, Bradstreet, Barone (bib0038) 2012; 16
Wagner, Beume, Naujoks (bib0036) 2007
Kennedy, Eberhart (bib0025) 1995
Wang, Purshouse, Fleming (bib0037) 2013; 17
Goulart, Campelo (bib0019) 2016; 329
Reyes-Sierra, Coello Coello (bib0031) 2005
Nebro, Durillo, García-Nieto, Coello Coello, Luna, Alba (bib0028) 2009
Garza-Fabre, Pulido, Coello (bib0017) 2009
Britto, Pozo (bib0004) 2014; 127
Wickramasinghe, Li (bib0039) 2009
Reyes-Sierra, Coello Coello (bib0032) 2006; 2
Sindhya, Miettinen, Deb (bib0034) 2013; 17
Ishibuchi, Sakane, Tsukamoto, Nojima (bib0021) 2009
Sato, Aguirre, Tanaka (bib0033) 2007; 4403
Cai, Qu, Yuan, Yao (bib0005) 2015; 35
Bader, Zitzler (bib0003) 2011; 19
Asafuddoula, Ray, Sarker (bib0002) 2015; 19
Deb, Pratap, Agarwal, Meyarivan (bib0014) 2002; 6
Das, Dennis (bib0010) 1998; 8
Coello Coello, Lamont, Van Veldhuizen (bib0009) 2007
Purshouse, Fleming (bib0030) 2007; 11
Cheng, Yen, Zhang (bib0006) 2015; 19
Coello, Pulido, Lechuga (bib0008) 2004; 8
Purshouse, Fleming (bib0029) 2003; 3
Garza-Fabre (10.1016/j.ins.2016.09.026_bib0017) 2009
Wickramasinghe (10.1016/j.ins.2016.09.026_bib0039) 2009
Zhou (10.1016/j.ins.2016.09.026_bib0041) 2011; 1
Goulart (10.1016/j.ins.2016.09.026_bib0019) 2016; 329
Deb (10.1016/j.ins.2016.09.026_bib0014) 2002; 6
Zitzler (10.1016/j.ins.2016.09.026_bib0042) 2002
Hughes (10.1016/j.ins.2016.09.026_bib0020) 2003
Ishibuchi (10.1016/j.ins.2016.09.026_bib0021) 2009
Sindhya (10.1016/j.ins.2016.09.026_bib0034) 2013; 17
Ishibuchi (10.1016/j.ins.2016.09.026_bib0023) 2008
Britto (10.1016/j.ins.2016.09.026_bib0004) 2014; 127
Coello (10.1016/j.ins.2016.09.026_bib0008) 2004; 8
Deb (10.1016/j.ins.2016.09.026_bib0015) 2005
Cai (10.1016/j.ins.2016.09.026_bib0005) 2015; 35
Wang (10.1016/j.ins.2016.09.026_bib0037) 2013; 17
Coello Coello (10.1016/j.ins.2016.09.026_bib0009) 2007
Adra (10.1016/j.ins.2016.09.026_bib0001) 2011; 15
Das (10.1016/j.ins.2016.09.026_bib0010) 1998; 8
Clerc (10.1016/j.ins.2016.09.026_bib0007) 2002; 6
Yang (10.1016/j.ins.2016.09.026_bib0040) 2013; 17
Mostaghim (10.1016/j.ins.2016.09.026_bib0027) 2008; 5199
Reyes-Sierra (10.1016/j.ins.2016.09.026_bib0032) 2006; 2
Ishibuchi (10.1016/j.ins.2016.09.026_bib0022) 2010
Wagner (10.1016/j.ins.2016.09.026_bib0036) 2007
Li (10.1016/j.ins.2016.09.026_bib0026) 2015; 48
Singh (10.1016/j.ins.2016.09.026_bib0035) 2011; 15
Deb (10.1016/j.ins.2016.09.026_bib0012) 2014; 18
Ishibuchi (10.1016/j.ins.2016.09.026_sbref0024) 2008
Purshouse (10.1016/j.ins.2016.09.026_bib0030) 2007; 11
Nebro (10.1016/j.ins.2016.09.026_bib0028) 2009
Purshouse (10.1016/j.ins.2016.09.026_bib0029) 2003; 3
De Carvalho (10.1016/j.ins.2016.09.026_bib0011) 2012; 75
Deb (10.1016/j.ins.2016.09.026_bib0013) 2012
Garza-Fabre (10.1016/j.ins.2016.09.026_bib0018) 2010
Sato (10.1016/j.ins.2016.09.026_bib0033) 2007; 4403
While (10.1016/j.ins.2016.09.026_bib0038) 2012; 16
Bader (10.1016/j.ins.2016.09.026_bib0003) 2011; 19
Asafuddoula (10.1016/j.ins.2016.09.026_bib0002) 2015; 19
Reyes-Sierra (10.1016/j.ins.2016.09.026_bib0031) 2005
Farina (10.1016/j.ins.2016.09.026_bib0016) 2004; 34
Kennedy (10.1016/j.ins.2016.09.026_bib0025) 1995
Cheng (10.1016/j.ins.2016.09.026_bib0006) 2015; 19
References_xml – start-page: 519
  year: 2010
  end-page: 526
  ident: bib0022
  article-title: Simultaneous use of different scalarizing functions in MOEA/d
  publication-title: Proceedings of the Twelfth Annual Conference on Genetic and Evolutionary Computation
– volume: 75
  start-page: 43
  year: 2012
  end-page: 51
  ident: bib0011
  article-title: Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems
  publication-title: Neurocomputing
– volume: 48
  start-page: 13:1
  year: 2015
  end-page: 13:35
  ident: bib0026
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0007
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 66
  year: 2009
  end-page: 73
  ident: bib0028
  article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization
  publication-title: Proceedings of the IEEE Symposium on Computer Intelligence in Multicriteria Decision-Making (MCDM 2009)
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: bib0003
  article-title: Hype: An algorithm for fast hypervolume based many-objective optimization
  publication-title: Evol. Comput.
– volume: 11
  start-page: 770
  year: 2007
  end-page: 784
  ident: bib0030
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 633
  year: 2009
  end-page: 645
  ident: bib0017
  article-title: Ranking methods for many-objective optimization
  publication-title: Proceedings of the Eighth Mexican International Conference on Artificial Intelligence
– volume: 15
  start-page: 539
  year: 2011
  end-page: 556
  ident: bib0035
  article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 127
  start-page: 78
  year: 2014
  end-page: 87
  ident: bib0004
  article-title: Using reference points to update the archive of MOPSO algorithms in many-objective optimization
  publication-title: Neurocomputing
– volume: 3
  start-page: 2066
  year: 2003
  end-page: 2073
  ident: bib0029
  article-title: Evolutionary many-objective optimisation: an exploratory analysis
  publication-title: Proceedings of the 2003 Congress on Evolutionary Computation
– volume: 16
  start-page: 86
  year: 2012
  end-page: 95
  ident: bib0038
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib0008
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 105
  year: 2005
  end-page: 145
  ident: bib0015
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib0010
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 329
  start-page: 236
  year: 2016
  end-page: 255
  ident: bib0019
  article-title: Preference-guided evolutionary algorithms for many-objective optimization
  publication-title: Inf. Sci.
– volume: 19
  start-page: 592
  year: 2015
  end-page: 605
  ident: bib0006
  article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections
  publication-title: IEEE Trans. Evol. Comput.
– volume: 35
  start-page: 681
  year: 2015
  end-page: 694
  ident: bib0005
  article-title: A clustering-ranking method for many-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 4403
  start-page: 5
  year: 2007
  end-page: 20
  ident: bib0033
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
  publication-title: Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 742
  year: 2007
  end-page: 756
  ident: bib0036
  article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization
  publication-title: Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization
– volume: 34
  start-page: 315
  year: 2004
  end-page: 326
  ident: bib0016
  article-title: A fuzzy definition of “optimality” for many-criteria optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
– year: 2007
  ident: bib0009
  publication-title: Evolutionary Algorithms for Solving Multi-Objective Problems
– volume: 15
  start-page: 183
  year: 2011
  end-page: 195
  ident: bib0001
  article-title: Diversity management in evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 8
  year: 2012
  ident: bib0013
  article-title: Handling many-objective problems using an improved NSGA-ii procedure
  publication-title: Proceedings of the IEEE World Congress on Computational Intelligence
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0025
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Congress on Neural Networks
– volume: 17
  start-page: 474
  year: 2013
  end-page: 494
  ident: bib0037
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0040
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 649
  year: 2008
  end-page: 656
  ident: bib0023
  article-title: Effectiveness of scalability improvement attempts on the performance of NSGA-ii for many-objective problems
  publication-title: Proceedings of the Tenth Annual Conference on Genetic and Evolutionary Computation
– volume: 2
  start-page: 287
  year: 2006
  end-page: 308
  ident: bib0032
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int. J. Comput. Intell. Res.
– start-page: 2678
  year: 2003
  end-page: 2684
  ident: bib0020
  article-title: Multiple single objective Pareto sampling
  publication-title: Proceedings of the 2003 Congress on Evolutionary Computation
– start-page: 505
  year: 2005
  end-page: 519
  ident: bib0031
  article-title: Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance
  publication-title: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization
– volume: 17
  start-page: 495
  year: 2013
  end-page: 511
  ident: bib0034
  article-title: A hybrid framework for evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 667
  year: 2009
  end-page: 674
  ident: bib0039
  article-title: Using a distance metric to guide PSO algorithms for many-objective optimization
  publication-title: Proceedings of the Eleventh Annual Conference on Genetic and Evolutionary Computation
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: bib0041
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– volume: 5199
  start-page: 753
  year: 2008
  end-page: 762
  ident: bib0027
  article-title: Distance based ranking in many-objective particle swarm optimization
  publication-title: Parallel Problem Solving from Nature PPSN X
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: bib0002
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2419
  year: 2008
  end-page: 2426
  ident: bib0024
  article-title: Evolutionary many-objective optimization: a short review
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0014
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0012
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: Evol. Comput.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0018
  article-title: Two novel approaches for many-objective optimization
  publication-title: Proceedings of the 2010 Congress on Evolutionary Computation
– start-page: 95
  year: 2002
  end-page: 100
  ident: bib0042
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001)
– start-page: 1758
  year: 2009
  end-page: 1763
  ident: bib0021
  article-title: Evolutionary many-objective optimization by NSGA-ii and MOEA/d with large populations
  publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
– volume: 329
  start-page: 236
  year: 2016
  ident: 10.1016/j.ins.2016.09.026_bib0019
  article-title: Preference-guided evolutionary algorithms for many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.09.015
– volume: 3
  start-page: 2066
  year: 2003
  ident: 10.1016/j.ins.2016.09.026_bib0029
  article-title: Evolutionary many-objective optimisation: an exploratory analysis
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2016.09.026_bib0003
  article-title: Hype: An algorithm for fast hypervolume based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– start-page: 633
  year: 2009
  ident: 10.1016/j.ins.2016.09.026_bib0017
  article-title: Ranking methods for many-objective optimization
– volume: 2
  start-page: 287
  issue: 3
  year: 2006
  ident: 10.1016/j.ins.2016.09.026_bib0032
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int. J. Comput. Intell. Res.
– start-page: 8
  year: 2012
  ident: 10.1016/j.ins.2016.09.026_bib0013
  article-title: Handling many-objective problems using an improved NSGA-ii procedure
– volume: 35
  start-page: 681
  year: 2015
  ident: 10.1016/j.ins.2016.09.026_bib0005
  article-title: A clustering-ranking method for many-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.06.020
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2016.09.026_bib0014
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– start-page: 1758
  year: 2009
  ident: 10.1016/j.ins.2016.09.026_bib0021
  article-title: Evolutionary many-objective optimization by NSGA-ii and MOEA/d with large populations
– volume: 34
  start-page: 315
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2016.09.026_bib0016
  article-title: A fuzzy definition of “optimality” for many-criteria optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2004.824873
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2016.09.026_bib0008
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– start-page: 505
  year: 2005
  ident: 10.1016/j.ins.2016.09.026_bib0031
  article-title: Improving PSO-based multi-objective optimization using crowding, mutation and ϵ-dominance
– start-page: 2419
  year: 2008
  ident: 10.1016/j.ins.2016.09.026_sbref0024
  article-title: Evolutionary many-objective optimization: a short review
– volume: 17
  start-page: 495
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2016.09.026_bib0034
  article-title: A hybrid framework for evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204403
– start-page: 66
  year: 2009
  ident: 10.1016/j.ins.2016.09.026_bib0028
  article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.ins.2016.09.026_bib0002
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– start-page: 519
  year: 2010
  ident: 10.1016/j.ins.2016.09.026_bib0022
  article-title: Simultaneous use of different scalarizing functions in MOEA/d
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2016.09.026_bib0007
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– year: 2007
  ident: 10.1016/j.ins.2016.09.026_bib0009
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2016.09.026_bib0018
  article-title: Two novel approaches for many-objective optimization
– volume: 127
  start-page: 78
  year: 2014
  ident: 10.1016/j.ins.2016.09.026_bib0004
  article-title: Using reference points to update the archive of MOPSO algorithms in many-objective optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.049
– volume: 11
  start-page: 770
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2016.09.026_bib0030
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.910138
– start-page: 667
  year: 2009
  ident: 10.1016/j.ins.2016.09.026_bib0039
  article-title: Using a distance metric to guide PSO algorithms for many-objective optimization
– start-page: 1942
  year: 1995
  ident: 10.1016/j.ins.2016.09.026_bib0025
  article-title: Particle swarm optimization
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2016.09.026_bib0040
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 5199
  start-page: 753
  year: 2008
  ident: 10.1016/j.ins.2016.09.026_bib0027
  article-title: Distance based ranking in many-objective particle swarm optimization
– volume: 17
  start-page: 474
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2016.09.026_bib0037
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204264
– volume: 16
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2016.09.026_bib0038
  article-title: A fast way of calculating exact hypervolumes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2077298
– volume: 75
  start-page: 43
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2016.09.026_bib0011
  article-title: Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.053
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2016.09.026_bib0010
  article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– start-page: 105
  year: 2005
  ident: 10.1016/j.ins.2016.09.026_bib0015
  article-title: Scalable test problems for evolutionary multiobjective optimization
– start-page: 95
  year: 2002
  ident: 10.1016/j.ins.2016.09.026_bib0042
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization
– start-page: 2678
  year: 2003
  ident: 10.1016/j.ins.2016.09.026_bib0020
  article-title: Multiple single objective Pareto sampling
– start-page: 649
  year: 2008
  ident: 10.1016/j.ins.2016.09.026_bib0023
  article-title: Effectiveness of scalability improvement attempts on the performance of NSGA-ii for many-objective problems
– start-page: 742
  year: 2007
  ident: 10.1016/j.ins.2016.09.026_bib0036
  article-title: Pareto-, aggregation-, and indicator-based methods in many-objective optimization
– volume: 19
  start-page: 592
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2016.09.026_bib0006
  article-title: A many-objective evolutionary algorithm with enhanced mating and environmental selections
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2424921
– volume: 4403
  start-page: 5
  year: 2007
  ident: 10.1016/j.ins.2016.09.026_bib0033
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
– volume: 48
  start-page: 13:1
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2016.09.026_bib0026
  article-title: Many-objective evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2792984
– volume: 15
  start-page: 539
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2016.09.026_bib0035
  article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093579
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2016.09.026_bib0041
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2016.09.026_bib0012
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 15
  start-page: 183
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2016.09.026_bib0001
  article-title: Diversity management in evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2058117
SSID ssj0004766
Score 2.5048041
Snippet Many-objective problems refer to the optimization problems containing more than three conflicting objectives. To obtain a representative set of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Algorithms
Convergence
Evolutionary algorithms
Many-objective problems
Multi-Objective Evolutionary Algorithms
Multiple objective analysis
Optimization
Pareto optimality
Particle Swarm Optimization
Search process
Swarm intelligence
Title Many Objective Particle Swarm Optimization
URI https://dx.doi.org/10.1016/j.ins.2016.09.026
https://www.proquest.com/docview/1845805022
Volume 374
WOSCitedRecordID wos000386645800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_Oqw_6ULQq1lqJID60JGQ_kmwer9KilV4FK9zbkuxu9I5rWu6j9s939usunlhU8CWEJV_MTGZ-MzsfCL2hNWE5YTyWuczAQaE65ljiOCsUazhXgGEbO2yiGA75aFR-6vU-hlqYm2nRtvz2trz-r6yGNWC2KZ39C3avHgoLcA5MhyOwHY5_xPgzs4N_Xk-cJgOI6C45_Py9ml0enoOKuPS1l11g6suSrDR4q7iuDBl_Xeqx6SxqNWdylgyTVSLPUpl0Gsf35Gi1flQBqpzHJ-PpNxeMTU6TQdKNMWA7mYek68BXKH75KTfTIM3YuCTOlDj9yQsS58QN4AoKlhasoyIxzjrWFrtQ5i-K3MUUJuB9mJ7qOLfNaMlG02xrhs12s_WMAFmm4K6ye2iLFFnJ-2hr8OF4dLouky3c1nX47rDJbdP9Nl70O5iyYbAtCrl4hLa9-xANHE8fo55ud9DDTlPJHbTvS1Git1GHqZFX4k_QgRGQaCUgURCQyApI1BWQp-jLyfHFu_exn5gRS0rTRUwUBvxZYs2qOpeE6EZyAn-dabPIWU2qmteF8SEzmjKtVMNVSRosK3DSFcskfYb67VWrn6OIUSBRVTJFVc50Dl65xlRlsEQLLbXcRWkgkJC-nbyZajIVIW9wIoCmwtBUpKUAmu6ig9Ut166Xyl0Xs0B14cXegTwBInLXba8DhwQoSrP7VbX6ajkXmLOMpxlg1hf_9ug99GD9b7xE_cVsqffRfXmzGM9nr7yw_QD1d4lN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many+Objective+Particle+Swarm+Optimization&rft.jtitle=Information+sciences&rft.au=Figueiredo%2C+E.M.N.&rft.au=Ludermir%2C+T.B.&rft.au=Bastos-Filho%2C+C.J.A.&rft.date=2016-12-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=374&rft.spage=115&rft.epage=134&rft_id=info:doi/10.1016%2Fj.ins.2016.09.026&rft.externalDocID=S0020025516308404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon